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Preface

The goal of this book is to encourage the teaching and learning of mathematical model
building relatively early in the undergraduate program. The text introduces the student to a
number of important mathematical topics and to a variety of models in the social sciences, life
sciences, and humanities. Students with some mathematical maturity and a strong secondary
school background will find many chapters quite accessible. A standard first year calculus
course is sufficient background for the remaining chapters. While many of the models use
differential equations or some elementary linear algebra, no previous experience with these
topics is assumed. The text material will help students gain the necessary knowledge.
Appendices on sets, matrices, systems of linear equations, and functions of two variables
provide additional background material.

Particular problems in political science, ecology, biology, evolution, medicine, psychol-
ogy, sociology, economics, finance, anthropology, criminal justice, epidemiology, philosophy,
religion, opera, and hospital planning provide the motivation for the development of tools and
techniques employed throughout applied mathematics. These include

Differential Equations Discrete Dynamical Systems,

Axiomatics Probability Theory

Regular Markov Chains Absorbing Markov Chain

Matrix Algebra Least Squares Fitting Of Data

Simulation Theory Of Games

The curricula in many social science and life science disciplines are becoming increas-
ingly infused with the development and analysis of formal models. Students in such majors
(particularly integrated biology/mathematics and economics/mathematics programs) need an
introduction to the mathematical ideas and techniques just listed. This text provides one way of
gaining this exposure in a single course.

I selected models primarily from the behavioral sciences for a number of reasons:

1. They show the rich variety of disciplines to which mathematics is making important
contributions;

2. Because such models require less technical background knowledge than more tra-
ditional models in physics, chemistry, and engineering, students can examine in
depth many different applications in a one-semester course;
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3. Most students feel more familiar with social phenomena than with physical ones.
They are more eager to challenge the assumptions of models and to develop alter-
native ones on their own;

4. These models provide a unique opportunity for a student with a minimal background
in calculus to learn about some mathematical developments of the past century.

Structure of the Book
The first chapter introduces the idea of a mathematical model by reexamining a familiar
physical example: what happens when an object falls toward the earth. The model is a
classic one from elementary calculus that is a good exemplar of a continuous dynamic
system. We also model, using a discrete dynamic approach, the important personal finance
problem of controlling credit card balances. To demonstrate a theme that the same math-
ematical model can be used to investigate real world problems that seem on the surface to
be different, we show how the credit card balance model may also be used to model
population growth of nations. There is a discussion of the classification of models into
deterministic, probabilistic, and axiomatic categories.

Chapters 2 through 5 concentrate on deterministic models. “Stable and Unstable Arms
Races” (Chapter 2) presents L. F. Richardson’s theories about the outbreak of war. The
model is a linked system of two linear differential equations with constant coefficients.
The mathematical analysis is kept to an elementary level; it exploits the idea that a derivative
gives a good approximation to the behavior of a function near a point of tangency. I have
presented this material several times to students during their first calculus course. We also
indicate how ideas from linear algebra lead to an explicit solution of the system. Such
systems appear in many different fields (eg. biology, ecology, environmental economics,
pharmacokinetics) that employ compartment models. We also discuss numerical approx-
imations to such systems via Euler’s method.

As in subsequent units, Chapter 2 begins with a verbal description of a real-world
problem and then proceeds to show how a mathematical model can be built that reflects the
important assumptions. A good portion of each chapter is devoted to a mathematical
analysis of the model, in which new mathematical tools are developed. After the analysis,
we proceed to discuss how the model can be tested against real-world data and indicate how
one might refine and improve the model.

Chapters 3 and 4 on ecological models go more deeply into the use of differential
equations as modeling tools. First, models of population growth for a single species are
introduced. These use the standard types of first-order differential equations leading to
exponential and logistic growth. We show how to fit a logistic model to real world data.
We also discuss discrete analogues to these models, illustrating how the discrete logistic
model may exhibit chaotic behavior. In Chapter 4, nonlinear systems of differential
equations provide the language for examining simple models of the fluctuations of
populations of interacting species. In examining nonlinear systems, we emphasize the
determination of stable points and characterizing their behavior through the use of
approximation by linear models.

In Chapter 5, we investigate some discrete and continuous models of tumor growth
with a focus on some very recent results about the dynamics of colorectal cancer tumors.
We compare and contrast the logistic model presented earlier with the von Bertalanffy and
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Gompertz models. This chapter also continues study of fitting data to a model and com-
paring different models’ predictions to experimental data by the method of least squares.

Chapters 3–5, together with Chapter 13 on epidemics, are the only ones in the text
which demand technical mastery of a year’s study of calculus. The background material on
differential equations and functions of two variables is presented in appendices.

Chapters 6 through 9 focus on axiomatic models. In the sixth chapter, “Social Choice
and Voting Procedures,” we discuss some of the injustices associated with commonly used
voting mechanisms. The problem of interest becomes: “Can one construct a voting pro-
cedure which avoids these shortcomings?” We state and prove Arrow’s Theorem that a
seemingly plausible list of properties such a mechanism should satisfy turns out to be
inconsistent. We also present some more recent theorems (with proofs) considering other
“reasonable” but inconsistent axioms. The attractive features and interesting paradoxes
associated with Instant Runoff Voting and Approval Voting are also treated in some depth.
Chapter 6 concludes with an introduction to topological choice theory.

Chapters 7 and 8 present axiomatic treatments of some basic questions of contem-
porary measurement and utility theory. The existence of equilibrium prices in an exchange
economy is the focus of Chapter 9 where we show how a Nash-Debreu approach using fixed
point theory provides a critical insight. This chapter begins with a classic model of a 2-person
economy using the ideas of an Edgeworth box, indifference curves, bargaining space, and
Pareto solutions before moving to the more general approach. Beyond the usual demand for
“mathematical maturity,” there are no specific mathematical prerequisites for understanding
these chapters 6–9. We make use of Brouwer’s Fixed Point Theorem here and again in
Chapter 16 on game theory. We do not include a full proof of Brouwer’s Theorem but show
its connection with the geometrically more plausible No Retraction Theorem.

Chapters 10 through 13 develop an extensive treatment of probabilistic models. There
is particular emphasis on Markov processes because of their widespread use as models in
the mathematical social sciences. The treatment is self-contained; no prior knowledge of
probability or linear algebra is assumed. It has been my experience that much of the material
in Chapters 10 and 11 can be assigned for self-study by the students. I present outlines of
proofs for the main results about regular and absorbing Markov chains. The results are
easily understood and applied by students with three years of high-school mathematics. I
would reserve discussion of the proofs for a class which had already completed two or more
years of college mathematics.

Once the background in probability theory is presented, there are a number of
applications: population growth models, cultural stability (Chapter 12), paired-associate
learning (Chapter 13), sports competition, and the spread of epidemics. The stochastic
version of a simple deterministic model of population growth discussed in Chapter 3 is
presented along with a comparison of the results obtained by the two approaches. Chapter
14 on epidemics also compares and contrasts deterministic and probabilistic models of the
same problem. We also show how some of the ideas of modeling the spread of infectious
diseases may be used to model the dynamics of rumors, the persistence of urban legends,
and the control of binge drinking. A chapter available online shows an application of
Markov processes to measuring recidivism in the criminal justice system.

Chapter 15 introduces computer simulation by examining the way in which a St.
Louis hospital staff decided how many additional surgical and recovery rooms would be
needed if it added a fixed number of new beds. We delve into the topic of agent-based
simulation models in an additional chapter available online.
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Chapter 16 discusses game theory, the first mathematical discipline specifically
created to model human behavior. We begin with two difficult decisions facing Abraham in
the book of Genesis and Tosca in Puccini’s opera. The major classifications of games is
introduced; one-person games (decision theory) is illustrated by David’s decision to fight
Goliath. Minimax mixed strategies in two-person zero-sum are presented. We show how to
compute optimal mixed strategies for 2 × 2 games. We then illustrate how two-person
nonzero-sum game theory sheds new insights into some famous stories of human sacrifice
from the Old Testament and illustrate how the Prisoner’s Dilemma game is embedded in
Tosca. There is an in depth presentation of Nash equilibria including a proof of his famous
existence theorem. An additional online chapter introduces Evolutionary Game Theory, a
powerful new tool that is of increasing interest to biologists and economists. The final
online chapter discusses agent-based models.

Five appendices provide background information on sets, matrices, systems of linear
equations, functions of several variables, and differential equations.

A chart at the end of the preface shows the dependencies of each chapter on the earlier
ones. There is more material in the text than can be covered in a one-semester course, so the
chart will enable instructors to create a variety of different courses to emphasize their
students’ interests and mathematical preparation.

In my twelve-week course, I like to expose students to deterministic, axiomatic, and
probabilistic models. In a typical term, we would cover the material in Chapters 1–4,
6, 10–13, 15 and 16. For a one-quarter (10 week) course, I would likely omit Chapters 13
and 15 and shorten the treatment in Chapter 4. The luxury of a full semester (15 weeks)
would enable me to add two or three additional chapters.

An instructor wishing to emphasize models in the biological sciences might include
the first five chapters followed by Chapters 10, 14, 15 and 18 . The core of a course
directed toward students in economics could include Chapters 1, 2, 6–9, 10 and 16. These
chapters incidentally provide deeper understanding of the mathematics used in the sem-
inal work of at least three Nobel Prize winners in economics: Kenneth Arrow, Gérard
Debreu, and John Nash.

To make a modeling course accessible to students at the earliest point in their
undergraduate curriculum, experience in computer programming is not a prerequisite for
the book. I believe the text is sufficiently flexible in its structure, however, to permit
instructors to emphasize programming if they wish. Implementation of the discrete
dynamical systems examples and simulations of the continuous systems can easily be done
by students with access to many standard software packages such as Excel, STELLA,
Maple, or Mathematica.

Concluding Remarks
In writing this book, I followed my belief that students can learn more about building
mathematical models by studying critically, and in some depth, a relatively few models than
they can by learning, in isolation, a large assortment of techniques. All the models presented
are simple ones, in the sense that researchers have constructed more sophisticated and more
realistic ones to model the same phenomena. Thus, readers will not find the latest devel-
opments in mathematical learning theory, for example, in this text, nor will they see a
survey of the models commonly used by ecologists today in their study of interacting

Preface xi



populations. The models which are analyzed here have been for the most part, however,
significant in the development of a mathematical approach to one or more disciplines.

The text hopefully encourages readers to go beyond the stage of examining the works
of others and to begin to function as a model builder on their own. Many of the more than
700 exercises require the reader to create “minimodels” to solve the problems. At the end
of each chapter there are suggested projects that demand the creation of new models or
involve extensions of old ones. On the book’s website, www.wiley.com/college/olinick
there are extended lists of references for additional reading or further exploration.

The reader will also note that extensive space has been set aside for historical and
biographical notes on the development of the mathematical models and the men and women
who invented them. My hope is that these will dispel any lingering notions that mathe-
matics is the creation of colorless automata. As in every other creative activity, mathematics
and mathematical applications come from the minds of active individuals responding to the
crucial social and cultural issues of their day.
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CHAPTER
1

Mathematical Models

The status of a science is commonly measured by the degree

to which it makes use of mathematics.

—S. S. Stevens

It is still an unending source of surprise to me to see

how a few scribbles on a blackboard or on a sheet of paper

could change the course of human affairs.

—Stanislaw Ulam

I. Mathematical Systems and Models
A. Mathematical Systems

Science studies the realworld. In their role as scientists, humanbeingswant to discover the laws
that govern observed phenomena.Whenwe better understand phenomena, then wemaymake
valid predictions about future behavior. In amore active capacity, such understanding can lead
to intelligent efforts to control phenomena, or at least influence them.

In this book, we will examine how we can use mathematical systems as tools to help
achieve some of these aims. Although you will examine some examples from the physical
sciences, most of our attention will be on problems of primary interest to social and life
scientists, philosophers, and humanists.

A mathematical system consists of a collection of assertions from which we derive
consequences by logical argument. We commonly call the assertions the axioms or pos-
tulates of the system. They always contain one or more primitive terms that are undefined
and that hence have no meaning inside the mathematical system.

A familiar mathematical system is that of plane geometry. Two of the primitive terms
in this system are “point” and “line.” As examples of axioms in this system, we have

AXIOM 1 Given two distinct points, there is a unique line containing the points.

and

AXIOM 2 Given a line L and a point p not belonging to L, there is a unique line that
contains p and that is parallel to L.
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Not all the terms in an axiom are necessarily primitive. The concept “parallel,” which
occurs in the statement of Axiom 2, is not itself primitive, but may be defined using
primitive terms. We say that two distinct lines are parallel if there is no point that belongs to
both of them. In a similar fashion, we can express every axiom of plane geometry in terms
of the primitive concepts of the system.

To be mathematically interesting, it is necessary only that the set of axioms of the
system be consistent and be “rich” enough to imply a number of nontrivial consequences. It
has been known for hundreds of years that the standard axioms of plane geometry form a
consistent collection. Nowhere in the large number of theorems that are implied by this set
of axioms will you find two results that contradict each other.

The usual axioms of plane geometry may be modified without losing consistency. If
Axiom 2 is replaced by

AXIOM 2′ Given a line L and a point p not belonging to L, there is no line containing
p that is parallel to L.

then the resulting system is still consistent. This remarkable result was the surprising
conclusion of many attempts to show that Axiom 2 (known as Euclid’s Fifth Postulate) was
itself a consequence of the other axioms of plane geometry.

We are not going to focus on systems that are only mathematically interesting. Our
concern is with scientifically interesting systems. The criteria to be met for this label are that
the primitive terms should correspond to, or at least be idealizations of, objects that exist in
the real world, and that the axioms should reflect our experiences of how these objects relate
to each other.

The mathematical system of plane geometry is also a scientifically interesting one. In
fact, the system was evolved over a long period of time to put together in an organized and
coherent fashion the observations that people had made about certain features of the world
in which they lived.

One product of this mathematical system has been a collection of highly useful
theorems about the measurement of the areas of many different regions of the plane.
Applications of these results are too numerous and familiar to be mentioned here.

Quite often a system developed primarily, or solely, because of its mathematical
interest has turned out also to be of fundamental scientific interest. The physical theory of
relativity created by Albert Einstein (1879 1955) makes use of a geometry (called Rie-
mannian geometry) in which Axiom 2′ rather than Axiom 2 is true. (Further discussion of
this point is contained in Chapter 15.)

The axioms of a mathematical system will usually consist of statements about the
existence or uniqueness of certain sets of elements, existence of various relations on these sets,
properties of these relations, and so forth. Logical argument, or deduction, is applied to the
mathematical system to obtain a set of mathematical conclusions. These conclusions are
theorems about the primitive terms that were not immediately evident from the statements of
the axioms.

B. Mathematical Models

When a mathematical system is constructed in an attempt to study some phenomenon or
situation in the real world, we usually call it a mathematical model. There are many ways to
model parts of the real world, and mathematics is only one of them. A road map of Dallas is
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an example of a different kind of model. The map is a model of the city. If a motorist
understands the symbols that are used in the map, then much information about the city
becomes available in a package small enough to carry around in one’s pocket. The motorist
can use the map, for example, to plan a route from Southern Methodist University to the
corner of Amberwood Road and La Manga Drive.

The road map is one representation of many important features of the city. But it
omits many other features that may be crucial. Most road maps do not contain sufficient
information to tell a motorist what is the speediest route to take between two points in the
city during the morning rush hour, for example. The map is also almost useless to a door-to-
door encyclopedia salesperson who wishes to find neighborhoods whose social and eco-
nomic characteristics indicate good selling opportunities. For this purpose, a different kind
of model of the city is needed. (For other kinds of models, see the discussion in Chapter 15.)

Allmodels, be theyphysical ormathematical, are attempts to represent certain aspects of
reality. Any effort to include all aspects would overwhelm us with detail and would require a
model as large as the original object. The Argentine writer Jorge Luis Borges (1899 1986)
captures the ludicrous nature of such an attempt is his short story “On Exactitude in Science”:

In that Empire, the Art of Cartography attained such Perfection that the map of a single
Province occupied the entirety of a City, and the map of the Empire, the entirety of a Province.
In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a
Map of the Empire whose size was that of the Empire, and which coincided point for point with
it. The following Generations, who were not so fond of the Study of Cartography as their
Forebears had been, saw that that vast Map was Useless, and not without some Pitilessness
was it, that they delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the
West, still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars; in all
the Land there is no other Relic of the Disciplines of Geography.

A mathematical model of a complex phenomenon or situation has many of the
advantages and limitations of other types of models. We omit some factors in the situation
and stress others. In constructing a mathematical system, modelers must keep in mind the
type of information they wish to obtain from it.

The relatively simple schematic diagram of Fig. 1.1 illustrates the role that mathe-
matical models play in science.

Mathematical
System

Mathematical
Conclusions

Real
World

Real-World
Conclusions

Experiment (E)

Interpretation (I)

Logical
Argument (L)

Abstraction (A)

FIGURE 1.1 Schematic diagram of the modeling
process.
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Scientist begins with some observations about the real world. They wish to make
some conclusions or predictions about the situation they have observed. One way to pro-
ceed, (E), is to conduct some experiments and record the results. The model builder follows
a different path. First, she abstracts, or translates, some of the essential features of the real
world into a mathematical system. Then by logical argument, (L), she derives some
mathematical conclusions. These conclusions are then interpreted, (I), as predictions about
the real world.

To be useful, the mathematical system should predict conclusions about the world
that are actually observed when appropriate experiments are carried out. If the predictions
from the model bear little resemblance to what actually occurs in the real world, then the
model is not a good one. The modeler has not isolated the critical features of the situation
being studied, or the axioms misrepresent the relations among these features. On the other
hand, if there is good agreement between what is observed and what the model predicts,
then there is some reason to believe that the mathematical system does indeed correctly
capture important aspects of the real-world situation.

What happens quite frequently is that some of the predictions of a mathematical
model agree quite closely with observed events, but other predictions do not. In such a case,
we might hope to modify the model so as to improve its accuracy. The incorrect predictions
may suggest ways of rethinking the assumptions of the mathematical system. One hopes not
only that the revised model will preserve the correct predictions of the original one, but also
that it will make further correct predictions. The incorrect inferences of the revised model
will lead, in turn, to yet another version, more sophisticated than the earlier one. Thus, by
stages, we develop a sequence of models, each more accurate than the previous ones.

We shall return to the general discussion of mathematical models and their advan-
tages and limitations later in this chapter. To clarify some of the points that have already
been made, it is useful to examine now a familiar mathematical model in some detail.

II. An Example: Modeling Free Fall
A. Formulation of the Model

Consider the fable that tells of Isaac Newton (1642 1727) sitting beneath the branches of
an apple tree directly in the path of a descending apple. Whether or not Newton was ever
actually struck by a plummeting piece of fruit, he was interested in the analysis of the
motion of falling bodies. The real-world situation we wish to model here is described
simply: an object, initially at some distance from the surface of the earth, is released; some
time later, it strikes the earth.

This qualitative phenomenon is observed every day. If we are careful, we can
measure the height of the object above the ground when it is released and also record the
number of seconds that elapse before it strikes the ground. We wish to find a quantitative
relationship between these observed values.

Our mathematical analysis of this situation begins by isolating the important con-
cepts. Since we can measure distance and time, it is reasonable to develop a model in terms
of these quantities. We will let t represent time in seconds and y represent distance above the
ground in feet. As time varies, so does this distance. Thus, y is some function of time,
y= y t , whose exact nature is as yet not known. We may start our stopwatch at t= 0 when
the object is at distance y0 feet above the ground.
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Newton also realized that the mass m of the object was an important consideration in
such a problem. One of the general laws of motion that Newton had formulated was that the
product of the mass and acceleration of a moving body is equal to the sum of the forces
acting on it.

For our first model, we will assume that there is only one force acting on the object,
the gravitational attraction of the earth. Then Newton’s Law of Motion has the familiar form

F =ma 1

where a is the acceleration of the body and F is the gravitational force.
Recall fromelementary calculus that acceleration is the second derivativewith respect to

time of the position function y t , so thatma=my″.We also assume that the gravitational force
F is proportional to the mass of the object with proportionality constant g= − 32 ft sec sec.
Thus, F =mg= − 32m. Substituting these assumptions into Eq. (1) produces

mg=my″ 2

or

y″= −32 3

B. Analysis of the Model

Eq. (3) is our mathematical model for a falling object. It is a simple second-order
differential equation. We apply the tools of mathematical analysis (logical argument)
to derive some mathematical conclusions. In this case, this means we should solve the
differential equation. Integrate each side of Eq. (3) with respect to the variable t twice to
obtain first

y′= −32t+C 4

and then

y= −16t2 +Ct +D 5

where C and D are constants of integration. If we set t= 0 in Eq. (4), we find that C is equal
to the value y′ 0 , which we will denote by v0.

Setting t = 0 in Eq. (5) gives a value of D equal to y 0 = y0. Thus, we have

y′= −32t + v0 6

y= −16t2 + v0 t+ y0 7

C. Interpretation of the Model

We may now interpret these mathematical conclusions as statements about the falling
object. Since the derivative of the position function gives velocity, Eq. (6) is a prediction of
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the velocity of the object at every instant, if v0 is its initial velocity. In particular, if the
object is simply released from a rest position, then v0 = 0 and

y′= −32t 8

while

y= −16t2 + y0 9

Eq. (9) can be used to answer our original question about the relation between the initial
height of the object and the time it takes to reach the ground. When the object strikes the
earth, we have y= 0. Substituting this fact into Eq. (9) gives the corresponding elapsed time,
tF , for the fall:

0= −16t2F + y0 10

or

tF =
y0
4

11

Our analysis thus gives a prediction for how long an object takes to fall a distance y0 feet to
the ground if it is released from rest. The analysis also yields a number of other predictions:

1. The velocity and position of the object at any time are independent of the object’s
mass. This follows because m is missing from Eqs. (3) (11).

2. Using Eqs. (6) and (7), we can predict the velocity and position for situations in
which the object is given any initial velocity. If v0 is positive, then the model can be
used to discuss what happens when the object is thrown upward, away from the earth,
at the start of its motion.

3. If the object is released v0 = 0 at height y0, then the velocity of the object when it
strikes the earth is y′ tF = − 32 tF = − 32 y0 4 = − 8 y0 ft sec.

D. Tests and Refinements of the Model

Let us concentrate, for a moment at least, on the predictions of Eq. (11). We can test the
validity of our model by dropping objects from various heights, recording the time of fall,
and comparing this number to the predicted value. We record some typical values in
Table 1.1.

The first few values in the table seem reasonable and consistent with everyday
experience, but can we say the same for the final entries? The last entry in Table 1.1
indicates that the predictions of a model can sometimes be shown to be incorrect without
actually performing any physical or social experiments. The number 240,000 represents the
approximate distance (in miles) between the earth and the moon. According to the model,
an object leaving the surface of the moon should fall to the earth in about 2½ hours. In
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particular, if whoever is holding the moon in place should suddenly let go, this model
asserts that the moon would crash into the earth about 150 minutes later. Since no one is
really holding on to the moon, why hasn’t it fallen?

This “thought experiment” indicates that the model cannot be accurate for all values
of y0. Where does the model go astray? We know, as did Newton, that, in the first place, the
force of the earth’s gravitational attraction on an object varies with the distance between
the object and the center of the earth. The farther away the object is, the smaller is the
attraction. It is only when the object’s distance from the surface of the earth is small in
comparison to the earth’s radius (about 4,000 miles) that it is reasonable to treat the
gravitational force as constant. To refine the model, the first correction is to replace
the simple constant g by an appropriate decreasing function of y.

This refined model would still predict that the moon will eventually crash into the
earth, although it will take somewhat longer than 2 or 3 hours. The fact that the moon has not
done this indicates yet another difficulty with our model. The moon, or any object moving in
three-dimensional space, has components of motion in three mutually perpendicular direc-
tions. The model considers only motion in one direction. Even though the force acts along
that line of direction, it turns out that the object itself need not move exactly along that line.

For a simplified example, consider motion in the plane. Construct a normal Cartesian
coordinate system with x- and y-axes and origin O. The position of an object at any time t is
given by a pair of numbers x t , y t representing the coordinates of its location as func-
tions of time. Imagine a circular disk of radius R with center at 0,−R and suppose that the
moving object under consideration is at the point (0, 16) at time t = 0; see Fig. 1.2. Assume
that the only force acting on the object is a constant force of −32 in the vertical direction.

Table 1.1

Initial Height (y0) Predicted Time of Fall tF = y0 4

16 ft 1 sec

100 ft 2.5 sec

625 ft 6.25 sec

25,600 ft 40 sec

240,000 miles 2.5 hours

y

x

(0, 16)

(0, –R)

x(t) = 2Rt
y(t) = –16t2 + 16

R

FIGURE 1.2 Motion in the plane. Whether the object hits or misses the disk
depends on its initial position and velocity.
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If the vertical component of velocity at time t = 0 is zero, then the y-coordinate is
given, according to Eq. (9), by

y t = −16t2 + 16 12

If the horizontal component of velocity at time 0 is c ft/sec, then the x-coordinate of
motion is

x t = ct 13

since there is no force acting in a horizontal direction.
Should the value of c be zero, the object will slide directly down the y-axis and will

hit the disk at the origin at time t= 1. If c is nonzero, then the motion is more complicated.
From Eq. (13), we have t= x c so that Eq. (12) may be rewritten as

y= −
16x2

c2
+ 16 14

Eq. (14) indicates that the path of motion in the (x, y)-plane will be a parabola. See Fig. 1.2.
In particular, if c should be equal to 2R, then the object will never hit the disk! For

during the first second of motion, 0< t < 1, the object is moving in the first quadrant, since
both x- and y-coordinates are positive. At time t= 1, the object is at the point (2R, 0). For
t > 1, the y-coordinate is negative, while the x-coordinate is larger than 2R. Since no point
on the disk has an x-coordinate greater than R, the parabola will not intersect the disk.

As we have just seen, the initial horizontal speed of the moving object must be
considered before determining whether or not the object will hit the disk. The initial
position of the object also must be examined. For if c= 2R, but the object is at 0, 4−R at
time 0, it may hit the disk. For example, when t= 1 2, we would have x= 2R 1 2 =R,
while y= − 16 1 2 2 + 4−R = −R. The point (R, −R) lies both on the disk and on the
parabolic path of the object.

A similar but more complicated analysis is possible for an object moving in three-
dimensional space under the influence of the earth’s gravitational attraction. Here the force
is directed along a line between the object and the center of the earth. Depending on the
object’s initial distance from the earth and the various components of its initial velocity, it
will either crash into the earth or orbit about it in an elliptical path. [See Chapter 3 of
Simmons 1991 for a detailed derivation.]*

This more complex mathematical model may be forced upon us if we are planning a
trip to the moon or if we must solve some other serious astronomical problem. The simple
model of Eq. (3) breaks down for objects relatively far from the earth and for objects
moving with great speed. If our concern is for apples falling from trees, or for other
situations in which a relatively small object begins its fall from rest from a position fairly
close to the surface of the earth, is the simple model still good?

* You will find references in brackets on the text’s website, www.wiley.com/college/olinick
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Eq. (11) was the main prediction of the simple model. We have already indicated how
we can test the validity of this equation by dropping objects from various heights and timing
the duration of their fall. There is an even simpler experiment to test the prediction that the
elapsed time tF is independent of mass: simultaneously release two objects of moderate but
different masses from the same height and observe whether they reach the ground together.

This is the type of experiment allegedly conducted by Galileo (1564 1642), who was
the first person to derive the equations leading to Eq. (11). Legend has it that Galileo dropped
balls of different weights from the top of the Tower of Pisa and timed their descent. Although
there appears to be as much truth in this tale as in the story of Newton and the apple (it
has been conjectured that Newton made up this tale in response to repeated inquiries
from those seeking a simple explanation for his deep discoveries), Galileo did conduct
many experiments with objects rolling down inclined planes; interesting discoveries about
his experimental and theoretical work are still being made [see Drake 1973 and 1975].

In any case, the experiment we have described works out fairly well in practice and is a
standard laboratory assignment in many introductory physics courses. The experiment does
not always produce the desired results, however. Once, I dropped a crumpled sheet of paper
out the window of my ninth floor office at the same timemy 2-year-old son released a sheet of
paper that had been folded into the shape of a glider. The two sheets of paper came from the
same pad, so their masses were essentially the same. According to our model, they certainly
should have reached the ground at about the same time.My crumpledwad plummeted straight
to the ground in a matter of seconds while the glider actually rose several feet before gradually
floating to the earth a few minutes later. Why has our model failed us again?

The answer is easy. We have neglected in the model some important forces that act on
our falling object: air resistance and wind currents. Recall that Newton’s Law really asserts
that the sum of the forces acting on an object equals the product of mass and acceleration:

i

Fj =ma 15

To refine our model to make it more realistic, we have to account for these other forces in
our differential equations. There are some relatively easy ways to include air resistance in
this model (see Exercise 26), but the representation of wind currents can be a very tricky
mathematical problem.

The moral of this story is that if you want a model that gives realistic predictions over a
broad range of relevant variables (in this case, distance, mass, density, initial velocity, and so
on), you must be willing to deal with complex mathematical systems. If you seek a simple
and elegant model, you must be careful to describe its somewhat limited applicability. Thus,
if Eq. (3) is to be an accurate model of a falling object, we must restrict ourselves to situations
in which the object is of moderate mass, is dropped relatively close to the earth’s surface, and
falls through a vacuum. If we design an experiment by building a tube and then pumping out
the air before dropping the object inside it, the observed data will be quite close to those
predicted by Eq. (11). On the moon, where there is no atmosphere, all objects dropped from
the same height should fall to the surface in the same amount of time; in the absence of an
atmosphere all objects fall at the same rate; Apollo 15 astronaut David Scott demonstrated
this conclusion by dropping a feather and a hammer on the moon’s surface. [You can find a
link to a video of this experiment at http://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_
15_feather_drop.html.]
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III. Discrete Examples: Credit Cards and Populations
The variables in the model of free fall we have just examined (time, vertical position, and
velocity) are each continuous. The independent variable, time, takes on all real values
between the beginning and end of some interval. As time varies, the height of the object
above the ground and its speed also change in a smooth manner. Indeed, the fact that
position and velocity are differentiable functions of time is what makes it possible for us to
apply the tools of calculus to analyze the model.

Many real-world phenomena, however, do not change in a continuous manner. The
number of members in your family cannot smoothly increase from three to four, for
example, taking on all the intermediate values. Family size remains constant for relatively
long periods of time and then suddenly jumps up by one or more (with a birth or multiple
births) or diminishes abruptly (with a death). The amount of money in your savings account
jumps from one level to another as deposits, withdrawals, and interest payments are made.
The enrollment at your college or university is always a whole number of students and
hence can’t change by a fraction. Other examples are the number of automobiles produced
each year, the hourly wages of a fast-food worker, the inventory of nuclear weapons in a
nation’s arsenal, the number of countries in the United Nations, and so forth.

Quantities that cannot take on all intermediate values between two levels they can
achieve or that cannot change at every possible instant but only at prescribed moments are
called discrete variables. Discrete mathematics, the study of the tools to deal with discrete
variables, is a rich and rapidly developing discipline. Much of the recent focus has been on
discrete dynamical systems: the investigation of quantities that change only at discrete
points in time. Simple discrete dynamical systems may produce very complex and chaotic
behavior.

As an initial example of a discrete dynamical system, let us consider the balance in a
personal credit card account, the total amount you owe to the bank that issued the card.
Suppose that the initial balance B0 is $1,000 and that you make a monthly payment of
p= $10 to reduce the balance. Then the balance after 1 month is

B1 =B0 − p= $1000− $10= $990

And the amount after 2 months would be B2, where

B2 =B1 − p= $990− $10= $980.

We may also write B2 as

B2 =B1 − p= B0 − p − p=B0 − 2p.

It is easy to see that the balance Bn after n months would be

Bn =Bn−1 − p 16

or

Bn =B0 − np 17
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and hence, the number n of months necessary to pay off the balance Bn = 0 would be

n=
B0

p

For our very simple example, it takes 1000/10 = 100 months to reduce the current balance
to zero.

This simple model of the dynamics of a credit card balance ignores one extremely
important real-world fact: banks charge interest on the balance that remains to be paid each
month. Once a month, the bank adds a “finance charge” to the existing balance to create a
new balance. The finance charge is a fixed interest rate percentage multiplied by the out-
standing balance. Suppose, for example, that the interest rate r is 1.5% per month. Then the
new balance would be given by

Bnew =Bold + rBold = 1+ r Bold = 1.015 Bold 18

If you made no monthly payment at all, then

Bn = 1+ r Bn−1 19

so that

B1 = 1+ r B0

B2 = 1+ r B1 = 1+ r 2 B0

B3 = 1+ r B2 = 1+ r 3 B0

and, in general,

Bn = 1+ r n B0 20

Table 1.2 shows the how an original balance of $1,000 grows over a 20-month period with
a 1.5% monthly interest charge.

To make our model more realistic, suppose the bank charges r= 1.5% per month on
the unpaid balance and you also make a monthly payment p= $10. Then the new balance is
calculated from the old by

Bnew =Bold + r Bold − p= 1+ r Bold − p= s Bold − p 21

where s= 1+ r. Eq. (21) is sufficient for a spreadsheet program to compute the balance for a
sequence of months if it is given the initial balance, interest rate, and monthly payment. A
careful study of the consequences of Eq. (21) enables us to find a direct way to calculate the
balance at the end of any particular month without deriving the balance for all the previous
months.
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Note that from Eq. (21), we have

B1 = s B0 − p

B2 = s B1 − p= s s B0 − p − p= s2 B0 − sp− p= s2 B0 − p 1+ s

B3 = s B2 − p= s s2 B0 − p 1+ s − p

or

B3 = s3 B0 − p 1+ s+ s2

Similarly,

B4 = s B3 − p= s s3 B0 − p 1+ s+ s2 − p

or

B4 = s4 B0 − p 1+ s+ s2 + s3

In general, we would have

Bn = sn B0 − p 1+ s+ s2 + s3 +⋯+ sn−1 22

This last formula can be simplified.

Let T = 1+ s+ s2 + s3 +⋯+ sn−2 + sn−1 23

Table 1.2

n Bn n Bn

0 $1,000.00 11 $1,177.95

1 $1,015.00 12 $1,195.62

2 $1,030.23 13 $1,213.55

3 $1,045.68 14 $1,231.76

4 $1,061.36 15 $1,250.23

5 $1,077.28 16 $1,268.99

6 $1,093.44 17 $1,288.02

7 $1,109.84 18 $1,307.34

8 $1,126.49 19 $1,326.95

9 $1,143.39 20 $1,177.95

10 $1,160.54
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Then

sT = s 1+ s+ s2 + s3 +⋯+ sn−2 + sn−1

= s+ s2 + s3 +⋯+ sn−1 + sn
24

Subtracting Eq. (24) from Eq. (23) gives

T − sT = 1+ s+ s2 + s3 +⋯+ sn− 2 + sn− 1
− s+ s2 + s3 +⋯+ sn− 1 + sn

Thus,

1− s T = 1− sn

or

T =
1− sn

1− s
=

1− 1+ r n

1− 1+ r
=

1− 1+ r n

−r
=

1+ r n
− 1

r

and hence,

Bn = sn B0 − p 1+ s+ s2 + s3 +⋯+ sn−1 = sn B0 − pT

so,

Bn = 1+ r n B0 − p
1+ r n

r
= 1+ r n B0 −

p

r
+

p

r
25

Table 1.3 shows the balance for each of the first 15 months on a credit balance with an
initial charge of $1,000, a monthly 1.5% interest rate, and monthly payments of $10 and
$25. Note that the balance owed the bank keeps increasing if the monthly payments are as
small as $10, but that the balance will decrease when payments are increased to $25.

If we extend the calculations beyond 15 months, we find that a $25 monthly payment
will reduce to balance to $13.42 after 61 months. Thus, 61 payments of $25.00 plus a single
payment of $13.42 will pay back the loan. Note that you will have paid the bank a total of
$1,538.42 for the initial charge of $1,000.

The mathematical model represented by Eq. (21) governs many other situations when
money is borrowed to enable a consumer to make a large purchase. Examples include
automobile loans, college tuition loans, or mortgages to finance buying a home. For a home
loan, the amount borrowed may exceed several hundred thousand dollars and the payback
period usually extends 20 or 25 years.

As an example of home mortgage situation, suppose you borrow $150,000 with an
annual interest rate of 8.4% and monthly payments of $1,300. The balance after 236 months
would then be $447.73. Under this payment plan, you would return to the bank
$307,247.73, so the total interest amount is $157,247, 73. In this example, the total interest
paid exceeds the amount originally borrowed.
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Assuming the amount of the loan and the interest rate is fixed, borrowers are often
concerned with the related questions of the size of the monthly payment and the number of
payments they will have to make to reduce the outstanding balance to 0.

Eq. (25) tells us that the balance will be 0 when

1+ r n B0 −
p

r
+

p

r
= 0 26

If we solve Eq. (26) for p, we find that to pay off a loan of B0 at a monthly interest rate r in n
months requires a monthly payment p where p is given by

p=
rB0 1+ r r

1+ r n
− 1

27

To see how the size of the regular payments affects the number of months n to pay off the
loan, we solve Eq. (26) for n:

n=
ln p

p− rB0

ln 1+ r
28

It’s instructive to examine a graph of n as a function of p, for a typical home loan. With
Bo= $150,000 and r= .07, the graph is shown in Fig. 1.3.

Observe from this graph that a modest increase in the monthly payment can dra-
matically reduce the length of time it takes to repay the loan and the total amount of interest

Table 1.3

Month p = $10 p = $25

0 $1,000.00 $1,000.00

1 $1,005.00 $990.00

2 $1,010.08 $984.85

3 $1,015.23 $979.62

4 $1,020.45 $974.32

5 $1,025.76 $968.93

6 $1,031.15 $963.47

7 $1,036.61 $957.92

8 $1,042.16 $952.29

9 $1,047.80 $946.57

10 $1,053.51 $940.77

11 $1,059.32 $934.88

12 $1,065.21 $928.90

13 $1,071.18 $922.84

14 $1,077.25 $916.68

15 $1,083.41 $910.43
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you give to the bank. A monthly payment of $1,200, for example, requires nearly 25 years
(298 months) to repay. The total paid to the bank is about $357,600, of which $207,600 is
interest. If you can increase the regular payments by $200 so that you give the bank $1,400
at end of each month, then the mortgage will be paid off in about 16.5 years (198 months).
You will have paid the bank about $277,200, an overall savings of more than $80,000
compared to the $1,200 payments.

Similar reasoning can be used to model the growth of the U.S. population during the
last half century. A simple model posits that the annual “internal” growth rate, the differ-
ence between the birth and death rates was r = .0054 percent and that there was a net
migration (immigration emigration) of p= 1.32 million people per year. Thus, with an
initial population of P0 million, the population after n years would be given by

Pn = 1+ r Pn−1 + p

Table 1.4 shows a comparison of the model’s predictions and Census Bureau data.
This model predicted the 2010 population to be 310.273 million and estimates
the 2020 population at 340.966 million. In December 2010 the Census Bureau reported the
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Table 1.4

Year Predicted Actual Error Relative error

1960 179.323 179.323 0 0%

1970 202.770593 203.302 0.531407 0.26%

1980 227.515572 226.546 −0.969572 −0.43%

1990 253.629721 248.71 −4.919721 1.98%

2000 281.1888 281.421 0.2322 0.083%

2010 310.273 308.746 1.52 −0.495%
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U.S. population to be 308.746 million. The model’s prediction was off by less than 0.5
percent. Census experts predict the 2020 population to be 341.387 million.

While we can only wait to see how accurate this model will prove to be in the future, we
can also test out its reasonableness by running it backward to see what the U.S. population
would have been in previous decades if its dynamics had been governed by the same equation.

Pnew = 1+ r Pold + p

Pold =
Pnew − p

1+ r

Table 1.5 compares the actual census data with the model’s predictions.

IV. Classification of Mathematical Models
The simple mathematical model of a falling object given by the equation y″= −32 and the
possible refinements of it that you have seen in the preceding sections are examples of what
are called deterministic models. The assumption behind a deterministic model is that the
entire future behavior of the system is exactly and explicitly determined by the present
status of the system and the forces acting on it. In other words, if we know everything about
the system at a particular moment (the state of each of its component variables and the
forces impinging on them), then we can predict its behavior at every future instant. This was
the belief that led to the very fruitful development of the physical sciences. Much of our
understanding of the behavior of physical systems comes from deterministic models
employing the tools of calculus. Powerful analytic techniques were developed to analyze
more and more complicated models. The availability of these techniques and the predictive
successes of these models in the physical sciences motivated many thinkers to employ
similar models in the study of social and biological systems. Chapters 2 5 of this text
explore some of these deterministic models in detail.

There are several important objections to the use of such deterministic models in the
social and life sciences. In the first place, some philosophers have argued that deterministic
models of social systems must necessarily assume that human beings have no free will; few
people are willing to accept this view of humans.

A second objection arises from the discovery of Werner Heisenberg (1901 1976) in
the early part of the 20th century that purely deterministic models are insufficient even to
study physical processes. Heisenberg showed that it is impossible, even in theory, to know
the exact state of a physical system: the act of observation itself changes the system. We can

Table 1.5

Year Predicted Actual Error Relative Error % Error

1960 179.323 179.32 0 0 0

1950 157.10477 150.216 6.88877 0.045859 −4.59%

1940 136.051447 131.669 4.382447 0.033283 −3.33%

1930 116.101955 122.775 6.673045 0.054352 5.44%

1920 97.1984194 105.711 8.5125806 0.080527 8.05%

16 CHAPTER 1 Mathematical Models



conclude from deterministic models only the average behavior of a group of atoms, but we
cannot assert with certainty anything about the future course of an individual atom. This
observation has fundamentally affected the physical sciences (see the discussion at the
beginning of Chapter 10) and led to the introduction of probabilistic models.

Probabilistic models are also predictive models. The basic assumption of such models
is that the system under investigation can occupy one of several different possible states at
each moment, with different probabilities. If we know the probability distribution governing
the system at the present moment and the forces acting upon the system, then we can predict
the probability distribution at subsequent times. Thus, a probabilistic model of an object
falling to the surface of the earth will predict for each time t0 after the object is released the
probability, or likelihood, that the object has reached the ground by time t0. A substantial part
of this text, centered around Chapters 10 14, discusses probabilistic models.

Since deterministic models often provide good approximate predictions and since
they usually employ the familiar tools of calculus and differential equations, they are still
widely used in the physical as well as social and life sciences. In Chapter 10 and again in
Chapters 11 and 14, you will see the differences between a deterministic and a probabilistic
model of the same situation.

A third objection to the calculus-oriented deterministic model centers on the use of
the calculus. Since calculus was largely invented to help solve physical problems, there is
no intrinsic reason why it should be the appropriate tool for the formulation and investi-
gation of all social and biological systems, even if a deterministic approach is assumed.
Indeed, new mathematical tools such as the theory of games, linear programming, and
graph theory have been forged in recent decades to analyze such systems. Chapters 16 and
18 focus on the theory of games.

The deterministic and probabilistic approaches we have been discussing share the
property of being predictive in nature; they both aim at saying something about the future
(or perhaps past) of a system whose present state is fairly well described. These can be
contrasted with models that are primarily descriptive in nature. Descriptive, or axiomatic
models, as they are sometimes called, are highlighted in this text in Chapters 6 9.

The model in Chapter 6 is concerned with the possible existence of a voting mech-
anism that is constrained to satisfy certain “fairness” restrictions. Chapters 7 and 8 also
present descriptive models; these describe different types of measurement and utility and
when each can be used. In Chapter 9, we examine the existence of a set of prices in an
economy that will guarantee there is sufficient supply to goods and services to meet the total
demand.

The development of such axiomatic models hopefully will broaden your view of
mathematics. Many people still believe that “mathematics is the study of numerical and
geometrical concepts.” Such definitions were common in texts and dictionaries even in
recent years. Mathematicians today have a much wider view of their discipline. As John
Kemeny and J. Laurie Snell [1962] phrase it:

Mathematics is best viewed as the study of abstract relations in the broadest sense of that word.
From this point of view it is not surprising that mathematics is applicable to any well-defined
field. Whatever the nature of the phenomena studied in a given social science, their various
components do bear certain relations to each other, and once one succeeds in formulating these
abstractly and precisely, one is in a position to apply the full machinery of mathematical
analysis.
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V. Uses and Limitations of Mathematical Models
The continuing development of a useful coordinated science of social, biological, and physical
behavior is an important challenge for us. In what ways can we expect mathematics to help?

If we begin to analyze even a simple situation involving interpersonal relations, for
example, the first thing we observe is how complex the situation really is and just how many
different variables are present. It is difficult to cope with so many factors adequately in an
intuitive and discursive way. As long as our formulation remains vague and imprecise, our
observations are likely to be muddled, unclear, and poorly understood by others.

Casting our thoughts into a mathematical model will have immediate advantages.
Mathematics is a precise and unambiguous language. In order to use it, we must first clarify
to ourselves the underlying assumptions we are making. The mathematical model forces
us to organize our thoughts in a more systematic way, and this should contribute to the
clarity of our thinking.

Once the model has been formulated, it is possible to use mathematical tools to derive
new observations or conclusions from the model that may have escaped us if we proceeded
with a more intuitive approach. These conclusions will not only shed light on the assump-
tions we have originally made about the system under study, but they will also suggest further
experiments and observations that will lead to more complete knowledge of the system.

Quite often, the modeler discovers that a mathematical formulation of a problem turns
out to be the same as someone else’s formulation of what appears to be a totally different
situation. The logistic equation—presented in detail in Chapter 3—has been used, for
example, to model the growth of populations, the spread of infectious diseases, rates of
chemical reactions, and consumer demands for commercial goods. Thus, the use of
mathematical models can reveal unsuspected relations among superficially disparate sys-
tems that have the same basic underlying structure.

As we have seen in the discussion of falling objects, a simple mathematical model
cannot precisely mimic the behavior of a real-world phenomenon. Some aspects of the real
world are highlighted, and others are neglected or perhaps ignored. Mathematics is but one
tool to be used in gaining an understanding of the real world, and it must be supplemented
by other approaches.

As you study the models presented in this text, you may wish to consult Fig. 1.1 from
time to time. Our emphasis will be on the steps of abstraction, logical argument, and
interpretation. It has often been stated that it is difficult, perhaps impossible, to write down
rules for the abstraction process. Many model builders believe that doing so is an art, rather
than a science, and that it is best learned through the careful study of selected examples and
repeated practice on the part of the apprentice in constructing models. The text material,
exercises, and projects in this book have been designed to provide you with such practice.

The step we have labeled “logical argument” is the one that is most familiar to
mathematics teachers and their students, while the process of “interpretation” follows fairly
easily from the original formulation of the model.

The final critical step in mathematical modeling is a comparison with the interpreted
results of the model with the observations obtained from direct interaction with the real
world. I have tried to show in this text a number of places where an originally simple model
is refined in the light of these comparisons. The measurement of how closely the model fits
the real world is, in general, a complicated problem that involves the full use of statistical
techniques. We do not have space in this book to delve deeply into this field.
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EXERC I S E S

I. Mathematical Systems and Models

1. Is “angle” a primitive term in geometry? What about
“belonging to”? What are the other primitive terms?

2. To what extent are the axioms of geometry “self-evi-
dent truths” rather than expressions of cumulative
experience?

3. A realization of a mathematical system is a physical
representation of the set of axioms in the sense that
real-world quantities can be found to take the place of
the primitive terms in such a way that the statements
of the axioms can be seen to be true relations among
the real-world quantities. Is there such a real-world
representation of the axioms of plane geometry? Show
that a mathematical system that has a realization must
also have a consistent set of axioms.

4. A projective plane P is a mathematical system con-
sisting of primitive terms called “points” and “lines”
and a relation of “containment” satisfying the three
following axioms:
(A) Any two distinct points are contained in a unique

line.

(B) Any two distinct lines contain a unique point.

(C) There are four points such that no three are
contained in the same line.

(a) Show that there are four lines in P, no three
of which contain the same point.

(b) Show that every line in P contains at least
two points.

(c) Show that every line in P contains at least
three points.

5. Find a realization of the projective plane with
exactly seven points. Is there a realization with fewer
points?

6. Find a realization of the projective plane with an
infinite number of points. Is the projective plane a
mathematically interesting system?

7. Consider the mathematical system S consisting of
primitive terms “point” and “line” and a relation of
“containment” satisfying the following four axioms:
(A) Each line contains a nonempty collection of

points.

(B) Any two distinct lines contain a point.

(C) Each point is contained in exactly two lines.

(D) There are precisely four distinct lines.

(a) Find a realization of S.

(b) Prove that each line in S contains precisely
three points.

(c) Show that there are precisely six distinct
points in S.

(d) Is this a mathematically interesting system?

8. A set of axioms is independent if no axiom in the set
can be derived logically from the others.

(a) Show that axiom A1 is independent of Axioms A2,
A3, . . . , An if the system consisting of A2, . . . ,
An has a realization in which A1 is false.

(b) Use (a) to formulate a criterion for the indepen-
dence of a set of axioms.

9. Inwhat sense is a “model airplane” amodel of an airplane?

10. How do the literary concepts of “simile” and “meta-
phor” function as models?

11. List some other types of models you have encountered.

II. An Example: Modeling Free Fall

12. Suppose that the model of free fall is y″= g where g is
an unknown constant.

(a) Analyze this model mathematically. What is the
analogue of Eq. (11)?

(b) Describe an experiment that would determine the
value of g.

13. Assuming that v0 is nonzero, use Eq. (7) to find tF .
Comment on the fact that you obtain two different
values for tF . Show that one of these can be discarded
if v0 is negative. What happens if v0 is positive?

14. If v0 is nonzero, what is the velocity of the object when
it hits the ground?

15. Suppose that a ball is thrown upward from a height of
3 feet with an initial velocity of 8 ft/sec. Use the model
of Eq. (3) to analyze its motion. In particular, find

(a) The maximum height the ball reaches

(b) The time at which the ball is again 3 feet from the
ground
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(c) The number of seconds the ball is in the air

(d) The speed with which the ball strikes the ground

(e) The maximum speed the ball achieves

16. A man falls off the top of a building 1,024 ft high.
Three seconds later, Wonder Woman (who can fly)
arrives at the point from which the man fell. She dives
down in an effort to save him. If she is capable of an
initial velocity of 50 ft/sec, will she reach him before
he hits the ground?

17. A more correct version of Newton’s Law than (1) is
that force is equal to the derivative, with respect to
time, of mass times velocity.

(a) Show that if the mass is constant, then this law
reduces to (1).

(b) Analyze the motion of a falling bucket of sand
with a hole in it. The bucket originally t weighs 10
pounds but loses sand at a constant rate of t pound
each second.

Problems 18 21 concern the mathematical model
developed in connection with Fig. 1.2.

18. For what range of values of c will an object initially at
(0, 16) eventually strike the disk?

19. If c= 2R, for what values of y0 will an object initially
at (0, y0) eventually strike the disk?

20. A motorcycle leaves the edge of a tall cliff with a
velocity of 60 mph in a horizontal direction. Develop a
mathematical model for the subsequent motion.

21. An airplane releases a nuclear bomb from a height of
40,000 feet. If the plane has a top speed of 600 mph,
how far from the center of impact can the plane be
when the bomb hits the ground? Can the plane’s crew
survive the shock of the bomb’s explosion? What
information do you need to answer these questions?

22. Suppose the gravitational attraction of the earth on an
object varies inversely with the square of the distance
between the object and the center of the earth.

(a) Show that an object M miles from the surface of
the earth experiences an acceleration of
a= 32 4000 2 M − 4000 2 ft sec sec.

(b) Develop and analyze the model for free fall if
acceleration is given as in part (a).

(c) According to the model of (b), how long should it
take the moon to fall to the earth?

(d) Is the result of (c) relevant to an astronaut’s trip
home from a lunar exploration?

23. Using the inverse square law of Exercise 22, analyze
the motion of a rocket fired from the earth’s surface
with a vertical velocity of v0 ft sec. Compute the
maximum height that the rocket can reach. How large
must v0 be so that this height is greater than the dis-
tance from the earth to the moon? (Neglect the gravi-
tational attraction of the moon on the rocket.)

24. Can a mathematical model of free fall be developed
using position (y) and velocity (v) as the basic vari-
ables? Is it reasonable to adopt such an approach?

25. The main force producing the acceleration of an object
in a vacuum is the force of gravity that causes the
object to fall toward the earth. Archimedes (287 212
B.C.) discovered a force in the opposite direction: an
object immersed in a medium (such as air or water or a
gas) is buoyed up by a force equal to the weight of the
medium displaced by the object.

(a) If m is the mass of the object and M is the mass of
the medium displaced, show that the net force of
gravity on the object is 32 m−M .

(b) Use the result of (a) to explain why a stone does
not float in a lake of water, but a canoe does.

(c) Why does a balloon filled with helium rise in the air?

(d) Can buoyancy be ignored for a stone falling
through the air? A snowflake?

26. From experimental observations, scientists have
determined that air resistance of an object varies with
the velocity of the object. Suppose that air resistance
varies in direct proportion to velocity and is directed in
the direction opposite to that of the velocity vector.
Develop a mathematical model for the motion of an
object hurled downward toward the earth from a height
of y0 feet through the atmosphere with an initial
velocity of v0 ft/sec. Take into account the forces
of gravity and air resistance. Show that the motion
may be modeled by the differential equation
dv dt= 32− kv where k is some constant.

27. Without solving the differential equation of Exercise
26, show that the velocity of a falling object subject to
air resistance will “eventually” reach 32 k ft sec
regardless of the initial velocity v0.

28. Develop a model for a freely falling object if the air
resistance is proportional to the square of the velocity.
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III. Discrete Models: Credit Cards and Populations

29. Suppose that your bank charges no interest.

(a) How large a monthly payment is needed to pay off
a loan of $1,000 in 2 years?

(b) How big a loan can you pay back in 4 years with
monthly payments of $31.25?

30. Provide a proof using mathematical induction that with
0% interest and a monthly payment of $p, then the
balance Bn of the loan after n months will be
Bn =B0 − np, where B0 is the amount originally
borrowed.

31. Provide a careful proof using the principle of mathe-
matical induction that if Bn = 1+ r Bn−1 for n≥ 1,
then Bn = 1+ r n B0 for all n≥ 0.

32. Suppose the annual interest rate (given as a decimal) is
r, and a new balance is computed at n equally spaced
times during a year.

(a) If the amount of the loan is B0 and no payments are
made, show that the balance of the loan after 1
year is given by 1+ r

n
n
B0.

(b) What is the balance after t years?

(c) What happens to these balances in the limit as
n→∞?

33. A bank charges 18% annual interest on credit card
balances. What is the value of an original balance of
$1,000 after 1 year if the bank computes new balances
once a year? Twice a year? Every 3 months? Every
week? Every day?

34. Derive Eq. (27) from Eq. (26).

35. Derive Eq. (28) from Eq. (26).

36. To encourage new housing starts, the Federal Reserve
lowers interests rates so that you can obtain a mortgage
loan at a rate of 6% per year. What monthly payment is
required if you want to pay off a loan of $200,000 in
25 years? 20 years? 15 years?

37. With automobile loans at a 9% annual interest rate, you
are contemplating borrowing $25,000 to buy a new
car. You can afford a monthly payment of $300. How
long will it take you to pay back the loan? How much
in total interest will you have paid?

38. In our model of paying off your credit card, we assumed
that the bank computed interest based on the previous
month’s charges and then subtracted your payment.
Suppose the bank is required to deduct your payment
from the balance before computing the interest. Show
that for this model, the analogue of Eq. (21) would be

Bnew =Bold + r Bold − p − p

= 1+ r Bold − p = s Bold − p

Compare the balances for the first 15 months under this
model with the balances under the original model.
Develop an analogue of Eq. (25).

39. Determine, if possible, analogues of Eq. (27) and
Eq. (28) under the model presented in Exercise 36.

IV. Classification of Models

40. A mathematical model’s predictions need not be
forecasts of future events. They may be about phe-
nomena that have occurred but of which observations
have either not yet been made or for which such
observations are unknown to the modeler. Find
examples of such models. Consider instances in which
it may not be possible to construct experiments—for
example, a mathematical model for the frequency and
intensity of political revolutions.

41. What kind of mathematical model is the usual set of
axioms of plane geometry? What is being modeled?

V. Uses and Limitations of Mathematical Models

42. In what ways would you guess that high-speed elec-
tronic computers have affected the formulation of
mathematical models of complicated phenomena?What
benefits does the ability to do thousands of numerical
calculations quickly confer? Are there any drawbacks?

SUGGES T ED PRO J ECTS

1. Objects falling vertically in a resisting medium such as
air, other gasses, or a liquid have a velocity v, which is
oftenmodeled by the differential equation dv

dt = 32− kvα,
where k and α are nonnegative constants. Investigate

how the velocity, and, in turn, the distance above the
ground, depends on the value of αwhen k is positive. In
particular, does the object approach a “terminal veloci-
ty” well before hitting the ground? Can you obtain an
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exact formula for v as a function of t for all values of α?
Do “small” changes in α always produce “small”
changes in the time of descent? Discuss how you might
devise an experiment to determine the value of α.

2. We can often study the numerical behavior of a dis-
crete dynamical system with a spreadsheet (e.g., Excel
or iWorks Numbers) or a computer algebra system
(e.g., Maple or Mathematica) using the basic iterative
model. Implement the credit card balance model on
one of these applications using the iterative equation

B n = 1+ r B n− 1 − p, withB 0 = 1000

Verify that the numbers in Table 1.3 are correct.
Investigate what happens to the balance if you try
different monthly payment schemes, such as (a) make
a fixed payment $p payment only every other month or
(b) start with a monthly payment of $10 and increase
the payment by a dollar every subsequent month.

3. If you rewrite the iterative equation of the population
model as the difference equation Pn −Pn−1 =
rPn−1 + p, then the left-hand side represents the change
in the population from one period to the next. For
variables that change every instance, we often repre-
sent the change in value as a derivative. Treating the
population in this fashion, show that a continuous
analog to the difference equation is the differential

equation P′ t = rP t + p. Use calculus to solve this
differential equation. (Hint: make the change of vari-
able y t =P t + p

r.) Compare the predictions of the
continuous model with those of the discrete model.
Describe some real-world population growth situations
that you believe would be more accurately described
with a continuous model than a discrete one. When
would a discrete model be more likely to provide
significantly better, more realistic estimates?

4. Suppose you decide to build your savings around an
investment in a certain stock. You make an initial
investment of $B0 and an additional contribution of $p
per month, but instead of a fixed rate r of interest, the
stock may gain or lose value in each time period. If
you assume that the stock’s value could change, in
some random fashion, positively or negatively by as
much as 3% per month, then discuss why the model
B n = 1+ r B n− 1 + p, where r is a random num-
ber between −0.03 and +0.03, is appropriate. Spread-
sheets and computer algebra systems all have options to
generate such random numbers. Implement this model
in one of these software applications. Track your sav-
ings over a 10-year period. Redo the computations for
many different time periods of 10 years. What is the
average value for your savings after a decade? What
was the largest amount you had after 10 years? The
smallest? How much “variation” occurred?

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
2

Stable and Unstable Arms Races

There is scarce truth enough alive to make societies secure, but

security enough to make fellowships accurs’d. Much upon this riddle

runs the wisdom of the world. This news is old enough,

yet it is every day’s news.

—William Shakespeare, Measure for Measure

I. The Real-World Setting
“Today, our troops have newer and better equipment, and their morale is high. The better
armed they are, the less likely it is they will have to use that equipment. But if, heaven forbid,
they are ever called upon to defend this nation, nothing would be more immoral than asking
them to do so with weapons inferior to those of any possible opponent. . . .

None of the four wars of my lifetime came about because we were too strong. It is
weakness that invites adventurous adversaries to make mistaken judgments.

[Ours] is themost peaceful, least warlike nation in modern history, We are not the cause of
all the ills of this world.We are a patient and generous people. But for the sake of our freedom and
that of others we cannot permit our reserve to be confused with a lack of resolve.”

—Leader A

“Now let us turn to international affairs. One of the most important and insistent instructions of
the . . . voters was, is and will remain, the instruction to safeguard peace like the apple of our
eye and to ensure the security of our homeland. I can tell you that [we] have been strictly
following this instruction, doing so in difficult circumstances.

You know that the past few years have seen a dramatic intensification of the policy of the
more aggressive forces of . . . imperialism, a policy of blatant militarism, claim to world domi-
nance, resistance to progress and violations of the rights and freedom of the peoples. . . .

All this compels us to attach the most serious attention to strengthening the country’s
defenses. [Our] people don’t want an arms buildup, but rather the reduction of armaments by
both sides. But we must take care to ensure sufficient security for our country, its friends and
allies. This is precisely what is being done. And let everyone know that none of those given to
armed ventures will catch us unawares, and no potential aggressor can hope to avoid dev-
astating retaliation.”

—Leader B
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These actual quotations, from two recent world leaders (a U.S. President and a
General Secretary of the former Soviet Union) of very different political persuasions
exemplify the attitudes underlying the models we will study in this chapter. Although
Ronald Reagan and Konstantin Chernenko disagreed on most issues, they both claimed the
same rationale for maintaining a strong military with stockpiles of heavy armaments.

Imagine a nation, called Blue, whose people believe themselves desirous of a
peaceful world. The leaders of this country share the people’s fervent wish to achieve peace
and avoid war. This is, of course, the public position of the vast majority of the world’s
governments; we assume that it is a sincerely held one.

The president of Blue and the other leaders of the government are not pacifists,
however. They will not go out of their way to launch aggression, but they will not sit idly by
if their country is attacked. The citizens of Blue share this attitude. They believe in self-
defense and will fight to protect their nation and way of life. For this reason, they must be
prepared to fight if necessity demands it.

The people of Blue feel that the maintenance of a large army and the stockpiling and
improvement of weapons systems are purely defensive gestures. They have peaceful
intentions and believe that if every nation were similarly solely concerned with self-defense,
there would be no occasion for war. Aggressive acts are the cause of war; self-defense is not
an aggressive act.

There is another large nation in this world, called Red. The people and leaders of Red
share these same ideals, intentions, and ethical beliefs. They do not have hostile designs
against anyone, but they are willing to fight to protect their homeland. The actions of the
government of Blue to build and maintain armaments do not go unnoticed by the people of
Red. Although the leaders of Blue continually proclaim peaceful intent, the weapons they
have could be used to attack and destroy Red. The people of Red would consider their
government derelict in its duty if it did not build up its armed forces for a secure defense.
And so, the leaders of Red act accordingly.

Blue notes the ensuing increase in Red’s arms expenditures. We know enough about
the sensibilities of the people of Blue to realize that these increases will be seen as threatening
to Blue’s security and they will cry out for strengthening Blue’s defensive forces.

In these past few paragraphs, we have sketched a highly simplified outline of an all-
too-familiar international political problem. We wish to analyze the consequences of this
situation to see what would happen if nations did behave in is manner.

The basic assumption is that of “mutual fear.” The more that one nation arms, the
more the other nation is spurred to arm. The more arms Blue accumulates, the more
incentive is provided for Red to build up arms, and the more arms Red has, the more Blue is
stimulated to arm. If the incentives to arm derive entirely from mutual fear and if neither
side had any arms to start with, then an arms race would not start. But the slightest move on
the part of one nation to build an army would initiate the whole vicious spiraling arms race.

This “mutual fear” model would predict that the armaments of both nations would
continue to increase indefinitely as time went on. This cannot actually happen in the real
world. No country has infinite resources. There is a limit to the amount of arms any nation
can accumulate. When armament expenditures begin to absorb too large a portion of a
nation’s budget, there are protests within the country against raising the burden of arms
costs still higher. Perhaps these limits force a leveling off of the arms race to some point of
stability. Perhaps they do not.
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The verbal analysis of this “mutual fear” situation is the sort we regularly see in
newspaper and magazine articles and hear in the public speeches of our politicians. The
verbal analysis cannot be carried much further. If we formulate a mathematical model
of the situation, however, we can carry the analysis a good way and develop some
consequences that may help us construct a more sophisticated theory of international
politics.

In this chapter we will first present a very simple deterministic model of a “mutual
fear” arms race. Examination of the consequences of this model will lead to the develop-
ment of a more complex model that reflects more of the real-world situation. Mathematical
analysis of this second model will yield new predictions about the course of arms races. We
will then try to compare these predictions to an actual arms race.

II. Constructing a Deterministic Model
There are five major steps in the construction of a deterministic model of a situation that
evolves over time:

1. Isolate and define the critical variables. In the models of arms races, the variables
studied will be armament expenditures, their rates of change, and time.

2. Make assumptions about relationships among the critical variables and formulate
them as equations or inequalities. In a “mutual fear” situation, we are supposing that
the rate of change of arms expenditures with respect to time of one country will
depend on the armament expenditures of the other country.

3. Apply mathematical analysis to the equations and inequalities. We hope to solve
them or at least to discover information about the nature of the solutions. The
analysis hopefully will give us new relations among the variables that are con-
sequences of the assumed relations, but that were not immediately evident.

4. Interpret the results of the mathematical analysis as statements about the real world,
and compare these with what actually happens in the real world.

5. Accept, discard, or improve the model. If the predicted relations are found to coincide
closely with what we observe in the real-world situation, we may accept the model as a
correct formulation. If the observations are in strong disagreement with the results of
the mathematical analysis, discard the model and try a new approach. If some of the
observations confirm the model and others do not, modify the assumptions about
the relationships among the variables and formulate more accurate equations.

We will carry out these steps for a simple arms race model in the next section.

III. A Simple Model for an Arms Race
A. The Assumptions

Let x and y represent the yearly levels of armament expenditures of the two nations in
some standardized monetary unit. These numbers are nonnegative and change with time.
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Let t stand for time in years; assume that t≥ 0 and that the observation of the arms race
begins at t = 0. The rates of change of x and y with respect to time are the derivatives
dx dt= x′ t and dy dt= y′ t .

Other important variables may occur to the reader. To keep this model simple, we will
ignore, at least temporarily, other relevant quantities.

We wish to develop a simple model that reflects in some fashion the assumption of
mutual fear: the more one nation arms, the more the other is spurred to arm. There are a
variety of ways that this assumption could be formulated mathematically. It could be
translated to mean that each country adjusts the level of its armaments to the level of the other
country’s. A more general approach would be that each country adjusts the rate of increase or
decrease of its armaments in response to the level of the other’s. To obtain a simple model,
we will interpret this assumption to mean that each nation changes its expenditures at a rate
directly proportional to the existing expenditure of the other nation.

Mathematically, the equations that state this assumption are

dx

dt
= ay 1

dy

dt
= bx 2

where a and b are positive constants. We do not claim, at this point, to know what
numerical values a and b have. We do not need this knowledge to continue the mathe-
matical analysis. The final results will show how the conclusions depend on the values of
these parameters.

B. Mathematical Analysis

Eqs. (1) and (2) form what is called a system of first-order differential equations. A solution
of the system is a pair of differentiable functions, x= f t and y= g t , so that

f ′ t = a g t and g′ t = b f t for all t≥ 0 3

If the armament expenditures at time t = 0 of the two nations are x0 and y0, respec-
tively, then we also insist that our solution satisfy these initial conditions—that is, f and g
satisfy Eq. (3) and

f 0 = x0, g 0 = y0 4

It can be shown that there is a unique pair of functions satisfying the conditions of
Eqs. (3) and (4). The proof is outlined in the Exercises. We want to derive some information
about the nature of the solution functions f and g.

In the first place, the fact that the parameters a and b are positive implies that the
derivatives dx dt and dy dt are nonnegative. Thus f ′ t ≥ 0 and g′ t ≥ 0. From elementary
calculus, we may conclude that f and g are nondecreasing functions of t.
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Second, differentiate each side of Eq. (1) with respect to t and obtain

d2x

dt2
= a

dy

dt
= that is, f ″ t = a g′ t 5

so that, the second derivative of f is also nonnegative. The geometric conclusion of
this observation is that the graph of f is concave up. By differentiating Eq. (2), we may
conclude by a similar argument that the graph of g is also concave up.

We can obtain more information about the relationship between the solution func-
tions by making use of the chain rule to write

dy

dx
=
dy dt

dx dt
=

b

a

x

y
6

Rewriting Eq. (6) in differential form and integrating, we obtain

y dy=
b

a
x dx 7

or
y2

2
=

b

a

x2

2
+K, which gives

y2 =
b

a
x2 +C 8

where C= 2K is the constant of integration. The value of C is obtained by substituting t= 0
into Eq. (8) and using the fact that y 0 = g 0 = y0, while x 0 = f 0 = x0. What is more
important for our understanding of this simple arms race model is that Eq. (8) is the
equation of a hyperbola in the plane with straight-line asymptote y= b a x. The graph of
the hyperbola in the plane is sketched in Fig. 2.1.

Suppose that at some time the x and y values determine a point in the interior of the
first quadrant on the upper branch of the hyperbola. Then, as time continues, the points

x t ,y t remain on this branch, moving in a northeasterly direction, since (by Eq. (6)) the

x

y

C > 0

C < 0

(0,   C )

(–  aC/b,0 )

y  =
b
a

x

FIGURE 2.1 C = y20 − b a x20 The two curves illustrate the
possibilities for the simple arms race model.
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slope of the tangent line is positive. This branch lies above the asymptote line, so that
y> b a x. Eq. (1) then gives

dx

dt
= ay> a b a x= ab x

or

dx

dt
> ab x

Thus, as the x-coordinate increases, so does the velocity of the horizontal motion. The
motion along the hyperbola is speeding up and the values of x and y will increase without
bound as time increases—that is,

lim
t→∞

x t = lim
t→∞

y t =∞

The same result can be established for motion along the lower branch of the hyperbola.

C. The Conclusions

It is possible, for those who know a little more about differential equations, to find explicit
formulas for the solution f and g as functions of t (see Exercise 11). Even without doing
this, we have enough information to analyze the qualitative consequences of this simple
arms race model: both nations will spend more and more money on armaments as time
proceeds, with no limit on the expenditures.

Note that this mathematical prediction is consistent with part of the verbal analysis of
this “mutual fear” model. The mathematical prediction of indefinitely large expenditures,
however, violates commonsense observations that there must be a finite limit to the
expenditures. We should modify the model to reflect this observation. We explore such an
improved model in the next section.

IV. The Richardson Model
A. The Assumptions

For the refined model, we begin with the premise of mutual fear expressed by the assumption
that the rate of change of armament expenditures of each country is directly proportional to the
expenditures of the other country. We will also attempt to include the “limiting factors” dis-
cussed above.We can do so by assuming that excessive armament expenditures present a drag
on the nation’s economy so that the actual level of expenditures depresses the rate of expen-
diture changes.Amathematicalway of expressing this is to assume that the rate of change for a
nation is directly and negatively proportional to its own expenditures.More precisely, a simple
refinement of the original model would be the system of differential equations

dx

dt
= x′ t = ay−mx 9

a, b, m, n> 0
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dy

dt
= y′ t = bx− ny 10

Where a, b, m, and n are all positive constants. Rather than proceed to a mathematical
analysis of this model, we will consider a model that is a further refinement of this one. The
idea of the second refinement is that some people argue that the cause of increasing arms
expenditures is not mutual stimulation but permanent underlying grievances of each
country against the other. To satisfy these analysts, Lewis F. Richardson (1881 1953)
proposed the following arms race model:

dx

dt
= x′ t = ay−mx+ r 11

dy

dt
= y′ t = bx− ny+ s 12

where a, b, m, and n are positive constants and r and s are constants that may have any sign.
Assignment of a positive value to r or s indicates that there is a grievance by one

country against the other that spurs it to accumulate arms. If we assign a negative value to
one of these parameters, however, then we are asserting that there are underlying feelings
of goodwill that tend to diminish perceptions of threat and hence to decrease dependence
on arms.

The differential equations of the Richardson model then assert that the rates
of arms expenditure increase of one nation depend positively on the expenditure level
of the other country, negatively on the country’s own expenditures, and positively on
underlying grievances. The values assigned to the six parameters measure the extent of
these effects.

The Richardson model is quite a flexible one. Analysts who differ in their beliefs as to
the relative importance of the three determinants of rate of change may choose values for
the parameters to reflect their preferences. If one of the three factors is believed irrelevant to
changes in expenditures, then the corresponding parameter can simply be set equal to zero.
If, for example, all the constants except r and s are zero, then only the grievances are
considered as contributing to changes in armaments.

Thus, you can use the Richardson model if you believe that an arms race is a self-
stimulating process or if you believe that self-stimulation has nothing to do with accu-
mulation of arms. Assigning nonzero values to all the constants gives a model that contains
the essential assumptions of our verbal description:

1. Arms accumulate because of mutual fear.

2. There is resistance within society to ever-increasing arms expenditures.

3. There are considerations independent of expenditure levels that contribute to the
buildup of armaments.

We shall see that the nature of solutions to the system of differential equations of the
Richardson model depends not on the precise values of the parameters, but rather on their
relative magnitudes and the signs of the “grievance” terms, r and s.
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B. Elementary Analysis of the Model

Let us suppose that the arms race begins at time t= 0 and that the differential equations (11)
and (12) are valid for all time t≥ 0. Suppose also that at t = 0, Blue and Red are respectively
spending at annual rates of x0 and y0 monetary units on armaments. It can be shown that
there is a unique pair of differentiable functions of t, x= f t , and y= g t such that

f ′ t = a g t −mf t + r 13

g′ t = bf t − ng t + s 14

f 0 = x0, g 0 = y0 15

It is possible to solve the system of differential equations to obtain f and g explicitly
as functions of t, the six parameters, and the initial expenditures. We outline the necessary
mathematical procedures in Section VI below. In this section, we will analyze the system
with the tools you learned in elementary calculus.

The techniques and concepts of calculus shed light on an important aspect of arms
races: stability. Some of the terms in the Richardson equations act to increase expenditures,
while others put a brake on spiraling costs. Is it possible that the combined effect of all the
terms will force arms expenditures ultimately to become “stabilized”? Will the level of
expenses approach or remain at some fixed, constant amount?

The mathematical requirement that a nation’s expenditures stay constant is that the
rate of change be zero. We say that the arms race stabilizes when both nations reach a level
of constant expenditures. For stabilization to occur, then, both rates of change must become
zero—that is,

dx

dt
= 0=

dy

dt
16

From the Richardson equations, this is the same as demanding that

ay−mx+ r = 0 17

and

bx− ny+ s= 0 18

In our analysis, we will assume that the parameters are all nonzero. The exploration of
the special cases in which some of the parameters are assigned values of zero will be left for
the Exercises.

Accordingly, we may rewrite Eq. (17) as

y=
m

a
x−

r

a
17a
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This equation represents the straight line L with slope ma, y-intercept 0,−r a and
x-intercept r m, 0 ; see Fig. 2.2.

It is useful to think of the Richardson system of differential equations as the equations
of motion of a particle in the x, y -plane. The first equation gives the horizontal component
of velocity and the second equation gives the vertical component of velocity. The equations
assert that the velocity components are functions purely of the x- and y-coordinates of a point
and of certain constants. All we really require here is to recall simple facts, such as that if
dx dt at some point is positive, then x t is increasing at this point, so that the particle will tend
to move to the right; if dx dt is negative, the particle tends to the left. If dy dt is positive
(negative), then the particle will move up (down).

If at some instant of time, the levels of expenditures x1, y1 of Blue and Red happen
to coincide with a point on L—that is, ay1 −mx1 + r= 0—then dx dt at x1, y1 will be zero.
The expenditures of Blue at that moment will not be changing. Of course, dy dt at this point
is likely to be nonzero, so the level of expenditures may move up or down at that instant
toward a point not on L.

The line L is called the optimal line for Blue. We shall see that the Richardson model
implies that Blue is continuously changing its expenditures levels to bring them closer to
the optimal line.

We wish to explore the limiting behavior of the Richardson arms race model as t gets
large. We can distinguish three cases:

1. A runaway arms race: x→∞ and y→∞

2. Mutual disarmament: x→0 and y→ 0

3. A stable arms race: x→ x and x→ y for some positive numbers x and y

If there is a stable arms race, it is easy to determine the values of x and y . We
consider the lines L and L′ where dx dt = 0 and dy dt = 0, respectively. The line L′ is Red’s
optimal line. The two lines intersect in a point x , y ; see Fig. 2.3. At this level of
armament expenditures, the rates of increase for both nations are zero and will remain at this
level, x , y , which will be called the point of stability.

The optimal line L divides the plane into two open half-planes; see Fig. 2.4. One half-
plane consists of all the points to the “right” of L, and the other is made up of all the points
to the “left” of L. More formally, a point P lies to the right of a line L if the horizontal line
through P hits L at a point with smaller x-coordinate while P lies above L if the vertical
line through P hits L at a point with smaller y-coordinate.

y
y

x x

L

L

(r/m, 0)

(a) r > 0 (b) r < 0

(0, –r/a)

(0, –r/a)

(r/m, 0)

FIGURE 2.2 The line L: y= ma x− r a . At points
along this line, dx dt= 0.
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Suppose that x1, y1 is any point not on the optimal line L, and let x2, y1 be the cor-
responding point on L. Then ay1 −mx2 + r = 0, while the derivative dx dt at x1, y1 has value

x′ x1, y1 = ay1 −mx1 + r

= ay1 −mx1 + r− 0

= ay1 −mx1 + r− ay1 −mx2 + r

=m x2 − x1

19

Now we see that dx dt at x1, y1 is positive exactly when x2 > x1, and this occurs
exactly when x1, y1 lies to the left of L. The derivative is negative, similarly, exactly when
x1, y1 lies to the right of L. Thus, if x1, y1 lies to the left of L, then the horizontal motion
at that moment is toward L, whereas if x1, y1 lies to the right of L, the horizontal motion is
also toward L. In either case, the Richardson model implies that Blue is always adjusting
its expenditures to move them toward the optimal line—that is, Blue is trying to stabilize its
arms expenses. See Fig. 2.5.

Similar analysis yields corresponding results for Red’s optimal line L′ along which
dy dt= 0. The derivative is negative at any point above L′ and is positive at any point below
L′. Thus, the vertical motion is always toward L′; the nation of Red always adjusts its
expenditures toward its optimal line.

C. Does Stability Occur?

We have just seen that the Richardson model predicts horizontal movement toward L and
vertical movement toward L′. In other words, if the initial level of armament expenditures is

FIGURE 2.4 The point
p, q lies below and to
the right of the line L.

L

x

y

(p , q)

(p, q )

P = (p, q)

FIGURE 2.3 The inter-
section of optimal lines at
x , y the point of sta-
bility. At this point, both
derivatives dx dt and dy dt
are zero.

y
L

L

x

(x*, y*)
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x0, y0 , then Blue will change its expenditures to bring them closer to its optimal line and
so will Red. In this section, we will investigate what effects these motions have on the
possibility of stabilizing the arms race.

If x and y represent armament expenditures, then we attach no meaning, for the
present, to these variables’ being negative. We consider, then, only the behavior of solu-
tions of the Richardson model when x and y are nonnegative. We examine only the portion
of the graph relating y and x that lies in the first quadrant.

D. Mutual Grievances

Let us first investigate the arms race in which each side has a permanent underlying
grievance against the other side. Mathematically, this means we will assume that the
parameters r and s are both positive.

In this situation suppose that Blue and Red are completely disarmed, so that the initial
expenditure level is (0, 0). According to the Richardson model, the rates of change of
expenditures at this instant would be

dx

dt
= a0−m0+ r = r> 0 20

and

dy

dt
= b0− n0+ s= s> 0 21

so that each nation would start arming itself.
Can this system be stable? In the case in which r and s are both positive, the point of

stability x , y will lie in either the first quadrant or the third quadrant (see Exercise 18).
We will start with the case that x , y lies in the first quadrant. Then the lines L and L′ will
be as pictured in Fig. 2.6. These lines split the first quadrant into four regions. Label them,
counterclockwise, I, II, III, IV, so that the origin is in region III.

If the initial armament expenditures are at (0, 0), then, as we have seen, both x and y
will increase. The net result will be to move the expenditures toward a point x1, y1 deeper

L L

y

(a) r > 0 (b) r < 0

y

x

x

dx/dt > 0

dx/dt < 0

dx/dt > 0

dx/dt < 0

FIGURE 2.5 Blue adjusts expenditures
toward the line L. On L, dx dt= 0.
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in region III, closer to the stability point x , y a short time later. If x1, y1 is any point in
region III, then, again, dx dt and dy dt will be positive and the motion will still be in a
“northeasterly” direction toward x , y . If at some instant, the motion carries the particles
to the piece of the line L separating regions III and IV, then at such a point dx dt= 0 while
dy dt is positive; the resulting motion is vertical and returns to region III. Similarly, at every
point on the part of L′ separating regions II and III, dy dt= 0 while dx dt is positive; again
motion is back into region III. No matter where in region III the initial level of expenditures
x0, y0 is, the long-term behavior of the arms race is movement toward x , y and stability
results. See Fig. 2.7.

The initial expenditure levels x0, y0 could, of course, be at a point in one of the other
three regions of the first quadrant. It is easy to check whether in any of these cases, the
movement is again toward the stable point x , y . In Fig. 2.7, this is shown for several
different initial levels. Thus, whenever the optimal lines intersect in the first quadrant and
the grievance terms r and s are positive, we have a stabilizing arms race. Any deviation
from the “Balance of Power” point x , y will tend to be corrected.

E. Stable Point in Third Quadrant

To continue the analysis for the case when the parameters r and s are positive, consider
what happens if x , y is in the third quadrant. Then the relationship of the optimal lines L
and L′ is the one pictured in Fig. 2.8.

FIGURE 2.6 The optimal
lines split up the first
quadrant into four
regions. The arrows indi-
cate the horizontal and
vertical directions of
motion in each region.

II

III
IV

L

y
L

x

I

I

II

III

IV

Region

< 0
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FIGURE 2.7 The stable
case. Possible initial
levels x0, y0 are indi-
cated with solid circles.
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Since the stable point is unobtainable through any positive levels of armament
expenditures, a stabilizing arms race is not possible. The first quadrant is split into three
regions as indicated in Fig. 2.8. Investigation of the signs of dx dt and dy dt in these regions
shows that no matter the initial level of expenditures, the motion of the system eventually
carries expenditures into the second region. Once the expenditures reach a point in this
second region, both x and y values continue to increase and the expenditures reach indefi-
nitely high levels; there is a runaway arms race no matter what the initial expenditures were.

In the Exercises, you will prove that the situation just discussed can only occur if
mn< ab—that is, the “combined” effect of the braking terms is not enough to offset the
terms that measure mutual stimulation to increase arms expenditures.

F. The Bad Effect of Good Will

In this section we will show that there are some cases in which the nature of the ultimate
behavior of the Richardson model depends upon the initial level of expenditures. Look at
the situation pictured in Fig. 2.9. This can occur only if at least one of the “grievance” terms,
r or s, is negative—that is, only if at least one of the nations has feelings of “goodwill”
toward the other.

Suppose the initial level of expenditures is at the point x0, y0 in Fig. 2.9. Expenditures
will not remain at this point, because it is not the point of stability. Since x0, y0 is to the left of
L and below L′, the x-coordinate and y-coordinate will both increase and the expenditures will

I
I

II

II

L

L

x

y

III

III

Region

> 0 < 0
> 0> 0

> 0 > 0

dx
dt

dy
dt

(x*, y*)

FIGURE 2.8 Runaway arms race. Grievance terms r and s are both
positive.
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> 0

< 0 < 0

dx
dt

dy
dt

L

FIGURE 2.9 An ambiguous case. Both griev-
ance terms r and s are negative.
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move to a new point in region I farther from the stable point. The arms expenditures for both
nations will increase indefinitely as time goes on. There is a runaway arms race.

On the other hand, suppose that the initial level is at x1, y1 in region III of Fig. 2.9.
Now we are to the right of L and above L′, so both coordinates will decrease, and we will
move to another point in region III farther from the stable point. We are headed toward
mutual disarmament.

If the initial point is in region II or IV, then the analysis is more complicated. These
cases will be discussed in some detail in later sections. The basic result, however, is easy to
state. The ultimate behavior is either a runaway arms race or total disarmament, depending
on whether we move first into region I or region III. This is determined by the location of
the initial expenditure levels.

There is a rather ironic situation here. If underlying grievances exist (both r and s
positive), then a stable arms race may result, independent of how high the initial level of
expenditures is or how great the disparity in expenditures of the nations is at the start. When
the underlying feelings are of goodwill (negative values for r and s), then a runaway arms
race is an alternative to disarmament, and the eventual outcome very much depends on
where you start.

This ambiguous case arises when the lines L and L′ intersect in the first quadrant. If
the point of intersection happens to lie in the third quadrant, and r and s are both negative,
then the arms race becomes a march to mutual disarmament regardless of the location of the
initial point (see Exercise 23).

Direction fields Computer software packages make it possible to visualize the dynamics of

a system of differential equations dx dt= f x, y , dy dt= g x, y in another way. We draw

small pointed line segments with a slope
dy

dx
=

g x,y
f x,y

at any desired point xi, yi . Each such

arrow is then tangent to the solution at the point xi, yi . The set of all these line segments is
called the direction field or slope field. By plotting the direction field of the system, you can get
a good qualitative feel for the solution and its properties. It’s tedious to draw very many of
these line segments by hand, but a computer can carry this task quite quickly. Figs. 2.10 and
2.11 show the direction field for two Richardson arms race models.

Summary of results The eventual outcome of an arms race that follows the Richardson
model depends upon the relative sizes of the parameters a, b,m, and n and the signs of r and
s. We have noted the following typical cases:

Case 1: Ifmn− ab is positive, and r and s are positive, then there will be a stabilized arms race.

Case 2: If mn− ab is negative, and r and s are positive, there will be a runaway arms race.

Case 3: If mn− ab is positive, and r and s are negative, then there will be total
disarmament.

Case 4: If mn− ab is negative, and r and s are negative, then the situation is ambiguous.
There will either be disarmament or a runaway arms race, depending on the initial level of
expenditures.
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FIGURE 2.11 Direction field for the arms race model
dx dt= 1y− 2 x− 5, dy dt= 6x− 2 y− 12.

12

10

8

6

4

2

2 4 6 8 10 12

L L

FIGURE 2.10 Direction field for the arms race model
dx dt= 3y− 6x+ 6, dy dt= 4x− 4y+ 7.
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G. Further Analysis of the Richardson Model

Suppose that you wish to study the Richardson model in a situation where investigation
indicates that the values of the various parameters should be

a= 1, m= 2, r= −5, b= 6, n= 2, s= −12

The optimal lines are L: y− 2x− 5= 0 and L′: 6x− 2y− 12= 0. The two lines
intersect at the stable point x , y = 11, 27 .

Since the grievance terms r and s are negative and mn− ab= 4− 6 is negative, you
have the ambiguous case in which ultimate behavior of the system depends on the location
of the initial level of expenditures.

Observation of this particular system at time t= 0 shows that the initial level is
x0, y0 = 15, 15 . At this point, the derivatives are given by

x′ x0, y0 = x′ 15, 15 = 15− 2 15 − 5= −20

and

y′ x0, y0 = y′ 15, 15 = 6 15 −2 15 − 12= 48

The signs of these derivatives indicate that the initial point is in region IV of Fig. 2.9. You
cannot tell from any of the mathematical analysis yet presented what the ultimate behavior
of this particular arms race will be. In this section, we will present two techniques—of
general application in the solution of systems of differential equations—that will help
determine the outcome.

The Euler method This method, introduced by the great Swiss mathematician Leonhard
Euler (1707 1783), is based on a simple geometric interpretation of the derivative.

Suppose that u= f t is a differentiable function of t and that the value of the function
and its first derivative are known at a number t0. We wish to approximate the value of the
function at a nearby number t0 +Δt. Direct computation may be quite difficult. Note,
however, that the graph of the tangent line to the curve u= f t stays close to the curve near a
point of tangency t0, f t0 = t0, u0 . The slope of the tangent line is given as
f ′ t0 = u′ t0, u0 . It is a simple matter to use the equation of the tangent line to find the point
on that line with the first coordinate equal to t0 +Δt. IfΔt is small, then the second coordinate
of this point is a good approximation to the value f t0 +Δt since the tangent line will not
wander far from the curve (see Fig. 2.12). The smaller Δt is, of course, the better the
approximation will be. Analytically, the actual change in the function from t0 to t0 +Δt is

Δu= f t0 +Δt − f t0

The approximation is that Δu is roughly equal to f ′ t0 Δt so that

f t0 +Δt ∼ u0 + f ′ t0 Δt

which may also be written as

f t0 +Δt ∼ u0 + u′ t0, u0 Δt

where ∼ is a symbol representing “approximately equal to.”

38 CHAPTER 2 Stable and Unstable Arms Races



Many calculus texts contain detailed discussion of this method of “increments” for
approximations. See, for example, Section 2.8, “Linear Approximations and Differentials,”
in Swokowski, Olinick, Pence, Calculus, 6th ed., Boston: PWS, 1994.

The method of increments is the basis for Euler’s technique of approximating
solutions to differential equations. In the context of the Richardson arms race model,
suppose that the initial level of expenditures is x0, y0 . Then the rate of change for Blue is
x′ x0, y0 = ay0 −mx0 + r and for Red it is y′ x0, y0 = bx0 − ny0 + s. In a short time interval
Δt, the amount Δx that the arms expenditures for Blue will change is approximately
x′ x0, y0 Δt. The change of expenditures for Red during this same time interval is denoted
Δy and is approximately equal to y′ x0, y0 Δt.

Thus at time t0 +Δt = 0+Δt=Δt, the new expenditure levels will be at the
point P1 = x1, y1 The coordinates of this point are estimated by the method of increments
to be

x1 ∼ x0 + x′ x0, y0 Δt

and

y1 ∼ y0 + y′ x0, y0 Δt.

If we choose Δt to be small, then the estimated coordinates will be quite close to the
actual coordinates at time Δt.

Example

Suppose u= f t = t and t0 = 4. Then u0 = 4= 2 and f′ t = 1
2 t

so that f′ t0 = f′ 4 =

u′ 4, 2 =
1

2 4
=
1
4
. The approximation that is made here is

4+Δt∼ 2+
1
4
Δt

If we wish to compute 4.41, for example, then we take Δt= .41. The approximate

value is 2+
1
4

.41 =2.1025. The actual value of 4.41 is 2.100. The approximation here is

quite good.

t0 t0 + ∆t

u = f(t)

f  = f(t)

f (t0 ) ∆t

u0 + ∆u

u

u0

∆t

∆u

t

FIGURE 2.12 The change in height of the graph of a function
near the point of tangency is approximated by the change in
height of the tangent line.
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Once a new point P1 has been estimated, it may be treated as the initial point of the
system and the method of increments can be applied again. This may be done as often as
you like. The general formula for estimating successive points would be

Pi+1 = xi+1, yi+1 where
xi+1 = xi + x′ xi, yi Δt
yi+1 = yi + y′ xi, yi Δt

22

This formula for Pi+1can be applied to any system of differential equations in which dx dt
and dy dt are given as explicit functions of x and y. For the Richardson arms race model, the
formula becomes

Pi+1 = xi+1, yi+1 where
xi+1 = xi + ayi −mxi + r Δt
yi+1 = yi + bxi − nyi + s Δt

23

For the particular Richardson model we have been discussing in this section, the formula
reduces to

Pi+1 = xi + yi − 2xi − 5 Δt, yi + 6xi − 2yi − 12 Δt 24

P0 = 15, 15

If Δt is chosen to be .01, then repeated use of Eq. (24) yields the following data:

I xi yi x′(xi , yi ) y′(xi , yi )

.00 15 15. 20. 48.

.01 14.8 15.48 19.12 45.84

.02 14.608800 15.938400 18.279200 43.776000

.03 14.426008 16.376160 17.475856 41.803728

.04 14.251249 16.794197 16.708302 39.919102

.05 14.084166 17.193388 15.974945 38.118222

. . .

.10 13.352434 18.934690 12.770177 30.245223

.20 12.298813 21.409885 8.187741 18.973108

.30 11.621573 22.958293 5.284853 11.812852

. . .

.89 10.407465 25.169142 0.645788 0.106505

.90 10.401007 25.170207 0.631807 0.065628

.91 10.394689 25.170864 0.618515 0.026407

.92 10.388504 25.171128 .60588 .001123

Since both derivatives at P92 are negative, the point P92 is in region III and, by our
previous analysis, we may conjecture that the ultimate result of this particular arms race will
be total disarmament.
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This incremental method yields a definite and believable result. It is difficult to
ascertain the ultimate behavior of an arms race in this way, however, unless we are willing
to make a great many computations. In these computations, moreover, there is a slight error
at each step, because the incremental method yields only approximations. This error may
build up over the many steps necessary in the computation so that the actual position of the
expenditure levels may be quite far away from the estimated one. The trick is to make Δt
small enough that the accumulated error is small, but large enough that the number of
calculations before reaching region I or III is reasonable.

Rather than pursue this method any further at this stage—or examine the many
refinements mathematicians have developed for the numerical solution of systems of dif-
ferential equations—we will describe another method of answering the stability question.
This method will accurately predict the outcome of the arms race, will not involve extensive
calculations, and is mathematically defensible.

The point-slope method The motivation behind this method derives from trying to answer
the question “Is it possible that the movement of arms expenditures levels could be motion
along a straight line toward the stable point?”

Let P0 = x0, y0 be the initial point, and consider the straight line L through P0 and
the stable point S= x , y . The slope of this line is

y − y0
x − x0

If the motion of the point representing armament expenditures is given by the Richardson
model, then the chain rule gives

dy

dx
=

dy dt

dx dt
=

bx− ny+ s

ay−mx+ r
25

This fraction measures the slope of the line tangent to the curve along which the point is
moving at the instant when the point is at x, y . See Fig. 2.13.

Suppose that this direction of motion happens to be along L , and furthermore assume
that every point on L has this property—namely, the slope of the line L through S and the
point is equal to the derivative dy dx evaluated at the point. Then, if the initial point is on L ,

x

L*

L
y

L

IV

Direction
of dy/dx

II

I

III

(x*, y*)

(15,15)

FIGURE 2.13 Illustration of the point-slope method.
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all subsequent points (hence, all subsequent levels of arms expenditures) will be on L . This
is true because at t= 0, the point is on L and is moving along L , and any instant later it has
reached another point on L , where dy dx determines the new direction of motion—and this
direction is again along L .

We can find the equation of such a line L by using the property that we have assumed
for it: a point x, y is on L if and only if dy dx at that point is equal to the slope of the line
from S to the point—that is,

bx− ny+ s

ay−mx+ r
=

y − y

x − x
26

This equation may be solved for y as a function of x. In the example under consid-
eration, a point x, y is on L if and only if

6x− 2y− 12
y− 2x− 5

=
27− y

11− x
27

This equation is equivalent to

6x− 2y− 12 11− x = 27− y y− 2x− 5

Perform the indicated multiplication and rearrange terms to obtain

y2 − 54y− 6x2 − 132x− 3 = 0 28

Eq. (28) may be treated as a quadratic equation in y with constant term
6x2 − 132x− 3. The two solutions are

y= 27+ 6 x− 11 and y= 27− 6 x− 11 29

The equations in Eq. (29) are equations of straight lines. Both lines pass through the stable
point (11, 27). The first equation represents a line of positive slope that runs through regions
I and III and is not of interest to us. The second line has negative slope and lies in regions II
and IV. This is the equation of the desired line L .

Consider any point on L in region IV. Here dx dt is negative and dy dt is positive,
so that the direction of motion is “northwesterly.” Since the point is on the special line L ,
the motion is along L . Starting at any such point, the motion will be toward the stable
point as time progresses. A similar consideration of the signs of dx dt and dy dt shows
that if motion starts at a point of L in region II, subsequent motion is along L toward the
stable point.

Nowa point x, y will be onL exactlywhen y+ 6 x− 11 − 27= 0. This line divides
the plane into two regions, one below the line and one above it, for which y+ 6 x− 11 − 27
is negative and positive, respectively. These correspond to the inequalities

6x− 2y− 12
y− 2x− 5

>
27− y

11− x
30
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for points below L , and

6x− 2y− 12
y− 2x− 5

<
27− y

11− x
31

for points above L in regions II and IV.
If x, y is a point in the plane above L , and we connect that point to the stable point

with a straight line, then the direction of motion from this point will be above this line, and
closer to region I. The ultimate motion will carry arms expenditure levels into region I,
and the arms race will escalate without limit.

If, on the other hand, the initial point of the arms race is below L then the direction
of motion away from the point is below the line connecting that point to the stable point.
The motion is toward region III, which the system will eventually enter. Total disarmament
will result.

For the particular example under consideration with initial point (15, 15), the
direction of motion at this point is

6 15 − 2 15 − 12
15− 2 15 − 5

=
48
−20

= −2.4

while the slope of the line from (15, 15) to the stable point (11, 27) is

27− 15
11− 15

= −3

Since 2.4 is greater than 3, the direction of motion is below the line from (15, 15) to (11,
27), so the movement is away from the stable point and toward region III. The result is
eventual disarmament.

If we consider a particular case of the Richardson arms race model, with assigned
values for the parameters and the initial expenditures, then the set of all later expenditures
traces out a curve in the plane. This curve may move toward the stable point, or toward the
origin, or it may simply assume larger and larger values of both coordinates without limit as
time goes on. Equipped with the point-slope method and the analysis of earlier sections, we
can determine quickly which of these three outcomes will occur.

H. A Discrete Model

One of the fundamental assumptions of a differential equations model of an evolving arms
race is that each nation can immediately and continuously change its expenditures in
response to the current arms spending of both nations. Many people would argue that in the
real world, countries set arms budgets perhaps once a year and can only change them at
discrete intervals of time, not at every instant. It’s instructive, then, to examine what a
discrete version of Richardson’s conceptualization of an arms race might look like.

The simplest translation from the continuous to the discrete would be to replace the
derivative as the measure of rate of change with the actual difference in two successive time
periods. Thus, if B i and R i represent the annual arms expenditures in Year I for Blue and
Red, respectively, we would have

B i+ 1 −B i = a R i −m B i + r 32
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and

R i+ 1 −R i = bB i − n R i + s 33

for some positive constants a, b, m, and n and some constants r and s.
This system of two difference equations, which is an example of a discrete dynamical

system, is the discrete Richardson arms race model. If we rewrite the system of equations in
the form

B i+ 1 =B i + a R i −m B i + r

R i+ 1 =R i + b B i − n R i + s

then it easy to see that this system is mathematically the same as the one produced by the
Euler method,

xi+1 = xi + ayi −mxi + r Δt
yi+1 = yi + bxi − nyi + s Δt

with xi =B i , yi =R i and Δt= 1.

Iteration of the difference equations for five steps yields

i B(i) R(i)

0 15.00 16.00

1 9.80 20.30

2 11.43 19.24

3 11.06 19.75

4 11.28 19.79

5 11.32 19.97

Note that there is some fluctuation in Blue’s values: initially at 15, it first decreases to 9.8
after 1 year, then increases to 11.43 after 2 years, drops to 11.06 at the end of 3 years, then
increases to 11.28 and 11.32 in the fourth and fifth years. If we reiterate the system for a

Example

Examine the discrete Richardson model,

B i+ 1 −B i = 0.5R i − 0.9B i +0.3

R i+ 1 −R i = 0.7B i − 0.4R i +0.2

with B 0 = 15 and R 0 = 16.
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longer period—say, 400 years—then Blue’s and Red’s expenditures seem to reach stability.
The values for i between 490 and 500 look like

I B(i) R(i)

490 21.753520 38.560150

491 21.755427 38.563554

492 21.757319 38.566931

493 21.759197 38.570282

494 21.761061 38.573608

495 21.762910 38.576907

496 21.764745 38.580181

497 21.766565 38.583430

498 21.768371 38.586653

499 21.770164 38.589852

500 21.771942 38.593026

A graph of the Blue and Red arms expenditures for the first 500 periods shows this sta-
bilization more clearly. See Fig. 2.14.

V. Interpreting and Testing the Richardson Model
A. Interpretation

The Richardson model is simple and limited. It assumes that the rate of growth of arma-
ments is influenced by only three factors and that these influences are additive in their
effect. When you consider that many other forces operating in the real world may have an
effect on arms races and that the interrelationships among these forces are undoubtedly
quite complex, you might easily conclude that the Richardson model is too simplified to be
of any real interest.

On the other hand, we have seen that the model does include—in mathematical
language—some of the most common arguments about arms races that have been made by
political analysts. Moreover, when we examine the mathematical implications of the model,
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FIGURE 2.14 The stable point for this system occurs
at (B*, R*) = (22, 39) where 0.5R* − 0.9B* + 0.3 = 0
and 0.7B* − 0.4R* + 0.2 = 0.
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we see that most of them are in accord with common sense. The conclusions of our math-
ematical analysis in Section IV can be interpreted to give us these qualitative statements:

1. The presence of permanent underlying grievances will prevent total disarmament. As
long as such grievances exist, countries will continue to arm even if their “rivals”
have no weapons.

2. A stabilization of the arms race is achievable if the amount of mutual fear (measured by
ab) is sufficiently temperedby the constraints (m andn) on the sizes of armament budgets.

3. Total disarmament is possible if there are underlying feelings of goodwill, but this
will not occur if the level of armament expenditures is already above a certain critical
amount or if mutual fear is too strong.

In addition to this qualitative information, the Richardson model also predicts how
the arms race will develop quantitatively over time. In the case of a stabilized arms race, for
example, the model tells what path will be taken toward the stable point.

If we wish to test this theoretical model against a real arms race, our first task is to
consider more carefully how to measure the variables x and y. Next we would need
to determine how to assign weights to the six parameters, or at least how to assess the signs
of r and s and the relative magnitudes of mn and ab.

It would be useful at this point to discuss the history of the Richardson model and
how it came to be derived in order to explain the cause of a world war.

B. Lewis Fry Richardson

The mathematical model of an arms race that we have been studying was the creation of a
man named Lewis Fry Richardson. Richardson was born on October 11, 1881, at New-
castle-upon-Tyne in the county of Durham, England. His father had a tanning business, and
his mother came from a family of corn merchants. Richardson attended Cambridge Uni-
versity where he studied under the famous Cavendish Professor of Physics Sir J. J.
Thompson, discoverer of the electron. Richardson worked variously as a chemist, physicist,
meteorologist, teacher of physics, and president of a technical college.
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Richardson’s scientific work in the field of meteorology was highly regarded.
His book, Weather Prediction by Numerical Process, was published in 1923 and is
considered a classic work in the field. The excellence of Richardson’s contributions to
meteorology and physics journals led to his receiving a Doctor of Science degree
from London University in 1926, and to his election to the Fellowship of the Royal
Society the next year. In 1972, Prime Minister Edward Heath opened the Richardson
Wing, a major extension of the British Metrological Office’s headquarters, named in
Lewis’s honor.

Richardson’s family had a strong attachment to the Quaker religious community and
the Society of Friends was a persistent influence in his life. He once wrote, “Its solemn
emphasis on public and private duty . . . its condemnation of war pulled me away from the
many warlike applications of physics.” Richardson served with an ambulance convoy
attached to the 16th infantry division of the French army during World War I. It was during
this period that he began to write about the causes and avoidance of war. His short book The
Mathematical Psychology of War, Oxford: Hunt, 1919, begins with a model embodying the
mutual fear component of arms races.

Richardson had left his post as superintendent of the Eskdalemuir Observatory in
Scotland, where he began his research on weather prediction, to join the Friends Ambulance
Unit. After the war, he returned to his research at the Meteorological Office’s Benson
Observatory, but resigned in the summer of 1920 when the Office was put under the
direction of the Air Ministry; his Quaker beliefs would not permit him to work directly for
the armed services. His wife Dorothy Garnett Richardson later recalled, “there came a time
of heartbreak when those most interested in his ‘upper air’ researches proved to be the
‘poison gas’ experts. [He] stopped his meteorological researches, destroying those that had
not yet been published. What this cost him none will ever know.”

Richardson developed his model of a two-nation arms race during the middle 1930s.
He later extended the model to describe an arms race among n nations and tried to apply this
refined model to the situation in Europe. He submitted a paper on this to an American
journal urging immediate acceptance because he thought its publication might avert an
impending war. The editors rejected the paper.

Not long after the outbreak of World War II, Richardson resigned his principalship of
the Technical College and School of Art in Paisley, Scotland. In his retirement he continued
to pursue his researches into the causes of war. In the last few years of his life, he returned to
his earlier interests in meteorology. Richardson died on September 30, 1953.

In a 1953 obituary about Richardson, the meteorologist Peter A. Sheppard cited his
books on weather prediction and international relations:

These mentally adventurous works stamp the man, and of him it may be truly said, as
Wordsworth said of Newton ‘. . . a mind for ever/voyaging through strange seas of Thought,
alone.’ For it was given to Richardson to be way out ahead of his contemporaries in the
effort to mould experience to scientific form. Some have now caught up, or are catching up,
with the meteorological research which Richardson did thirty years ago; the fate of his
pioneering efforts to form a science of international relations will perhaps not be known for a
still longer time.

Richardson’s work also sowed the seeds for the applications of the exciting current
field of fractals. He was the first person to investigate the relation between the scale used to
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measure an irregular curve—such as coastline, a rugged mountain border frontier, or a
meandering river—and the resulting estimate of its length.

In his study of “contiguity,” Richardson observed that Spain reported that its
boundary with Portugal was 613 miles long, while Portugal claimed that the border’s length
was 754 miles, a difference of 23%. Similarly, the Netherlands and Belgium asserted
different lengths for their common frontier: 236 miles according to one country and 279
miles according to the other, an 18% gap. He speculated that much of the discrepancy was
due to a difference in length of the measuring instruments.

The prototypical example for a fractal is the length of a coastline measured with
different length rulers. Coastlines are very irregular and winding, characterized by bays,
peninsulas, and inlets. Shorter measuring sticks fit more snugly in these bends and increase
the estimated total length. If we use a yardstick to measure the length of Britain’s coastline,
we will get a smaller value than if we use a foot-long ruler.

One result of Richardson’s studies was a graph showing the relation between scale
and length for a variety of coasts, using logarithmic scales so that the exponent in the length
formula can be read from the slope of a line fitted to the data points. Richardson’s empirical
studies suggested that for each nation’s coastline, there are constants λ and D, such that if a
ruler of length r was used, then one will obtain roughly λr −D intervals, each of length r. The
length of the coastline would be proportional to λ r −Dr = λ r1−D.

Richardson’s work proved to be the inspiration for Benoit Mandelbrot’s suggestion
that even though the exponent D was not a whole number, it should be regarded as a
dimension. He termed it a “fractional dimension” or “fractal.” Mandelbrot’s book The
Fractal Geometry of Nature uses the length of the coastline of Britain measured at various
scales to introduce the notion of fractal dimension.

According to Mandelbrot (1924 2010), a fractal is an object or quantity that displays
self-similarity, in a somewhat technical sense, on all scales. The object need not exhibit
exactly the same structure at all scales, but the same “type” of structures must appear on all
scales. A plot of the quantity on a log-log graph versus scale then gives a straight line whose
slope is said to be the fractal dimension.

Many objects in nature are so complicated and irregular that they cannot be modeled
well using familiar objects of classical geometry. “Clouds are not spheres, mountains are
not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a
straight line,” Mandelbrot observed He conceived and developed a new geometry, the
geometry of fractal shapes, to model nature more accurately. Fractals are now used to model
a wide range of biological and topographical entities and to produce ultrarealistic special
effects for movies and video games.

Mandelbrot stated that Richardson’s contiguity paper was a revelation for him and
had profoundly affected his research. In The Fractal Geometry of Nature, he describes
Richardson as a “great scientist” and notes, “[W]e are indebted to him for some of the most
profound and most durable ideas regarding the nature of turbulence, notably the notion that
turbulence involves a self-similar cascade.” In a brief biographical sketch, Mandelbrot
quotes Richardson on turbulence and self-similarity:

Big whorls have little whorls,
Which feed on their velocity;
And little whorls have lesser whorls,
And so on to viscosity.
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C. Background of Richardson’s Model

Manifestations of hostility among nations are often apparent in the invectives that appear in
speeches and in the press. The difficulty of incorporating hostility as a variable in a
mathematical model is in finding a suitable, objectively measurable quantity to represent
the amount of hostility.

Richardson saw armament expenditures in monetary units as a good index of hos-
tility. He proposed that indices of international trade be used as measures of the amount of
cooperation between nations. Accordingly, the net amount of hostility would be the dif-
ference between arms expenditures and international trade. If this quantity is negative, then
the magnitude of difference could be interpreted as net cooperation. Note that this would
enable us to attach meaning to negative values of x and y in the model.

In developing his model, Richardson was attempting to discover the causes of World
War I. He assumed that when armaments can reach constant equilibrium values, then no war
occurs. If the armaments increase indefinitely, he concluded that war would eventually start.

Richardson [1960b, 15] defended his inclusion of what we have called the “mutual
fear” factor in his model by quoting Sir Edward Grey, who was the British Foreign Sec-
retary at the outbreak of World War I:

The increase of armaments that is intended in each nation to produce consciousness of strength,
and a sense of security, does not produce these effects. On the contrary, it produces a con-
sciousness of the strength of other nations and a sense of fear. . . . The enormous growth of
armaments in Europe, the sense of insecurity and fear caused by them—it was these that made
war inevitable. . . . This is the real and final account of the origin of the Great War.

As to the presence of terms involving the burdens of arms expenditures, Richardson notes
the remarks of Winston Churchill and Prince Bernhard von Bülow. Churchill records that
on November 3, 1909, when he was president of the Board of Trade, he began a memo to
the British cabinet with these words:

Believing that there are practically no checks upon German naval expansion except those
imposed by the increasing difficulties of getting money, I have had the enclosed report prepared
with a view to showing how far those limitations are becoming effective. It is clear that they are
becoming terribly effective.

Prince von Bülow, who was the German Chancellor, wrote in 1914 [Richardson, 1960b, 15]:

It is just possible that the effect of convulsively straining her military resources to the uttermost
may, by reacting on the economic and social conditions of France, hasten the return of pacific
feelings. . . . Should the 3-year military service entail an income tax, this would also probably
have a sobering effect.

In 1935, when Grey’s statement that the enormous growth of armaments was the real
cause of the war was quoted in a Parliamentary debate, L. S. Amery, said in reply
[Richardson, 1960b, 15 16]:

With all respect to the memory of an eminent statesman, I believe that statement to be entirely
mistaken. The armaments were only the symptoms of the conflict of ambition and ideals, of
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those nationalist forces, which created the war. . . . It was insoluble conflicts of ambitions and
not in the armaments themselves that the cause of the war lay.

It was statements like Amery’s that impelled Richardson to include the terms r and s
measuring underlying grievances into his system of differential equations.

Thus, we see how Richardson was led to include the three causes of armament expen-
diture increases and decreases into his model, and how he arrived at armament expenditures as
an indication of hostility. Is there some way to test this model?What predictions can wemake
from it that can be compared to reality?

D. Testing the Model

In this section, we will test the Richardson model against the actual arms race that took
place in Europe in the years prior to the outbreak of World War I.

In the first decade of this century, it was apparent to many observers that there was a
great likelihood of a war arising. The principal foes in the war would be France and
Germany. It was clear that France would be allied with Russia and Germany with Austria-
Hungary. It was thought that Great Britain would most likely support France and Russia,
but the role of some other important European nations (Italy, Turkey) was in doubt.

Richardson attempted to test his model as an arms race between two blocs: France and
Russia on one side, Germany and Austria-Hungary on the other. He began with assumptions
that the degree of “mutual fear” and the braking effects of high armament budgets were the
same on both sides—that is, he set a= b and m= n in Eqs. (11) and (12) to obtain

dx

dt
= ay−mx+ r 34

dy

dt
= ax−my+ s 35

If we add these equations, we obtain

d x+ y

dt
= a−m x+ y + r+ s 36

Finally, if we set z= x+ y, we obtain the differential equation

dz

dt
= a−m z+

r+ s

a−m
37

The variable z represents the total arms expenditures for both sides. Eq. (37) then
makes a prediction that can be checked: Total armament expenditures will increase at a
rate that is proportional to total expenditures. Mathematically, this asserts that if we plot
dz dt against z, we should obtain a straight line.

Richardson tabulated the armament budgets in millions of pounds sterling of the four
powers in the years immediately before World War I. He estimated dz dt for each 2-year
period by simply taking the differences in total budgets for the years and then plotted this
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difference against the average total for the 2 years. The data is presented in Table 2.1, and
the graph of his results in Fig. 2.12.

The four points do lie close to a straight line. Richardson [1960b, 33] himself wrote:

Since I first drew this diagram . . . I have been incredulous about the marvelously good fit. Yet
there is certainly no simple mistake. . . . The regularity of these phenomena shows that foreign
politics had then a rather machine-like quality, intermediate between the predictability of the
moon and the freedom of an unmarried young man.

The slope of the line in Fig. 2.14 is about 0.73. The slope predicted by the model is
a−m. Richardson gives some data to indicate that a reasonable figure for m is .2 so that a is
roughly .9. Since a= b and m= n in this situation, we have ab= .81 and mn= .04. Since
ab>mn, we have the ambiguous case.

If we extrapolate the observations in Fig. 2.14 along the straight line to the point
where dz dt= 0, we find that there z= 194 million pounds sterling. At this level of
expenditures, the total expenditures would remain constant. Richardson [1960b, 33 34]
concludes

Table 2.1

1909 1910 1911 1912 1913

France 48.6 50.9 57.1 63.2 74.7

Russia 66.7 68.5 70.7 81.8 92.9

Germany 20.8 23.4 23.4 25.5 26.9

Austria-Hungary 199.2 204.8 214.9 238.7 289.0

Totals 5.6 10.1 23.8 50.3

Increases 202.0 209.8 226.8 263.8

2-year average

Source: Adapted from Richardson, Arms and Insecurity, 1960, 32.
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(Adapted from Richardson, 1960b, 33.)
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As love covereth a multitude of sins, so the good will between opposing alliances would just
have covered 194 million pounds of defense expenditure on the part of the four nations con-
cerned. Their actual expenditure in 1909 was 199 million; and so began an arms race which led
to World War I.

The critical reader may not be so quick to accept this argument as evidence that
the Richardson model is an accurate description of the dynamics of arms races. We
have already pointed out that a number of simplifying assumptions were made in the
original formulation of the model. More simplifying suppositions were necessary to make
the prediction Richardson claims is verified by the facts. You might well consider,
for example, why Richardson left out the armaments of Great Britain in his
calculations when it was evident that this nation was an ally of France and Russia. Does the
model justify the statement that a stabilized arms race implies that there will be no wars?

In an extended survey, Civilizations, Empires and Wars: A Quantitative History of
War, William Eckhardt concluded, “The positive correlations between war preparations
and the frequency and intensity of war convinced all authors that preparations provoked war
more than they deterred them, thus confirming the arms race theory of war rather than the
deterrence theory.”

Attempts to validate Richardson’s model with other real-world data have had mixed
results, in part because accurate data is difficult to collect. Evidence from the most cele-
brated arms race of the 20th century—the nuclear buildups of the United States and the
Soviet Union—indicates that the United States did react to perceptions of escalations of
arms on the part of the Soviets, but insufficient data is available to determine whether the
leaders in Moscow based their changes in expenses on what they thought Washington was
spending. The Richardson model does seem to capture some of the dynamics of the con-
tinuing arms race between India and Pakistan and between Israel and its Arab neighbors,
but fails to match the observations of an arms race between Greece and Turkey. The papers
by Etcheson, Intrilligator and Brito, and by Isard and Anderson listed in the References
provide excellent reviews of arms race models and their relevance.

We have presented Richardson’s model not because we believe in all its assumptions
or in its universal applicability to all arms races, but rather to illustrate model building,
improving, interpreting, and testing procedures. In commenting on the importance of
Richardson’s work, Rashevsky and Trucco [Richardson, 1960b, Preface p. ix] state quite
well the case for studying such a model:

The value of this work is not in the particular formulation of his theory but in the fact that
Richardson shows how the problems of the causes of war can be subject to mathematical
treatment and to rigorous mathematical thought. Even in physics, no matter how good a
mathematical theory of a given set of phenomena is, it is eventually improved almost to a point
beyond recognition. But the basic ideas of a good theory remain through all those changes.
Look at the difference between Planck’s original formulation of discontinuous emission of
radiation and the present-day formulation of quantum mechanics. Yet the latter would not have
been possible without the former. Richardson’s equations will be changed by future investi-
gators, some of his conclusions will be abandoned, but his work will remain forever as the first
study of war on a rigorous basis of mathematical reasoning. Whatever the shortcomings of this
model, it will have to be studied by every investigator who delves into the causes and origins of
war. This work is a starting point for the development of new branch of sociology.
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The practical aspects of any theory seldom come at once. Radio, which was made
possible by Maxwell’s theory, came long after his death. Einstein’s theoretical prediction of
the equivalence of mass and energy remained for 40 years without any applications. When
they came, they came with a vengeance. Richardson may have overemphasized the
immediate applicability of his work. Its long-range usefulness cannot be doubted.

VI. Obtaining an Exact Solution
The Richardson arms race model is, mathematically speaking, a linked system of two first-
order linear differential equations with constant coefficients. It is possible to find explicit
solutions to such a system using the tools of calculus. We outline in this section how to
accomplish this task.

We begin with a simpler first-order differential equation,

x′+ cx= 0 38

where x is a positive-valued function of t, c is a constant, and x′= x′ t =
dx

dtObserve that we can rewrite equation (38) as

x′= −cx or
1
x
x′= −c 39

If we integrate both sides of this equation with respect to t, we obtain

1
x
x′ dt = −c dt

or

ln x= −ct+A

which we can write as

x=Be− ct

for an arbitrary constant B.
Now let’s consider a more complicated second-order differential equation,

x″+ bx′+ cx= 0 40

where b and c are constants. Could this equation also have a solution of the form x=B eut

for some constants B and u?
Let’s try substituting such a function into the differential equation, noting that

x′=Bueut and x″=Bu2eut. We obtain

B u2 eut + bBueut + cBeut = 0 41
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Since the exponential function never has value 0, this last equation is equivalent to

u2 + bu+ c= 0 42

for any nonzero constant B.
Thus, we see that x=A eut is a solution of x″+ bx′+ cx= 0 if and only if u is a root of

the quadratic equation u2 + bu+ c= 0.
What does all this have to do with the Richardson arms race model? Let’s consider a

particular example:

dx dt = y− 6x+ 16

dy dt = 2x− 5y+ 4
43

which has stable point (3, 2).
We first make the change of variable X = x− 3, Y = y− 2.

Then

X′= x′= y− 6x+ 16= Y + 2 − 6 X + 3 + 16=Y − 6X + 2− 18+ 16=Y − 6X.

Similarly, Y ′= 2X − 5Y .
If we can solve the simpler system

X′=Y − 6X

Y ′= 2X − 5Y
44

for X and Y as explicit functions of t, say X = f t and Y = g t , then we can obtain solutions
to the original system as

x=X + 3= f t + 3

and

y= Y + 2= g t + 2.

45

To obtain solutions for the simpler system (Eqs. 44), note that the first equation gives
us Y =X′+ 6X, so we can express the second equation as

Y ′= 2X − 5 X′+ 6X = − 5X′− 28X

Now if we differentiate the first equation of (44) with respect to t, we obtain

X″= Y − 6X ′= Y ′− 6X′

= −5X′− 28X − 6X′= −11X′− 28X

or

X″+ 11X′+ 28X = 0 46

From our work above, we see that that X =A eut is a solution to X″+ 11X′+ 28X = 0 when u
is a root of u2 + 11u+ 28= u+ 4 u+ 7 = 0—that is, u equals 4 or 7.
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Hence, Ae−4t and Be−7t are each solutions of X″+ 11X′+ 28X = 0 for any constants A
and B. It is easy to see, by substitution into the differential equation, that
X = f t =Ae−4t +Be−7t is a solution also for any constants A and B.

It is a standard theorem proved in differential equations or linear algebra courses that
every solution of X″+ 11X′+ 28X = 0 must be of the form X = f t =Ae−4t +Be−7t for
some constants A and B. The interested reader may wish to consult the book by Sanchez or
the one by Brauer, Nohel, and Schneider listed in the References.

Since Y =X′+ 6X, we have

Y = g t = f ′ t + 6f t

= −4Ae−4t − 7Be−7t + 6 Ae−4t +Be−7t

= 2Ae−4t −Be−7t

and hence the solution of our original system

dx dt = y− 6x+ 16

dy dt = 2x− 5y+ 4

is

x t =Ae−4t +Be−7t + 3

y t = 2Ae−4t −Be−7t + 2

where the constants A and B depend on the initial state of the arms race.
Observe that since lim

t→∞
e−4t = 0= lim

t→∞
e−7t, we have

lim
t→∞

x t = 3 and lim
t→∞

y t = 2

so this is a stable arms race.
Let’s turn now to the general Richardson arms race model:

dx dt = ay−mx+ r

dy dt = bx− ny+ s
47

and undertake a similar analysis.
First, we make the change of variable

X = x− x

Y = y− y
48

where x , y are the coordinates of the stable point. Our system of differential equations
takes the form

X′= aY −mX

Y′= bX − nY
49
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The first equation gives us aY =X′+mX so that Y =
x′

a
+

mX

a
and since

Y ′= bX − nY , we have

Y′= bX −
n

a
X′−

mn

a
X =

ab−mn

a
X −

n

a
X′

Differentiating the first equation of (49) yields

X″= aY′−mX′= ab−mn X − nX′−mX′

so

X″+ m+ n X′+ mn− ab X = 0 50

The solutions of this differential equation will come, as we’ve seen above, from the
roots of the quadratic equation:

u2 + m+ n u+ mn− ab = 0 51

which are

u=
− m+ n ± m+ n 2

− 4 mn− ab

2
52

and these can also be expressed as

u=
− m+ n ± m− n 2 + 4ab

2
53

Since a and b are positive, the discriminant m− n 2 + 4ab is also positive. We see
from Eq. (53) that both roots are real. Furthermore, the root

u1 =
− m+ n − m+ n 2

− 4 mn− ab

2

is negative. If, in addition, mn> ab, then m+ n 2
− 4 mn− ab will be less than m+ n 2,

so the second root u2 =
− m+ n + m+ n 2

− 4 mn− ab

2
would also be negative. On

the other hand, if mn< ab, then the root u2 will be positive.
The solution of Eqs. (49) will have the form

X = f t =Aeu1t +Beu2t

for some constants A and B, and the solution for x t in the original arms model will be

x=Aeu1t +Beu2t + x 54

From aY =X′+mX, we have aY =Au1eu1t +Bu2eu2t +mAeu1t +mBeu2t
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Or, collecting terms, aY =A u1 +m eu1t +B u2 +m eu2t. Hence, we will have as the
solution for y t

y=
A u1 +m eu1t +B u2 +m eu2t

a
+ y 55

If both u1 and u2 are negative, then x approaches x and y approaches y as time progresses;
the arms race will be stable. If u2 is positive, then the eventual outcome of the arms race
depends on the sign of B. If B is positive, then we will have a runaway escalating race, while
if B is negative, the race will be toward mutual disarmament.

The sign of B is dependent on the initial values of x and y. The following example
illustrates this dependence.

The corresponding quadratic equation is u2 + 17u− 60= u+ 20 u− 3 = 0, which
yields the solution:

X = f t =Ae− 20t +Be3t

Y = g t =
X′+ 9X

11
=

−20A e−20t + 3B e3t + 9A e−20t + 9B e3t

11
= −Ae−20t +

12
11

Be3t

and so the solutions of the original model are

x=Ae− 20t +B e3t + 13

y=−Ae− 20t +
12
11

B e3t + 12

The ultimate behavior of this arms race depends on the sign of B, which in turn hinges
on the initial values

x0 = x 0 =A+B+ 13 and y0 = y 0 =−A+
12
11

B+ 12

Example

The arms race governed by the equations:

dx dt= −9x+ 11y− 15

dy dt= 12x− 8y− 60

has stable point x , y = 13, 12 so the change of variable X = x− 13, Y = y− 12 converts
the system to

dX dt=−9X + 11Y

dY dt= 12X − 8Y

and this system yields the second-order differential equation:

X″+ 17X′− 60= 0.
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The solution of this pair of equations is

A=
−24+ 12x0 + 11y0

23

B=
−275+ 11 x0 + y0

23
.

Now B is positive when 11 x0 + y0 > 275= 11 25 —that is, x0 + y0 > 25. Hence
this arms race will result in runaway escalation if the sum of the initial expenditures exceeds
25, but will move toward mutual disarmament if that sum is less than 25.

Fig. 2.16 shows the graphs of x t and y t in a case where x0 + y0 = 24.5. Fig. 2.16
displays a graph of the orbit in the x, y -plane.

Finally, we note that matrix algebra (see Appendix II) provides another way to find
the values of u1 and u2. If A is the 2-by-2 matrix

A=
a11 a12

a21 a22

then the determinant of A, denoted det A, is the number defined by

det A= a11 a22 − a12 a21

The eigenvalues of A are the roots of the quadratic equation det B= 0, where B is the
matrix

B=A− uI =
a11 a12
a21 a22

−
u 0

0 u
=

a11 − u a12
a21 a22 − u

FIGURE 2.16 Graphs of
the solutions of the arms
race dx dt=
−9x+ 11y− 15, dy dt=
12x− 8y− 60 for initial
values x0 = 12; y0 = 12.5.
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Hence, if A is the matrix of coefficients of the system

X′= −mX + aY

Y ′= bX − nY

which is to say

A=
−m a

b −n

then the eigenvalues of A are the roots of the quadratic equation

det
−m− u a

b −n− u
= 0

A direct computation shows that the eigenvalues of A are exactly the roots of the quadratic
equation Eq. (51). See Exercise 45.
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FIGURE 2.17 Graphs of the orbit of the arms race
dx dt= − 9x+ 11y− 15, dy dt = 12x− 8y− 60 with initial
values x0 = 12; y0 = 12.5 and of the stable lines L and L′.

EXERC I S E S

I. The Real-World Setting

1. Do historians believe that “mutual fear” drove the
escalation in nuclear armament of the United States
and the Soviet Union during the Cold War?

2. What evidence can you find that a “mutual fear” sit-
uation exists today in the Middle East, in East Africa,
between India and Pakistan, or between some other
pair of belligerent nations?

3. Although Richardson’s primary concern was arms
races between nations, others have observed similar
mutual escalation and de-escalation of weapons pro-
curement within individual nations. Examples would
be a government and internal rebels, rival urban street
gangs, and law enforcement agencies versus organized
crime. Can you suggest other possible situations in

EXERCISES 59



which the assumptions of Richardson’s models would
be applicable?

II. Constructing a Deterministic Model

4. Comment on the importance of the assumption that the
variables in a deterministic model must represent
observable and measurable quantities.

III. A Simple Model for an Arms Race

5. Let a= b= 1 in Eqs. (1) and (2).

(a) Verify that f t =Cet +De−t and g t =Cet −De−t

give a solution to the system of differential equa-
tions, where C and D are arbitrary constants.

(b) Find the appropriate values of C and D if x0 = 3
and y0 = 1.

(c) Sketch the graphs of f and g.

(d) Determine limt→∞ f t and limt→∞ g t .

6. Show that the constant C of Eq. (8) is equal to
y20 − b a x20.

7. What happens in the simple arms race model in each of
the following cases?

(a) x0 = y0 = 0.

(b) x0 = 0 and y0 is positive.

(c) x0 is positive and y0 = 0.

(d) x0 = y0 is positive.

8. Analyze the simple arms race model if a and b are both
negative. What assumptions does this model reflect?
Can these assumptions be defended?

9. Analyze the simple arms race model if a and b have
opposite signs. What assumptions does this model
reflect? Can these assumptions be defended?

10. Is it possible that x t , y t asymptotically approaches
some point x , y in the first quadrant with x and y
both positive as time goes on? Why?

11. This problem develops a closed form solution for the
function x= f t of the simple arms race model.

(a) Show that differentiation of Eq. (1) gives
x″ t = ay′ t = abx t .

(b) By substituting x= emt into the equation of part (a),
show that there are two values for the constant

m—call them m1 and m2—that make the equation
valid.

(c) Let f1 t = em1 t and f2 t = em2t . Show that if
x t =Cf1 t +Df2 t where C and D are any
constants, then x″ t = abx t .

(d) If x= f t and y= g t are solutions satisfying Eqs.
(3) and (4), show that f 0 = x0 and f ′ 0 = ay0
while g 0 = y0 and g′ 0 = bx0.

(e) If the function f satisfies Eqs. (3) and (4) where
f t =Cf1 t +Df2 t , show that C +D= x0 and
Cm1 +Dm2 = ay0.

(f) Solve the equations of (e) for C and D in terms of
x0, y0, m1 and m2.

(g) Show that if f t satisfies Eqs. (3) and (4) and is
given by (e), then

f t =
ab x0 + ay0 e abt + ab x0 − ay0 e− abt

2 ab

(h) Let f t be the function of part (g). Find
limt→∞ f t .

(i) Sketch a graph of f .

12. Find g t explicitly as a function of t so that g satisfies
Eqs. (3) and (4). Carry out the steps analogous to parts
(a) (g) of Exercise 11.

IV. The Richardson Model

13. Show, by substitution into the differential equations,

that x=Aet + 4Be− 6t
−
5
3
, y=Aet − 3Be− 6t

−
3
2

is a

solution of

dx

dt
= 4y− 3x+ 1

dy

dt
= 3x− 2y+ 2

for any choice of constants A and B. What is the
ultimate behavior of an arms race with these equa-
tions? Sketch the graphs of x and y as functions of t. If
the expenditures at t= 0 are x0 and y0, find A and B in
terms of x0 and y0.

14. Discuss the effect of setting r and s both equal to 0 on
the question of stability—that is, investigate the
consequences of the model given by Eqs. (9) and (10).
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15. Discuss the stability question for the Richardson model
in the cases

(a) a= 0

(b) n= 0

Begin by determining the equations of the optimal
lines.

16. Can the lines L and L′ be parallel? What happens to the
arms race in this case?

17. Show that it is in fact possible for L and L′ to be
identical! Find a specific set of values for a, b, m, n, r,
and s for which this happens. What is the long-term
behavior of an arms race if the lines L and L′
coincide?

18. (a) Show that if mn− ab ≠ 0, then the lines L and L′
intersect at the point x , y where

x =
rn+ as

mn− ab
and y =

br +ms

mn− ab

(b) If the grievance terms r and s are positive, show
that the stable point x , y lies in the first or third
quadrant of the plane, depending on the sign of
mn− ab.

19. Prove that dy dt is negative at every point above L′
and positive at every point below L′. Show that this
implies that Red always adjusts its expenditures
toward its optimal line. You will have to include a
careful definition of what above and below mean in
this setting.

20. In the Richardson model, is it possible that arms
expenditure levels will tend to approach some point
x#, y# in the positive first quadrant that is not the
stable point? Explain.

21. Verify the details of the argument that if r and s are
positive and mn− ab is negative, then the arms race
always leads to runaway expenditures regardless of the
location of the initial point.

22. Show that the lines L and L′ can assume the configu-
ration of Fig. 2.9 only when at least one of the
“grievance” terms is negative.

23. Show that if r and s are negative and x , y is in the
third quadrant, then the lines L and L′ split the first
quadrant into three regions and that the arms race tends
to total disarmament for an initial point in any of the
three regions.

24. (a) Carry out the Euler procedure for the arms race
example in Section IV, part D with initial level
(15, 24). What is the outcome in this case?

(b) Verify the result in (a) by using the “point-slope
method.”

25. Consider the differential equation dx dt = 2−
x

t
with

x 1 = 2.

(a) Verify that x= t+
1
t
is a solution. What is x 2 ?

(b) Use the Euler method to solve the differential
equation. With Δt= .1, what value does this assign
to x 2 ?

26. Apply Euler’s method to the example of Section IV,
part D with Δt= .1 and Δt= 1. What conclusions can
you draw about the outcome of the arms race?

27. Does Eq. (26) always determine two straight lines? If
so, find the equations of these lines.

28. The system dx dt= y− 2x− 5, dy dt= 6x− 2y− 12, first
introduced at the beginning of Section IV, part D, has
the solution

x t =Ae −2+ 6 t +Be −2− 6 t + 11

y t = 6Ae −2+ 6 t
− 6Be −2− 6 t + 27

for any constants A and B.

(a) Verify this by substitution into the system of dif-
ferential equations.

(b) Evaluate A and B if at t= 0 we have x0 = y0 = 15.

(c) For the values of A and B obtained in part (b),
determine the limiting behavior of this arms race
using the explicit formulas of (a). Is the answer
consistent with that obtained in Section IV, part D?

29. Determine the outcome of an arms race governed by
the Richardson model

dx dt= 10y− 14x− 12

dy dt = 8x− 4y− 24

if
(a) initial level is (4, 4)

(b) initial level is (13, 6)

30. In his book Arms and Insecurity, Richardson also
constructed a “rivalry” model to reflect the assumption
that a state is threatened not by the total amount of
arms the opponent has, but rather by the discrepancy
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between its opponent’s arms and its own. The revised
model takes the form

dx dt= a y− x −mx+ r where a, b, m, n

dy dt= b x− y − ny+ s are positive constants

Show that if r and s are positive, then such an
arms race is always stable.

What can you conclude about the long-
term behavior of this arms race if no assumptions
are made about the signs of r and s? In particular,
prove that there can never be a runaway arms race for
this model.

31. Analyze the long-term behavior of the discrete
Richardson model

B i+ 1 −B i = 0.5R i − 0.9B i + 0.3

R i+ 1 −R i = 0.7B i − 0.4R i + 0.2

if B 0 = 40 and R 0 = 50 by iteration for a large
number of steps.

32. Analyze the long-term behavior of the discrete
Richardson model

B i+ 1 −B i = 0.1R i − 0.2 B i − 0.5

R i+ 1 −R i = 0.6B i − 0.2 R i − 1.2
if
(a) B 0 = 15 and R 0 = 15

(b) B 0 = 15 and R 0 = 30

33. Suppose a= b and m= n and let T i be the two nation
total of arms expenditures in Year I. Show that
T i+ 1 − T i = a−m T i + q where q= r+ s. Use
mathematical induction to conclude that

T i = 1+ a−m i T 0 +
c

a−m
−

c

a−m

If m> a, show that the arms race is stable and T i

approaches
c

m− a
. Discuss the outcome if m< a.

V. Interpreting and Testing the Richardson Model

34. Richardson’s model predicts that the rate of change of
total expenditures, z= x+ y, is a linear function of total
expenditures. Can you construct a different model of
an arms race that leads to the same conclusion?

VI. Obtaining an Exact Solution of the
Richardson Model

35. Show that the change of variables X = x− x , Y = y− y
has the geometric effect of replacing the standard x, y

rectangular coordinate system with a new X, Y rect-
angular coordinate system where the stable point of the
original pair of differential equations now sits at the
origin of the X, Y plane.

36. Show that if b2 = 4c, then the quadratic equation
u2 + bu+ c= 0 has a single solution, u= −b 2. In such
a case show that in addition to the function x= eut , the
differential equation x″+ bx′+ cx= 0 also has solution
x= t eut .

37. Show that if b2 < 4c, then the quadratic equation
u2 + bu+ c= 0 has complex roots, and in this case the

functions e − b
2 t cos 4c− b2

2 t and e − b
2 t cos 4c− b2

2 t

are each solutions of x″+ bx′+ cx= 0.

38. Find and sketch the graphs of the exact solutions of
each of the following arms race models:

(a)
dx

dt
= − 5x+ 2y+ 7,

dy

dt
= 2x− 3y+ 6; x 0 = 3,

y 0 = 5

(b)
dx

dt
= − 1x+ 4y+ 7,

dy

dt
= 3x− 2y+ 1; x 0 = 3,

y 0 = 5

(c)
dx

dt
= − 4x+

7
4
y− 7,

dy

dt
= 1x− 1y− 5; x 0 = 3,

y 0 = 5

39. Does the long-term qualitative behavior of any of the
arms race models in (a) (c) change if you alter the
initial values x 0 and/or y 0 ?

40. Find and sketch the graphs of the exact solutions of the
arms race

dx

dt
= −6x+ 10y−28,

dy

dt
= 9x− 5y− 58

in the following cases:

(a) x 0 = 12, y 0 = 16

(b) x 0 = 12, y 0 = 4

(c) x 0 = 12, y 0 = 10

41. Show that if the stable lines L and L′ are parallel, then
the values of u1 and u2 are m+ n and 0. What do the
exact solutions of the arms race model look like in this
case? What is the long-term behavior?

42. Show that the arms race of Exercise 40 ends in mutual
disarmament if 9x 0 + 10y 0 < 28 and is a runaway
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arms race if 9x 0 + 10y 0 > 28. What happens in the
long term if 9x 0 + 10y 0 = 28?

43. A first-order differential equation dy dx=F x, y is
called separable if F can be written as a product of a
function of x and a function of y—that is,
dy dx= f x g y . A separable differential equation can
be solved by rewriting it in integral form as

1
g y

dy= f x dx and carrying out the indicated

integration. Solve the differential equation dy dx=
x2

y

with initial condition y 3 = 4.

44. This problem examines a different technique for
finding an implicit equation for the orbit of a
Richardson arms race. Show that the change of vari-
able Y =VX produces dY dX =V +X dV dX and hence

transforms the differential equation
dY

dX
=

bX − nY

−mX + aY
into a separable differential equation in X and V .
Solving that differential equation and replacing V with
Y X gives an equation for the orbit in the X,Y plane.

Carry out this process for the Richardson arms race
model of Eqs. (9) and (10).

45. For those with a linear algebra background: for the
generic arms race, show that the roots of the associated
quadratic equation are the eigenvalues of the coeffi-

cient matrix
−m a
b − n

.

46. (Linear Algebra): If u ≠ v, show that the functions eut

and evt form a linearly independent set.

47. (Linear Algebra): If u= v, show that the functions eut

and teut form a linearly independent set.

48. Show that in the symmetric arms race (a= b and
m= n), the roots of the associated quadratic are m± a.

49. Find explicit solutions to the following Richardson
models:

(a) a= 4 b= 3 m= 3 n= 2 r= 1 s= 2

(b) a= 1 b= 6 m= 2 n= 2 r= − 5 s= − 12

(c) a= 6 b= 4 m= 5 n= 5 r= 2 s= 3

SUGGES T ED PRO J ECTS

1. One can argue that in the real world, a runaway arms race
is impossible since there is an absolute limit to the amount
any country can spend on arms: the gross national
productminus some amount for survival. Howmight this
idea be incorporated into the Richardson model? One
approach would be to let xM and yM be the maximum
amounts that Blue and Red, respectively, could spend on
arms; these terms are sometimes referred to as the car-
rying capacities. We could then form the model

dx

dt
= 1−

x

xM
ay−mx+ r

dy

dt
= 1−

y

yM
bx− ny+ s

56

Analyze such a model using the techniques developed
in this chapter.

2. Extend the Richardson model to the situation of three
nations. Derive a set of differential equations if the
three are mutually fearful so that each one is spurred to
arm by the expenditures of the other two; examine the
stability question for this example. Also derive equa-
tions if two of the nations are close allies who are not

threatened by the arms buildup of each other but are
threatened by the expenditures of the third; discuss the
possibilities for stability in this case.

3. The basic assumptions of our model require that a, b,
m, and n be positive numbers. If negative values are
assigned to these, the model would go in reverse: the
armaments of the rival would act as a brake and one’s
own armaments as a spur. Investigate the stability of
such an arms race. Can such a model be defended on
the basis of real-world observations?

4. Suppose the underlying differential equations have the
form

dx

dt
= ay2 −mx+ r

dy

dt
= bx2 − ny+ s

where a, b, m, and n are positive. Sketch the stability
curves dx dt= 0 and dy dt= 0. How many stable points
are there? Discuss the outcomes of such an arms race
for various intersections of the stability curves.

5. Anation (Blue, for example)maynot be spurred to arm so
much by the absolute level of its enemy’s expenditures y,
but rather by how much the other side is exceeding
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its stable level, y . Show that one way to model

this assumption would have
dx

dt
= a y− y −mx+ r.

Suppose Red has the same motivation. What are the
possibilities for long-term behavior of such a model?

6. Duringhis researchwork inBaliwithMargaretMead, the
anthropologist Gregory Bateson became interested in the
factors that keep cultures together or drive them apart,
Bateson described two basic forms of relationship
between groups in a culture, “symmetrical” and “com-
plementary.” In a symmetrical relation the same behavior
is exchanged: more of it in Red is answered bymore of it
in Blue. In complementary relations, opposite and
mutually dependent behaviors are exchanged. Bateson
was influenced by Richardson’s arms race model.
Investigate Bateson’s theory and explore how the
Richardsonmodel can be adapted to formulate the theory
in mathematical terms. This provides another good
example of how essentially similar mathematical models
can be used to investigate real-world problems that at first
sight appear to have little to do with each other.

7. Derive explicit solutions for the discrete version of the
Richardson model.

B i+ 1 −B i = aR i −mB i + r

R i+ 1 −R i = b B i − n R i + s

A key step will be to show that there are solu-
tions to the modified system

B i+ 1 −B i = aR i −mB i

R i+ 1 −R i = bB i − nR i

which are of the form

B k =A λk ,R k =A λk

Where λ is a solution of the quadratic
λ2 + m+ n λ+ mn− ab = 0.

8. During World War I, F. W. Lanchester developed
some mathematical models of combat. In one of these
models, Lanchester assumes that there are two combat
forces in battle against each other. He assumes that
these are “conventional” forces that operate in the
open, comparatively speaking, and that every member
of a force is within the “kill” range of the enemy. He
also assumes that as soon as the conventional force
suffers a loss, fire is concentrated on the remaining
combatants. Finally, he assumes that each side is
reinforced at a constant rate.

Show that Lanchester’s assumptions are incor-
porated in the model

dx dt= −ay+m

dy dt= −bx+ n

where a, b, m, and n are positive constants, t represents
time, and x and y are the sizes of the two opposing
forces.

Solve the system of equations explicitly in the
case in which there are no reinforcements—that is,
m= n= 0.

What can you say about the long-term behavior
of this system?

For an application of this model to the Battle of
Iwo Jima in World War II, see Martin Braun, Differ-
ential Equations and Their Applications, 4th ed., New
York: Springer, 1993.

How might you modify this model if one of the
forces is a guerrilla force? See S. J. Deitchman, “A
Lanchester Model of Guerrilla Warfare,” Operations
Research 10 (1962): 818 827, 1962.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
3

Ecological Models: Single
Species

The fact that ecology is essentially a mathematical subject is becoming

ever more widely accepted. Ecologists everywhere are attempting to

formulate and solve their problems by mathematical reasoning.

—Evelyn C. Pielou

I. Introduction
This chapter initiates the study of simple deterministic models for population growth.
As Evelyn Pielou notes in her book An Introduction to Mathematical Ecology, “The
investigation of the growth and decline of population is, historically, the oldest branch
of mathematical ecology.” Chapter 3 examines models for the changes in single-species
population. The mathematical tools employed are first-order differential equations and
first-order difference equations. In Chapter 4, we consider some models for population
growth that present important features of interaction between two species occupying the
same territory. In particular, we study the oscillation of population sizes of two competing
species and the dynamics of predator-prey populations. Here the mathematical tool is
an autonomous system of first-order differential equations. Chapter 5 presents some
models on the growth of a population of cells making up a tumor. The mathematical
analysis is self-contained.

II. The Pure Birth Process
Imagine a population made up entirely of identical organisms that reproduce at a rate that is
the same for every individual and that does not vary with time. If we assume that each
individual lives forever, that the organisms do not interfere with one another, and that there
are sufficient space and resources to sustain all the individuals, then we are dealing with
what ecologists term a “pure birth process.” This process has been used to study yeast cells
growing by fission, the propagation of new ideas, and the increase in the number of sci-
entists over time, as well as many other types of population growth. The mathematical
model for this process is a first-order differential equation,

dP

dt
= bP or P′ t = bP t 1
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where P=P t is the population at time t and b is the positive constant birth rate for each
individual. We may also write this differential equation as

P′ t = bP t 2

The opposite of the pure birth process—the pure death process—is described by
essentially the same mathematical model. In the pure death process, we assume that no births
occur and that each individual has the same positive likelihood d of death at every moment, a
probability that does not change with time or with the age of the individual. The constant d is
called the death rate. The differential equation describing these assumptions has the form

dP

dt
= − dP or P′ t = − dP t 3

The original model can also be employed to describe a population in which both
births and deaths occur. Assume again that the birth rate b and the death rate d are positive
constants independent of time, size of population, and age of individual. The model is the
differential equation

dP

dt
= b− d P or P′ t = b− d P t 4

Setting a= b− d, we see that the same equation,

dP

dt
= aP or P′ t = aP t 5

describes all three situations.
Analysis of the model What are the mathematical consequences of this model, and

what are the corresponding interpretations? First, “separate the variables” P and t to obtain

1
P
dP= a dt 6

(More carefully, write Eq. (5) as P t
P t = a and integrate both sides with respect to t. Students

who have not worked with differential equations before may wish to consult Appendix V.)
Carry out the indicated integration to arrive at the relation

log P= at+C 7

where C is an arbitrary constant and “log” denotes the natural logarithm; we may write log
P rather than log P because we know that population will always be nonnegative. If the
population is known at some particular instant, then the value of C is easily computed. If,
for example, P=P0 at time t = 0, then log P0 = aO+C=C. Thus,

log P= at+ log P0 8
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Exponentiating each side of this equation yields an explicit relation between population P
and time t:

P=P0e
at 9

The behavior of this function depends on the sign of a. If a is positive, then P is a
steadily increasing, unbounded function of t. If a is zero, then P is the constant function
whose value is P0 for all t. If a is negative, then P is a steadily decreasing function of t that
approaches zero as t grows large. See Fig. 3.1 for graphs of these three possibilities.

Exponential growth The constant a would be positive in the case of a pure birth
process or if the birth rate b exceeded the death rate d. The model then predicts that the
population will steadily increase and become indefinitely large. Ecologists would say that
the population is undergoing exponential growth. Since the model asserts that there is no
limit to the number of individuals in this population, it is clear that the model is not a
completely realistic picture.

Before this model is scrapped, however, let us note that it may be a realistic one for
the growth of some populations over relatively short time intervals. As an example of this,
the population of the United States during the period from 1790 to 1860 grew at just such an
exponential pace. See Fig. 3.2. To get an idea of what the growth rate a was during this

P(t) Population in millions

P(t) = 3.929e .029643(1-1790)

Census Data

200
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0
1790 1810 1830 1850 1870 1890 1910

1800 1820 1840 1860 1880 1900

t

FIGURE 3.2 A comparison of population growth
in the United States from 1790 to 1920 with the
exponential curve P t = 3.929e.029643 1790 t .
The “fit” is extremely close for the period
1790 1860.

P(t)

a > 0

a = 0

a < 0

P0

0 t
FIGURE 3.1 The graph P=P0eat. The shape of the curve depends on
the sign of a.
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period, let t= 0 correspond to 1790 and P0 = 3.929 million, the population counted in the
1790 census. If the population growth actually followed an exponential curve, then the
number of people in the United States in the year 1830 t= 40 , for example, would satisfy

P40 =P0e
40a 10

This equation may be solved for a by taking logarithms:

log P40 = log P0 + 40a 11

or

a=
log P40 − log P0

40
12

The census data give P40 = 12.8607 million. The value of a would then be
a= 0.029643 and the equation for U.S. population growth would be

P t = 3.929e.029643 t− 1790 13

By the choice of constants, this model exactly predicts the population levels in the
years 1790 and 1830. To test how well the model works as a predictor in other years,
examine Table 3.1. Observe from this table that the predicted values of population are very
close to the observed ones for the years 1790 to 1860. The largest error is less than 2 percent
of the population. Since the census data, especially in the early years of the republic, was
itself subject to many errors, this is as good a “fit” as we might reasonably expect.

As a long-term model of U.S. population growth, the model is not a very good one, as
the data from 1870 through 2010 displayed in Table 3.1 show. Important factors such as
wars, immigration, variations in the birth and death rates, and changes in the age structure
of the population are missing from the model. Nevertheless, simple exponential growth is
an accurate way of portraying the change in population in the United States during the early
and middle nineteenth century. We may also conclude that if the pattern of growth
established during that period continued until the present day, the population of the United
States today would be well over 2.5 billion!

Scientists have obtained similar conclusions about exponential growth models for
other living organisms. The simple model dP dt = aP is often very accurate when the
environmental conditions are close to ideal: no natural enemies of the species are present,
resources are unlimited, and there is sufficient space for the organisms to develop without
interfering with each other.

It’s not unusual for an exponential growth model to predict fairly accurately the
population of a large nation over a several decade period. Looking again at U.S. census
figures, if we take the years 1940 and 1950 as our initial data values, then the value of a for
the exponential model is .013539. Table 3.2 displays a comparison between the predicted
and observed population figures for the half-century after 1950.

Replacing the derivative with the difference in successive time periods transforms the
exponential growth model dP dt= aP into the difference equation,
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Pi 1 −Pi aPi 14

which we may rewrite as

Pi 1 1 a Pi

whose solution we found in Chapter 1 to be

Pk = 1+ a kP0 16

Let’s use the discrete model to investigate how small changes in the initial population
affect long-term predictions for the population. Small errors or “perturbations” in a constant

Table 3.1 A comparison between actual population based on census data in the United States
and that predicted by exponential growth with rate 0.029643. The “error” term is found by
subtracting the actual population from the predicted one. The “relative error” (not shown) is the
error divided by the actual population and the “percent error” is the relative error multiplied
by 100%.

Year
Predicted Population

(in millions)
Observed Population

(in millions) Error (in millions) Percent Error

1790 3.92921 3.92921 0.00 0.000

1800 5.28498 5.30848 −0.02 −0.443

1810 7.10861 7.23988 −0.13 −1.814

1820 9.56146 9.63845 −0.08 −0.800

1830 12.8607 12.8607 0.00 −0.002

1840 17.2983 17.0634 0.23 1.375

1850 23.2671 23.1919 0.07 0.322

1860 31.2956 31.4433 −0.15 −0.473

1870 42.0940 38.5584 3.53 9.167

1880 56.6191 50.1892 6.43 12.807

1890 76.1556 62.9798 13.17 20.916

1900 102.433 76.2122 26.22 34.400

1910 137.779 92.2285 45.54 49.381

1920 185.319 106.022 79.29 74.784

1930 249.266 123.203 126.05 102.309

1940 335.274 132.165 203.09 153.663

1950 450.959 151.326 299.61 197.988

1960 606.568 179.323 427.20 238.231

1970 815.865 203.302 612.51 301.279

1980 1097.39 226.542 870.76 384.370

1990 1476.04 248.710 1227.21 493.431

2000 1985.35 281.422 1703.76 605.413

2010 2670.03 308.746 2361.43 764.844
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appearing in a mathematical model are inevitable. The constants represent real-world
quantities whose measurement is necessarily inexact. Scientists are interested in the
“robustness” of a model: are its long-term qualitative predictions essentially the same over a
reasonable range of values for the constant parameters?

For the exponential model we have been discussing, a change in initial population
from P0 to Q0 results in a prediction that the population Qk after k time periods would be
Qk = 1+ a kQ0. The difference between the two estimates Pk −Qk = 1+ a k P0 −Q0

will grow large as k increases (assuming k is positive), but the relative difference,

Pk −Qk

Pk
=

1+ a k P0 −Q0

1+ a kP0

=
P0 −Q0

P0

remains fixed. The graphs of Pk and Qk will be qualitatively the same. Fig. 3.3 illustrates
this idea where the gap between P0 and Q0 is even relatively large. The graphs are
essentially parallel.

Table 3.2

Year
Predicted Population

(in millions)
Observed Population

(in millions) Error Percent Error

1940 132.165 132.165 0.000 0.000

1950 151.326 151.326 0.000 0.000

1960 173.265 179.323 −6.058 −3.378

1970 198.385 203.302 −4.917 −2.419

1980 227.146 226.542 0.604 0.267

1990 260.077 248.710 11.367 4.570

2000 297.782 281.422 16.360 5.813

2010 340.954 308.746 32.208 10.432

FIGURE 3.3 Dependence
of the discrete exponen-
tial model on initial pop-
ulation. Here a= .03,
P0 = 50 and Q0 = 55. 0

0.00

125.00

250.00

Qk = (1+α)k Q0

Pk = (1+α)k P0

25 50

k

70 CHAPTER 3 Ecological Models: Single Species



In Fig. 3.4 we plot the points Pk,Qk for the discrete exponential model where
a= .03, P0 = 50, and Q0 = 55. We see that the points do fall along the straight line Q= Q0

P0
P.

III. Exponential Decay
If the sign of a is negative, then the function P t =P0eat remains positive for all values of t
but steadily decreases toward zero as t increases. If the population under consideration
consists of all individuals belonging to a particular species, then the model predicts that the
species will become extinct as all the individuals will eventually die off. As noted above,
the constant awould be negative if the death rate exceeds the birth rate or if the assumptions
of the pure death process are valid.

Unfortunately, there are conditions in our environment today that make a pure death
process quite likely for the future growth of some species. The extensive use of pesticides,
particularly DDT, in the mid-twentieth century had the unexpected consequence of dras-
tically reducing the live birth rate of certain species of birds. One of the best-documented
studies concerns the plight of the peregrine falcon, a bird of prey that once bred on cliff
sides across the United States. The extensive use of DDT began in 1946, and the first signs
of decrease in the peregrine population were noted within a year. In the 23 breeding seasons
between 1947 and 1970—during which time DDT and similar persistent pesticides were
abundantly used—the peregrine had become all but extinct as a breeding bird in the con-
tinental United States. Research showed that DDT absorbed by the birds inhibited an
enzyme that facilitates the transporting of calcium from the blood to the site of eggshell
production in the oviduct. As a result, the falcons lay thinner eggs, which crack under their
weight when they brood them. Since the number of live births dropped dramatically while
the death rate among adults remained essentially unchanged, it is not surprising that in some
areas of the country less than 10 percent of the pre-pesticide breeding population remains.
Eventually, the use of DDT was diminished and banned for some uses in 1972; residual
DDT in the environment today, however, continues to contaminate peregrine falcons.
Fortunately, peregrine falcons have steadily increased in number and consequently are no
longer on the Endangered Species List.

Q 1 : Q v . P
250.00

150.00

50.00
0.00 150.00 300.00

P FIGURE 3.4 The points Pk ,Qk for the discrete exponential models
with a= .03, P0 = 50 and Q0 = 55.
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The decay of radioactive material is another example of pure exponential decay, since
the number of atoms that decompose in a given unit of time is proportional to the total
number present. The rate of decay of a radioactive element is often expressed in terms of its
half-life, the time required for a quantity of the element to decrease by a factor of one-half.
In terms of the function P t =P0eat, this number is given by − log2 a, which is
independent of P0.

In the late 1940s, Willard F. Libby discovered radiocarbon, a radioactive isotope of
carbon with a half-life of approximately 5,600 years. The ratio of radioactive to nonra-
dioactive carbon present in all living organisms has remained essentially constant over
many centuries. When the organism dies, it stops absorbing new radiocarbon, so that the
ratio decreases exponentially over the years. If an old bit of charcoal has half the radio-
activity of a living tree, then it came from a tree that died about 5,600 years ago.

Libby and his coworkers developed the technique of radiocarbon dating to determine
the ages of many objects dating back as much as 50,000 years. This technique has been of
great significance to archeologists and anthropologists, whose use of radiocarbon dating
and other observations indicate, for example, that humans arrived in the Western Hemi-
sphere only about 11,500 years ago.

The common isotope of uranium has a half-life of 4.5 billion years, while rubidium
decays into strontium with a half-life of 50 billion years. Using a dating technique based on
the exponential decay of these radioactive elements, geologists have determined the ages of
rocks found on the earth and on the surface of the moon. From these, they are obtaining a
better picture of the development of our planet.

IV. Logistic Population Growth
A. The Logistic Model

The basic assumption of the pure exponential model is that the rate of increase of population
is proportional to the size of the population—that is, the rate is a constant, independent of
the size of the population. The model assumes that sufficient resources are available to
sustain any level of population so that there is no interference between individuals in the
population. These assumptions are not very realistic. Every species of organism inhabits
some restricted environment, with a finite amount of space and a limited supply of
resources. The environment has a carrying capacity, an upper limit on the number of
individual organisms that can exist on the available resources. As the size of the population
gets closer to this carrying capacity, its rate of growth must slow down. Any realistic model
of population dynamics should reflect this feature. This section examines a mathematical
model that attempts to do this.

Briefly stated, the argument in the paragraph above is that the rate of growth is not
constant, but rather is dependent on the size of the population. The mathematical model
should then assert that the rate of population is in fact a function of the population;
mathematically, the statement looks like

dP

dt
= f P 17

where f is some function of population size P. How should f be selected? If the population
ever reaches a zero level, then of course it will always remain at zero. Hence, the function f
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should have the property that f 0 = 0. Suppose we write the function f as f P =Pg P
where g is also a function ofP. Then f 0 = 0g 0 = 0 regardless of the form of the function g.
Note that we can think of g as the per capita growth rate, g P =P P. How then should g be
selected?

The idea that rate of growth will slow down as population gets larger and larger can
be captured by the condition that g′ P be negative. The simplest model is then obtained by
making the function g as simple as possible—namely, assume that g is a linear function,

g P = a− bP 18

where a and b are positive constants. Then the model assumes the form

dP

dt
=P a− bP 19

This assertion is called the logistic equation or the Verhulst-Pearl equation.
Note that this derivation of the logistic model does not make explicit use of the

carrying capacity of the environment. There are several other ways of arriving at this model.
We will outline one path: suppose that aP is the rate at which the population would increase
if the environment possessed unlimited space and resources. Then we might assume that the
actual growth rate is the potential rate multiplied by a factor measuring the proportion of the
maximum attainable size of the population that is still unrealized. If M is the maximum
possible population size in the environment, then M −P is the amount of growth still
available, and M −P M would be the fraction of maximum attainable size still possible.
The assumption is then that the actual rate of growth is aP M −P M. The differential
equation expressing the model would be

dP

dt
=P

M −P

M
= aP−

a

M
P2 20

which is easily recognized as the Verhulst-Pearl equation.
Before we begin a careful mathematical analysis of the logistic equation, it is useful

to examine its direction fields. Fig. 3.5 shows the direction fields for the particular
logistic equation dP

dt =P a− bP , where a= .05 and b= .00005. Note that a b= 1000. We
see that the population P appears to approach 1,000 in the long term, whether we begin
with P above or below 1,000. The initial change in P is large, as the arrows near t = 0 are
nearly vertical. As time progresses, the tangent lines begin to flatten out and become
nearly horizontal.

B. Mathematical Analysis

The logistic equation may be solved by a nice application of the technique of partial fraction
decomposition. The differential equation

dP

dt
=P a− bP
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may be written in the equivalent form

1
P a− bP

dP= 1dt 21

after separating variables and integrating.
Now the fraction 1

P a− bP may be decomposed as

1
P a− bP

=
1
a

P
+

b
a

a− bP
22

so that we have the equivalent integration problem

1
P
+

b

a− bP
dP= a dt 23

Simple integration then yields

log P− log a− bP = at+C 24

where C is a constant of integration. We may rewrite this last equation as

log
P

a− bP
= at+C 25

Exponentiation of each side gives

P

a− bP
=Keat 26

FIGURE 3.5 Direction
field for a logistic
equation.
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where K is the constant eC. It is useful to rewrite this equation as

P=
aKeat

1+ bKeat
=

a

b+ 1+K e− at
=

a b

1+ 1 bK e− at
=

k

1+ ed− at
27

where d = log bK and k = a b. Since a is positive, e at tends to 0 as t increases. Thus,
limt→∞ P t = k = a b. The logistic model then predicts that population will increase and
asymptotically approach the carrying capacity a b. Note that at the capacity level of
P= a b, the logistic equation gives dP dt= 0. See Fig. 3.6 for a graph of the population as a
function of time. This curve is called the logistic curve, and resembles an elongated letter S.

Another useful way to examine logistic growth comes if we make the change of
variable Q= b

a P in the differential equation dP
dt =P a− b P. We can interpret Q t as the

fraction of the carrying capacity the population has reached at time t, since Q= 0 when
P= 0 and Q= 1 when P= a

b, the carrying capacity. Then we have

dQ

dt
=

b

a

dP

dt
=

b

a
P a− bP =Q a− aQ = aQ 1−Q .

or, more simply,

dQ

dt
= aQ 1−Q 28

It is straightforward to show that Q t = 1
1+Ce− at where the constant C is equal to 1

Q 0 − 1.

C. Testing the Logistic Model

Laboratory experiments with a variety of species have shown that the growth of many
populations, under appropriate conditions, follows the logistic curve. As a second model of
growth of the U.S. population, consider the logistic equation. We shall show that this model
gives an accurate portrait of the changes in the nation’s population for much of its history.

In each of its forms, the logistic model of population as an explicit function of time
contains three constants. To test the equation as a model of population growth in the United
States, we must assign numerical values to these constants. It is possible to do this if the
populations P0, P1, and P2 are known at the three times t0, t1, and t2. To this end, rewrite the

0
P0

α/b

P

t

FIGURE 3.6 The logistic curve P= k 1+ e d at .
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equation of the logistic curve as

d− at= log
k −P

P
29

where a, d, and k are the constants to be determined. With the equation in this form,
we have

d at0 = log
k −P0

P0
=A 30

d at1 = log
k −P1

P1
=B 31

and

d at2 = log
k −P2

P2
=C 32

These equations yield the relationships

B A a t0 − t1 C −A a t0 − t2

a
B−A

t0 − t1
and d at0 A. 33

From the first pair of equations, we have

t0 − t2 B−A = t0 − t1 C−A 34

For simplicity, suppose we choose equally spaced dates so that t2 t1 = t1 t0. Then
2 B A =C A or 2B=A+C. This equation gives

log
k −P1

P1

2

= log
k −P0

P0
+ log

k−P2

P2
35

or

k −P1

P1

2

=
k −P0

P0

k −P2

P2
36

SinceP0,P1, andP2 are known,wehave a quadratic equation in k. This has two roots, k = 0 and

k =
P1 2P0P2 −P0P1 −P1P2

P0P2 −P2
1

37
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The root k= 0 corresponds to the fact that if the population ever reaches zero, it will
remain there forever. The nonzero root for k gives the carrying capacity. Once k is com-
puted from the known values P0, P1, andP2, then A, B, andC are easily calculated. From
these the values of a and d can then be found. As an example, suppose the population
figures of the censuses in 1790, 1850, and 1910 are used to determine the constants. The
value of k turns out to be 198.947 and the predicted equation for population growth in
the United States looks like

P t =
198.947

1+ e 59.9722− 0.0313227t millions 38

Comparisons between the predictions of this model and the actual population
figures are given in Fig. 3.7 and in Table 3.3. The table shows that the model gives an
excellent portrayal of the changes in U.S. population from 1790 through 1950, the largest
deviation being less than 4%. The model fails, however, after the middle of the 20th
century. It does not predict the increase in the birth rate that led to the unexpected and
unprecedented increase of 30 million Americans between 1950 and 1960. The model
clearly has failed to include some factors that critically affected population changes in the
last 60 years.

The dates chosen above that were used to determine the constants in the logistic
equation were the ones selected by Raymond Pearl and Lowell J. Reed in a 1924 study of
the U.S. population growth curve. Impressed by the closeness of the fit of the logistic
equation to the census data from 1790 through 1920 (the only numbers available to them),
they wrote [Pearl and Reed, 1920], “so far as we may rely upon present numerical values,
the United States has already passed its period of most rapid population growth, unless there
comes into play some factor not now known and which has never operated during the past
history of the country to make the rate of growth more rapid. This latter contingency is
improbable.”
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FIGURE 3.7 A comparison of population growth in the United
States from 1790 to 2000 and the logistic curve P t = 197.274
1+ e 59.97 .031t . As in Fig. 3.3, the heavy dots represent
actual population levels.
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Pearl and Reed’s estimate of an eventual population in the nation of slightly under
200 million was wrong, but not because they made a poor choice of sample years. Almost
any triple of years selected for t0, t1, and t2 that roughly coincide with early, middle, and
contemporary dates for them would yield a particular form of the logistic curve with a
similar property: the jump in population from 1950 to 1960 just does not parallel the climb
of the logistic curve.

Suppose we focus on population growth in the United States during the 20th century
only, ignoring what happened before 1900. If we fit a logistic model using the census data
for the years 1930, 1960, and 1990, then the logistic curve is described by the equation

P t =
640.26

1+ e 32.9735− 0.016342t 39

Table 3.3 A comparison between actual population in the United States and that predicted by a
logistic equation. The “error” term is found by subtracting the actual population from the
predicted one. The “percent error” is the error divided by the actual population.

Year
Predicted Population

(in millions)
Observed Population

(in millions) Error Percent Error

1790 3.929 3.929 0.000 0.01

1800 5.336 5.308 0.028 0.53

1810 7.228 7.240 −0.012 −0.17

1820 9.756 9.638 0.117 1.22

1830 13.108 12.861 0.247 1.92

1840 17.506 17.063 0.443 2.59

1850 23.194 23.192 0.002 0.01

1860 30.420 31.443 −1.023 −3.25

1870 39.393 38.558 0.834 2.16

1880 50.228 50.189 0.038 0.08

1890 62.864 62.980 −0.116 −0.18

1900 77.032 76.212 0.820 1.08

1910 92.235 92.228 0.006 0.01

1920 107.780 106.022 1.758 1.66

1930 122.927 123.203 −0.276 −0.22

1940 137.005 142.165 −5.160 −3.63

1950 149.526 161.326 −11.800 −7.31

1960 160.229 189.323 −29.094 −15.37

1970 169.078 213.302 −44.224 −20.73

1980 176.190 236.542 −60.352 −25.51

1990 181.783 258.710 −76.927 −29.73

2000 186.100 291.422 −105.322 −36.14
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Table 3.4 and Fig. 3.8 show how closely this equation predicted the census figures for the
years 1910 2010. Observe that the largest error is about 6%. Note also that the equation
predicts that the U.S. population will approach a limiting value of 640.26 million as time
advances. It will be interesting to see how accurate this prediction turns out to be. Inci-
dentally, this model predicts a 2020 population of 325.959 million; the current U.S. Census
Bureau projects a figure of 322.742 million.

A more accurate model of the growth of U.S. population can be obtained by refining
the model in several different ways. The function g P —chosen to be linear in the logistic
model—might be taken to be a polynomial of higher degree so that higher-order effects of
the size of population on the growth rate could be included. Additional factors might be
attached to the differential equation to incorporate the concept that the rate of change of
population is not only a function of population but of time as well. We might also try to

Table 3.4

Year Predicted Population Observed Population Error Percent Error

1910 93.892 92.229 1.663 1.80

1920 107.755 106.022 1.733 1.63

1930 123.203 123.203 0.000 0.00

1940 140.283 132.165 8.118 6.14

1950 159.002 151.326 7.676 5.07

1960 179.323 179.323 0.000 0.00

1970 201.156 203.302 −2.146 −1.06

1980 224.353 226.542 −2.189 −0.97

1990 248.710 248.710 0.000 0.00

2000 273.969 281.422 −7.453 −2.65
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FIGURE 3.8 A comparison of population growth in the United
States during the 20th century and the logistic curve. As in
Fig. 3.6, the heavy dots represent observed population levels.
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include such factors as immigration, the medical and public health discoveries that have
increased life expectancy by 15 years in the last half-century, changes in the age structure of
the population, and the effects of depressions and periods of economic prosperity. The
population might be divided into ethnically or religiously determined groups that display
different birth rate patterns. Some of these approaches are outlined in the exercises.

Demographers are using increasingly complex and sophisticated mathematical
models of both deterministic and probabilistic character to study changes in population
growth in the past and to make projections about the future. An elementary probabilistic
model of population growth is presented in Chapter 10.

V. The Discrete Model of Logistic Growth and Chaos
At the conclusion of Part B of Section IV, we examined the continuous model of logistic
growth using Q as the variable that is the fraction of the carrying capacity:

dQ

dt
= aQ 1−Q 28

A discrete version of this model would have the population in time period i satisfy the
difference equation

Qi 1 −Qi aQi 1−Qi 40

The behavior of the discrete logistic growth model turns out, surprisingly, to be quite
dependent on the value of a.

For example, with a= 1.7 and Q0 = .3, Fig. 3.9 shows Qk rapidly approaching 1, as
we would expect.

If a is increased to 2.2, however, then a very different behavior is observed. The
values of Qk appear to oscillate between two different values. For Q0 = 0.3, these values are
about 1.16 and 0.75. Fig. 3.10 displays the results.

FIGURE 3.9 Behavior of
the discrete logistic model
with a= 1.7.
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Fig 3.11 shows the data if we connect the consecutive dots.
Table 3.5 displays some of the numerical values.
With a increased to 2.5, as k increases, the subsequent values of Qk appear to rotate

through values close to 1.22, 0.54, 1.16, and 0.70. Such a “4 cycle” is seen in Figs. 3.12 and
3.13; the numerical values are displayed in Table 3.6.

As a increases still more to a level of a= 2.7, even more bizarre patterns are seen in
the values of Qk . With Q0 = 0.5, the first 200 values of Qk are displayed in Fig. 3.14. They
appear to be scattered almost at random.

If we connect points for consecutive values of k, we see that there may be a pattern
underlying the distribution, although it is a highly irregular one. See Fig. 3.15.
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k FIGURE 3.10 Behavior of the discrete logistic model with

a= 2.2.
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FIGURE 3.11 Connecting the dots for the discrete
logistic models with a= 2.2.
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Table 3.7 displays the first 100 iterations of the discrete logistic model with Q0 = 0.3
and a= 2.7. It is difficult to discern whether there is a cycle of values underlying the
distribution.

We see then a major qualitative difference between the discrete exponential growth
model Qi 1 −Qi aQi and the discrete logistic growth model Qi 1 −Qi aQi 1−Qi .
The former model is called a linear dynamic system, because the difference between
consecutive terms is a linear function of the ith term. In the logistic model, the difference is
a quadratic function of the ith term. The logistic model is an example of a nonlinear
dynamic system.

The discrete logistic model also displays an important condition known as sensitive
dependence on initial conditions. In our examination of the linear exponential growth

Table 3.5

k Qk k Qk k Qk

0 0.30 10 1.16 20 1.16

1 0.76 11 0.75 21 0.75

2 1.16 12 1.16 22 1.16

3 0.75 13 0.75 23 0.75

4 1.16 14 1.16 24 1.16

5 0.75 15 0.75 25 0.75

6 1.16 16 1.16 26 1.16

7 0.75 17 0.75 27 0.75

8 1.16 18 1.16 28 1.16

9 0.75 19 0.75 29 0.75

FIGURE 3.12 0.00
0.00
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k

α = 2.5
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Table 3.6

k Qk k Qk k Qk

0 0.30 10 1.17 20 1.22

1 0.82 11 0.67 21 0.54

2 1.19 12 1.22 22 1.16

3 0.63 13 0.54 23 0.70

4 1.21 14 1.16 24 1.22

5 0.56 15 0.69 25 0.54

6 1.18 16 1.22 26 1.16

7 0.65 17 0.54 27 0.70

8 1.22 18 1.16 28 1.22

9 0.55 19 0.70 29 0.54
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model, we saw that if the initial values P0 and Q0 were reasonably close together, this did
not change the long-term qualitative nature of the curve of the subsequent values. The
graphs were essentially parallel, and one could quite easily predict, for each k, the value of
Qk from the value of Pk . Thus, long-term behavior was relatively insensitive to perturbations
in the initial conditions. The outcome for the discrete logistic model is very, very different.

FIGURE 3.15
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Table 3.7

k Qk k Qk k Qk k Qk k Qk

0 0.30 20 1.26 40 0.35 60 0.39 80 0.71

1 0.87 21 0.37 41 0.97 61 1.03 81 1.27

2 1.18 22 0.99 42 1.05 62 0.95 82 0.36

3 0.61 23 1.01 43 0.91 63 1.07 83 0.98

4 1.25 24 0.99 44 1.14 64 0.86 84 1.04

5 0.40 25 1.02 45 0.72 65 1.18 85 0.93

6 1.04 26 0.96 46 1.26 66 0.60 86 1.10

7 0.92 27 1.07 47 0.36 67 1.25 87 0.80

8 1.12 28 0.87 48 0.98 68 0.42 88 1.23

9 0.76 29 1.17 49 1.03 69 1.08 89 0.47

10 1.25 30 0.62 50 0.95 70 0.86 90 1.14

11 0.39 31 1.26 51 1.08 71 1.19 91 0.72

12 1.04 32 0.38 52 0.85 72 0.58 92 1.27

13 0.93 33 1.02 53 1.19 73 1.24 93 0.36

14 1.10 34 0.96 54 0.57 74 0.44 94 0.98

15 0.80 35 1.06 55 1.23 75 1.10 95 1.03

16 1.23 36 0.89 56 0.45 76 0.80 96 0.95

17 0.46 37 1.15 57 1.12 77 1.23 97 1.08

18 1.13 38 0.68 58 0.75 78 0.47 98 0.84

19 0.73 39 1.27 59 1.26 79 1.14 99 1.20
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To illustrate the sensitive dependence on initial conditions, consider the logistic
models

Qi 1 −Qi aQi 1−Qi and Pi 1 −Pi aPi 1−Pi .

With a= 2.7 in both equations, while Q0 = 0.5 and P0 = 0.51. Fig. 3.16 shows a plot of the
points Pk,Qk . Instead of these points falling along a straight line as they did for the
exponential growth model (see Fig. 3.4) or along a simple one-dimensional curve, the
points pepper the plane. Some clusters of nearby points appear, but there are many rela-
tively isolated points.

If we plot the relative differences, Qk −Pk
Qk

versus k, we see that there is no consistency.
Sometimes the relative difference is quite small, but other times it exceeds a factor of 2.

Table 3.8 provides a numerical picture of this phenomenon. After 50 steps, for
example, Q50 is less than half the value of P50, but Q130 and P130 are close together. By the
time k is 200, P200 is 250% bigger than Q200. Tiny changes in the initial conditions may
result in very large changes in the values of the variables after a moderate number of steps.

Sensitive dependence on initial conditions is a characteristic of the mathematical
concept known as chaos theory. Chaos theory deals both with showing how nonlinear
deterministic systems can give rise to outcomes that appear erratic, random, and unpre-
dictable and with discovering that what appears to be a chaotic output may actually contain
complex patterns generated by relatively simple nonlinear discrete equations.

Many nonlinear systems, both discrete and continuous, which model important
physical phenomena exhibit sensitive dependence on initial conditions. Henri Poincaré
(1854 1912) first observed this more than a century ago when he attempted to analyze
models for the three-body problem (see Chapter 1), but he lacked the computers necessary
to investigate this property.
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In the early 1960s, Edward Lorenz (1917 2008) observed sensitive dependence on
initial conditions in a system of differential equations arising from the study of meteoro-
logical conditions. Starting off the identical system from two very slightly different initial
values produced, after a relatively short time, overwhelming differences in the values of the
basic variables. Since exact measurement of initial conditions is physically impossible,
Lorenz concluded that accurate long-term weather prediction was an impossibility. In a
paper in 1963 given to the New York Academy of Sciences Lorenz states:

One meteorologist remarked that if the theory were correct, one flap of a seagull’s wings would
be enough to alter the course of the weather forever.

The sea gull evolved into the perhaps more poetic butterfly some time later, possibly
because some of Lorenz solution curves suggested the shape of a butterfly. At the
December 1972 meeting of the American Association for the Advancement of Science in
Washington, D.C. Lorenz unveiled the new metaphor in the title of his talk: “Predictability:
Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”

Today, chaos theory is a rapidly developing field that holds the promise of making
significant contributions to our understanding of the physical and social sciences. Writing
on the impact of chaos theory in physics, Trinh Xuan Thuan observed:

The last bastion of certainty collapsed at the end of the century: The emerging field of chaos
eliminated once and for all the Newtonian and Laplacian tent of Nature’s unconditional
determinism. Before the advent of chaos, the operative word was order. The word disorder was
anathema and banned from the language of science. Anything apt to exhibit irregularity or
disorder was considered a monstrosity. The science of chaos changed all that. It introduced
irregularity in regularity, disorder in order. It captured the imagination not only of scientists
but also of the public at large, because chaos theory deals with objects on a human scale and
speaks to everyday experiences.

Table 3.8

k Qk Pk k Qk Pk

0 0.50 0.51 110 0.86 1.25

10 0.56 0.48 120 0.81 1.17

20 1.14 1.27 130 1.10 1.18

30 0.48 0.70 140 0.90 1.13

40 1.27 1.00 150 1.22 1.19

50 0.61 1.26 160 1.13 1.17

60 0.79 0.60 170 0.94 1.27

70 0.53 1.03 180 0.84 1.03

80 1.02 1.15 190 0.62 1.25

90 1.16 0.36 200 0.36 0.91

100 0.46 1.09
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VI. The Allee Effect
A. The Allee Effect

One property of the logistic model is that the per capita growth rate is a strictly decreasing
function of the population. The per capita growth rate is the rate of growth divided by the
population size. For logistic growth, the per capita growth rate is

dP dt

P
=

P a− bP

P
= a− bP

Since a and b are positive constants, the graph of the per capita growth rate is a straight line
of negative slope. The logistic model asserts that no matter what the population size is,
increasing the number of individuals will always lower per capita growth. This property
derives from the assumption that as population increases, there is always more competition
for limited resources.

In the real world, however, we often observe more complicated behavior. When
population density is very small, individuals may have more difficulty finding mates than
they would if the population were larger. If a particular species hunts in packs, then when
the population is very small, obtaining food may be more difficult resulting in poorer health,
weakness, and inability to procreate. Growth rates may also be lower when there aren’t
enough individuals to form an effective group to defend against predators. For such ani-
mals, the per capita growth rate might actually increase as numbers build up from scarcity to
a more abundant population.

The American zoologist and ecologist W. Clyde Allee (1885 1995) observed such
behavior in a number of species. In his experiments, Allee noticed that goldfish grew more
rapidly when there were more individuals in the tank, and that for certain land isopods,
undercrowding, rather than competition, forced more limited population growth.

The “classical” view of population dynamics posited that because of competition for
resources, a population will have a reduced overall growth rate at higher density and
increased growth rate at lower density. Allee introduced the idea, now called the Allee
effect, that the reverse holds true when the population density is low. In the extreme case, if
population drops below a critical level, the species will become extinct.

There are several ways in which the Allee effect can be incorporated into a population
growth model. Here is a simple extension of the logistic model:

dP

dt
=P a− bP P− c

where the constant c is less than the carrying capacity a b. It is useful to rewrite this
equation as

dP

dt
=P a− bP P− c = bP

a

b
−P P− c = bP K −P P− c

where K is the carrying capacity. If 0< c<K, then we can regard c as a threshold; if the
population drops below c, then it will go extinct.
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We can gain more insight into the behavior of this logistic/Allee model by examining
how the sign of P′= dP dt varies with P. Fig. 3.18 shows that there are two cases: c> 0
and c< 0.

When c< 0, we speak of a weak Allee effect, and when c> 0, it’s called a strong Allee
effect.

FIGURE 3.19 The
growth rate and per capita
growth rate for a logistic
model with a strong
Allee effect: dP dt=
b K −P P− c . Here
b= .001, K = 100, c= 25
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VII. Historical and Biographical Notes
A. Thomas Robert Malthus

“Explanations of population changes have been advanced by writers of many nationalities,
religions, occupational specialties, and educational attainments,” wrote Ralph Thomlinson
in a [1965] study of population dynamics:

Independent and dependent variables which have been used for this purpose include total
population, density, fertility, mortality, migration, climate, food, topography, energy sources,
standard of living, level of aspiration, urbanization, degree of worldliness, transport facilities,
technological development, balance of trade, genetic deterioration, age-sex distribution,
socioeconomic class, religious belief, type of government, alcohol consumption, state of
knowledge, and various combinations thereof. Most of these generalizations are over-simplified
or obsolete; some are generally viewed as ludicrous; and a few are brilliant contributions to
man’s understanding of his own propagation, wandering, and demise.
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FIGURE 3.20 The growth rate and per capita growth rate for a logistic model with a weak Allee effect:
dP dt= b K P P c . Here b= .001, K = 100, c= 5.
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Prior to the 18th century, most of the writing on population was marred by superficial
observations, strong doses of moral pronouncements, and a general failure to distinguish
between folklore and factual evidence. It was believed by many, for example, that
intellectual pursuits tended to diminish the power of procreation, that prostitutes could not
conceive, and that “idiots bred like rabbits.”

The central figure in the history of population theory is the Reverend Thomas Robert
Malthus (1766 1834).Malthus, the second of eight children of an English country gentleman,
won honors as amathematics graduate of CambridgeUniversity. Hewas ordained aminister in
the Church of England in 1788. A year after his marriage in 1804, Malthus accepted an
appointment as professor of history and political economy in East-Indian College, Hailebury,
England. In addition tohis teachingduties,Malthuspublished three important booksonpolitical
economy, many pamphlets and tracts, and six editions of his famous essay on population.
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Thomas Malthus. From a portrait by John Linnell.

Malthus’s work on economics included a general theory of rent and the distribution of
wealth, which has been cited as one of the foundation stones of modem economic thought.
In biology, Charles Darwin wrote of his debt to Malthus for the phrase “struggle for sur-
vival” and for the concept that species may alter through selection. “In October 1838, I
happened to read for amusement ‘Malthus on Population’,” wrote Darwin, “and being very
well prepared to appreciate the struggle for existence which everywhere goes on, from long
continued observation of the habits of animals and plants, it at once struck me that under
these circumstances favorable variations would tend to be preserved, and unfavorable ones
to be destroyed. The result would be the formation of a new species. Here then I had a
theory by which to work.”*

The first edition of his essay on population was published in 1798 under the title, “An
Essay on the Principle of Population as It Affects the Future Improvement of Society, with
Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers.” Condorcet

*The Autobiography of Charles Darwin, New York: Harcourt, Brace, 1959, p. 120.
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and Godwin had each published works in 1793 emphasizing their optimistic beliefs in the
perfectibility of man and society. They foresaw a day when inequality would be eliminated
along with crime, disease, and war, a period in which reason would hold sway over emotion
and base instincts.

Malthus had a contrary view. Social progress was illusory: “The structure of society,
in its great features, will probably always remain unchanged.” He thought man to be a lazy
creature by nature, impelled to productive work only by a wife and children who needed
food and shelter.

The essay on population sought to develop the consequences of two fundamental
observations:

First, that food is necessary to the existence of man. Secondly, that the passion between the
sexes is necessary and will remain in its present state. These two laws ever since we have had
any knowledge of mankind appear to have been fixed laws of our nature; and as we have not
hitherto seen any alteration in them, we have no right to conclude that they will ever cease to be
what they now are.

In 1826, a sixth edition of the essay appeared. It was titled “An Essay on the Principle
of Population,” or “A View of Its Past and Present Effects on Human Happiness, with an
Inquiry into Our Prospects Respecting the Future Removal or Mitigation of the Evils Which
It Occasions.” Here Malthus summarizes three important conclusions:

1. Population is necessarily limited by the means of subsistence.

2. Population invariably increases where the means of subsistence increase, unless
prevented by some very powerful and obvious checks.

3. These checks, and the checks that repress the superior power of population, and keep
its effects on a level with the means of subsistence, are all resolvable into moral
restraint, vice, and misery.

During his lifetime and in subsequent generations, Malthus’s essay provoked con-
siderable controversy and debate. In tracing the development of a mathematical modeling
approach to population, the next important contributor was one of the participants in this
debate, Adolphe Quetelet.

B. Lambert Adolphe Jacques Quetelet

Mathematician, astronomer, sociologist, poet, statistician, physicist, man of letters, mete-
orologist—it is difficult to fit Quetelet into a single category. “Nature had endowed him not
only with a vivid imagination and a mind of power, but also with the precious gift of
indomitable perseverance,” wrote Edouard Mailly [1875, 169].

Quetelet was born in Ghent, Belgium, on February 22, 1796, and educated in the local
schools. In 1819 he received the first Doctor of Science degree awarded by the University of
Ghent and shortly thereafter he assumed a professorship of mathematics at the Brussels
Athenaeum. In Brussels, he quickly established many associations with the artists and
writers of the area, became a member of the reading committee for the royal theater,
and published many poems in the annual almanac of the local literary society.
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Lambert A. J. Quetelet. From a portrait by J. Demannez. Copyright Bibliothèque royale
Albert Ier, Brussels (Cabinet des Estampes).

His academic lectures, whether on elementary mathematics, calculus, experimental
physics, or astronomy, were well received. “He was very highly esteemed by his pupils,”
Mailly [1875, 172] noted. “There was something about him at once imposing and amiable,
while there was a complete absence of anything like pedantry or haughtiness. Although
marked with smallpox, his physiognomy was refined and impressive; it was only necessary
to fix his large dark eyes, surmounted with heavy black brows, upon the refractory, to insure
at once silence and submission.”

Although much of his early research was devoted to questions of primarily mathe-
matical interest, Quetelet soon turned to applications. He superintended the construction of
the Royal Astronomical Observatory and served as its first director from 1828 until his
death in 1874, 5 days short of his seventy-eighth birthday. Work at the observatory included
cataloging of stars, a careful study of atmospheric waves for the purposes of improving
meteorology, and measurements of terrestrial magnetism.

Quetelet’s contributions to the development of the social sciences derive from his
efforts to apply probability and statistics to the study of man. He created the concept of the
“average man” as the central value about which measurements of a human trait are grouped
according to the normal probability curve. In addition to the normal distribution of heights
and weights, Quetelet observed that there were relative propensities of specific age groups
to commit crimes. He wrote [Mailly, 1875, 179]:

What is very remarkable is the frightful regularity with which crimes are repeated. Year after
year are recorded the same crimes, in the same order, with the same punishments; in the same
proportions . . . . The number condemned to the prison, irons, and the scaffold is as certain as
the revenue of the state. We can tell in advance how many individuals will poison their fellows,
how many will stain their hands with human blood, how many will be forgers, as surely as we
can predict the number of births and of deaths.

Quetelet’s use of the terms and concepts of physics in the study of man and his social
systems provoked wide argument and discussion on the issue of “free will versus
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determinism.” He was strongly convinced that there were discoverable principles dictating
man’s behavior [Mailly, 1875, 179 180]:

Man, without knowing it, and supposing that he acts of his own free will, is governed by certain
laws from which he cannot escape. We may say that the human species, considered as a whole,
belongs to the order of physical phenomena. . . . Although his will is restrained within very
narrow limits, man contains within him moral forces which distinguish him from the animal, and
by which he can, to some extent, modify the laws of nature. These perturbing forces act . . .
slowly . . . they are analogous to those astronomical variations in the systems of the world which
require centuries for their investigation. The study of the natural and perturbing forces of man,
in other words, social mechanics, would develop laws as admirable as those which govern
celestial and inanimate bodies. . . . If science has advanced thus in the study of worlds, may we
not look for equal progress in the study of man? Is it not absurd to suppose that, while all else is
controlled by admirable laws, the human race alone is abandoned to blind chance?

In his 1835 book On Man and the Development of His Faculties: An Essay in Social
Physics, Quetelet criticizes Malthus and the economists who came after him for not clearly
establishing the necessary foundation for bringing the theory of population within the
domain of the mathematical sciences. He proposes two principles to fill this “important
gap” [Quetelet, 1969, 49]. First, population tends to grow according to a geometric pro-
gression. Second, “the resistance, or the sum of the obstacles opposed to the unlimited
growth of population, increases in proportion to the square of the velocity with which the
population tends to increase.”

Later Quetelet draws an analogy between the growth of population and the motion of a
body through a resisting medium. His writing is somewhat obscure on these points. No
mathematical treatment is given and, although he claims to have made “numerous researches”
on this subject, none are presented. Quetelet’s comments, however, were the probable
source that stimulated the first detailed study and presentation of logistic growth. This
was the work of Quetelet’s Belgian colleague Pierre-François Verhulst.

C. Pierre-François Verhulst

R
ep

ro
du

ce
d 

by
 p

er
m

is
si

on

Pierre-François Verhulst. From a portrait by L. Flameng. Copyright Bibliothèque royale
Albert Ier, Brussels (Cabinet des Estampes).
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Pierre-François Verhulst, born in Brussels on October 28, 1804, was a brilliant student who
received his Doctor of Science degree from the University of Ghent after only 3 years of
study. His mathematical research included contributions in the calculus of variations, the
study of maxima and minima of functions, and number theory, as well as in the applica-
tions of probability.

Plagued by poor health, Verhulst traveled to Italy in 1830. While in Rome, he worked
for reforms in the government of the pontifical states. Hoping to persuade the Pope to grant
a constitution to the residents, Verhulst drew up a proposed pact. It was well received by
several foreign ministers, but the confidential document fell out of the hands of the dip-
lomats and into the clutches of the police. Fearing physical attack, Verhulst prepared to
barricade himself in his lodgings to withstand a possible siege. He was ordered to leave
Rome and return to Belgium.

Back home, he made an unsuccessful attempt to enter politics and tried his hand at
writing historical essays. Finally, he returned to the academic life, accepting appointment at
the free university of Brussels in 1835. There he taught mathematical subjects ranging from
geometry and trigonometry to calculus and probability, as well as astronomy and celestial
mechanics. Under the influence of Quetelet, under whom he had studied at Ghent, he
investigated the applications of statistical tools to social problems.

Verhulst developed a model of population growth he called “logistic growth”; it is the
one studied in Section IV. His memoirs on the subject were published in 1838, 1845, and
1847. Although he attempted to test his model on actual population data, he was frustrated
by the inaccurate census information then available. He noted, for example, that the figures
on the population of England were obtained from a consideration only of the number of
births. These, in turn, were counted by examining the number of babies baptized into the
Church of England. Thus, religious dissenters, infant deaths, and immigrants were over-
looked. “Probably owing to the fact that Verhulst was greatly in advance of his time, and
that the then existing data were quite inadequate to form any effective test of his views, his
memoirs fell into oblivion,” wrote G. Udney Yule in a presidential address to the British
Royal Statistical Society in 1925, “but they are classics on their subject.”

Verhulst’s discovery of the logistic curve and its application to population growth
was forgotten for 80 years. It was rediscovered independently by two American scientists
working at Johns Hopkins University, Raymond Pearl and Lowell J. Reed.

D. Raymond Pearl

“It is likely that biology will eventually be as full-panoplied with mathematically expressed
theory as physics now is. The process is already started, and the history of the old natural
sciences like astronomy, physics and chemistry admits of no doubt as to the final outcome.
There is no substitute for mathematics to state in rational shorthand the relations between
natural phenomena or generalizations about them.”

This was the prediction of the American biologist, geneticist, and statistician Ray-
mond Pearl [1939]. A prolific and articulate writer on many subjects, Pearl was widely
respected by his colleagues for his applications of statistics to biology, and he was well
known to the public of his day as a provocative commentator on human behavior.

The Pearl family traced its ancestry back to Pearls who entered England at the time
of the Norman Conquest in 1066. The first to settle in the United States was John Pearl,
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who arrived about 1670. His descendants for the next 200 years remained in the region of
New England comprising northeastern Massachusetts, southwestern Maine, and southern
New Hampshire. It was in Farmington, New Hampshire, that Raymond Pearl was born on
June 3, 1879.

He attended the local elementary and secondary schools and entered Dartmouth
College at the age of 16 to pursue—or so his parents and grandparents intended—the study
of Greek and Latin. Like many college students today, Pearl was intoxicated at first by the
relative freedom and extracurricular activities of the campus. His interests were reflected by
low grades in his freshman year. It was in that year, however, that he discovered his true
intellectual interest.
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Raymond Pearl

Biology was one of the required courses for first-year students at Dartmouth at that
time, and it appealed to Pearl. By the end of the first week of classes, he was asking the
instructor to help him switch from a classics major to the natural sciences. “The subject
obsessed him,” according to one commentator. “He talked, thought, studied, and dreamed
in terms of biology.”Although he was the youngest student in his class at Dartmouth, by his
senior year Pearl was serving as assistant in the general biology course.

Upon receiving his bachelor’s degree in 1899, Pearl began work in the doctoral
program in zoology at the University of Michigan, which he completed in 3 years. After a
short period as a zoology instructor at Michigan, he embarked on a 2-year study period at
the University of Leipzig, the Marine Biological Station in Naples, and the University of
London. In London, he studied biometrics under Karl Pearson, whose influence led Pearl to
his life’s work on the use of statistics to study populations.

The remainder of Pearl’s professional life was spent at the Johns Hopkins University
in Baltimore. He served there as professor of biometry and vital statistics in the School of
Hygiene and Public Health, professor of biology in the School of Medicine, research
professor and director of the Institute of Biological Research, and statistician at Johns
Hopkins Hospital. He died of a coronary thrombosis on a weekend trip to Hershey,
Pennsylvania, on November 17, 1940.
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In a biographical memoir, H. S. Jennings [1943], once Pearl’s teacher, wrote of his
former student, “He was a man of unusual height and weight, physically an impressive
figure. His was a masterful personality, of extraordinary resourcefulness and initiative, of
wide knowledge, astonishing power of work, remarkable versatility and scope, and strong
ambitions. His interest in biology was encyclopedic. In his contributions he touched upon
most aspects of the subject . . . . The breadth of Pearl’s interests did not mean that his
interest in particular subjects was weak. On the contrary, his interest in any subject to which
he gave his attention was so intense that at any given moment he might seem a partisan and
propagandist of a particular field or method of biological science.”

During his 40-year professional career, Pearl wrote nearly 700 technical articles and
essays and 17 books. His work appeared in journals of research in zoology, genetics,
physiology, medicine, and statistics, agricultural publications, encyclopedias, newspapers,
popular science magazines, literary and political journals. “This is a remarkable record of
publication,” wrote Jennings. “It may be questioned whether in America it has ever been
equaled by a man of science, in extent and variety.”

The range of Pearl’s work can be seen by comparing his first paper, “On preparing
earthworms for section,” which appeared in the Journal of Applied Microscopy in 1900 and
his last, “Some biological considerations about war,” written for the American Journal of
Sociology in 1940.

A glance through the 37-page list of his publications shows works on animal
behavior, genetics, care and breeding of poultry, laboratory and field techniques in biology,
theoretical and practical results in statistics, disease, longevity and mortality, contraception,
eugenics, world overpopulation, business cycles, food prices, religion and Darwinism, and
philosophical pragmatism.

It was the biology of man, however, that attracted more of Pearl’s activity than any
other subject. Many of his research results in this area prompted controversy and were
widely discussed. An extensive statistical study in 1926, for example, of the effects of the
use of alcohol on longevity and mortality persuaded Pearl that moderate consumption of
alcohol is not harmful. A similar study in 1938 convinced him that tobacco is harmful to
human life even in small quantities. Other research led Pearl to conclude that length of life
varied inversely with the pace of living, that intellectuals had a better chance than manual
workers of living longer, and that heredity dominated over environment in influencing
many important parameters of life.

Socially prominent and popular, Pearl was famous for his excellent dinner parties. He
was a connoisseur of good food and wine and possessed, according to one witness, “an
almost boyish delight in playing at times the role par excellence himself of amateur cook
and salad mixer.”

One of Pearl’s strongest recreational interests was music. He led for some years an
evening amateur music ensemble. When a report on the Dartmouth class of 1899 was
written 35 years after its graduation, Pearl’s devotion to music was recalled [Dartmouth
College, 1941]:

He might be the first American to deliver the Heath Clark lectures at the University of London,
or the most skillful juggler of the logistic curves of Verhulst; to us he was still the boy cornetist
and the fellow who single-handed conjured the first Dartmouth band into existence out of rustic
young neophytes and rusty and discarded tubas. He was our full-fledged impresario before we
even knew there was such a word, and no crowd of urchins ever followed the Pied Piper of
Hamelin so devotedly and gaily as we of ’99 and all our Dartmouth contemporaries followed
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the imperious form of Pearl, as in corduroy or white duck trousers and with much “windy
suspiration of forced breath” he poured strange harmonies on the campus air.

Pearl served as president of several important scientific organizations, including the
American Society of Zoologists, American Society of Naturalists, American Statistical
Association, American Association of Physical Anthropologists, and International Union
for Scientific Investigation of Population Problems. He received many honorary degrees
and other awards, including membership in the National Academy of Sciences.

Pearl’s own views toward the future of man may be gleaned from the final sentences
of his last published work. “The standard pattern of national behavior, to which there are no
exceptions, is to combat evil with evil,” he wrote [Pearl, 1941]. “But real and enduring
peace will never be achieved by such techniques. For a true evolution of new patterns of
sociality that will be lasting and embrace all mankind there must first evolve among men
more decency and dignity, more tolerance and forbearance, and more capacity of co-
operation for the common good in the conduct of human life. The prime condition necessary
for the meek to inherit the earth is that they shall abound in the qualities of meekness.”

E. Lowell Jacob Reed

Raymond Pearl was perhaps best known to the public for the projections of U.S. population
size that were the product of research completed with his colleague Lowell J. Reed. Like
Pearl, Reed’s family roots were in New England. Born in Berlin, New Hampshire, on
January 8, 1886, he received his bachelor’s and master’s degrees from the University of
Maine. After completing his Ph.D. in mathematics at the University of Pennsylvania, he
returned to Maine to teach physics and mathematics.

His academic career was interrupted for a period of service during World War I in
Washington as chief of the Bureau of Tabulations and Statistics for the War Trade Board.
His ties with the government continued in later years as he served as a consultant for the
Army, Navy, Air Force, Selective Service, and Veterans Administration.

Ph
ot

og
ra

ph
 r

ep
ro

du
ce

d 
by

 p
er

m
is

si
on

of
 J

oh
ns

 H
op

ki
ns

 U
ni

ve
rs

ity

Lowell Reed at his New Hampshire farm.
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Reed’s long association with Johns Hopkins began in 1918 when he was appointed
an associate professor of biostatistics in the School of Hygiene and Public Health. Several
years later, he succeeded Pearl as chairman of the department. An effective administrator,
Reed served as dean of the public health school, vice president of Johns Hopkins Hospital,
and vice president of the university.

His principal research interests were in the fields of mathematical methods in biology
and medicine, mathematical statistics, and demography. He was internationally known for
contributions to biostatistics and public health administration. His work included many
important advances in the study of epidemics.

In the early 1920s, Pearl and Reed worked on interpolation formulas for population
curves, with special reference to the United States. After trying various purely empirical
curve-fitting equations, they realized that no such formula could be regarded as a general
law of population growth, however good it might prove for practical purposes over a
limited period. Consideration of the general principles underlying population changes led
them to the mathematical model of logistic growth. Pearl and Reed’s discovery of the
logistic curve was quite independent of Verhulst; they learned of the Belgian’s work
months after deriving all the mathematical details for themselves.

At a 1925 conference, Reed predicted that it would take a century for the United
States to reach a population of 200 million, and that when it did, there would be such
pressure on the country’s food resources that new sources of sustenance would have to be
found in the tropics.

Although this prediction turned out to be wrong, others that he made, such as fore-
casting the rapid growth of the metropolitan New York region, were both accurate and
useful to planners.

At the age of 67, Reed retired from Johns Hopkins after 35 years of service. He hoped
to return to his 300-acre farm in Shelburne, New Hampshire to enjoy the quiet life of its
rugged woodlands. Barely 3 weeks after his retirement began, Reed was called back to
Johns Hopkins and asked to accept the presidency of the university. He served well in this
position for 3 years and finally found permanent retirement at 70.

Happily turning over his office to Milton Eisenhower, younger brother of President
Dwight Eisenhower, Reed moved back to his native New Hampshire. He died in the town
of his birth on April 29, 1966.

F. Evelyn C. Pielou

Considered by many to be the creator of the field of Mathematical Ecology, Chris Pielou
(1924 ) has firm views on the centrality of mathematics in the sciences. Addressing a
graduating class of mathematics students at the University of British Columbia in 1991, she
stated:

I’m sure people will have pointed out to you (or, possibly, you have pointed it out to them) that
“Mathematics is the Queen of the Sciences,” just as Gauss proclaimed. Of all possible subjects
of study, it is the one which commands the most awe and veneration. But before you get too
carried away with this thought, remember that math is also the servant of science, except for
parts of some sciences such as paleontology that haven’t become mathematical yet. They will.
All scientists depend on a mixture of experiments and observations to do their work. The next
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stage, theoretical development, entails logical, mathematical argument. More than a hundred
years ago, Lord Kelvin (he of the absolute temperature scale) put it thus:

“When you can measure what you are speaking about, and express it in numbers, you
know something about it; but when you cannot measure it, when you cannot express it in
numbers, your knowledge is of a meagre and unsatisfactory kind; it may be the beginning of
knowledge but you have scarcely, in your thoughts, advanced to the stage of science.”

In brief, most scientific data don’t become scientific until they have been put into
numerical form. I believe Kelvin should have gone farther than that: to my mind, he should have
added that scientific notions cannot become part of science until they’ve been expressed as
mathematical equations (or occasionally, as inequalities). Until this happens, notions aren’t
hypotheses—they’re just hunches.

I believe the majority of non-scientists are unaware of this, of the dependence of
science on math. This may explain why so many people say, complacently, “Of course, I’m
lousy at math but . . . ” and then go on to imply that their mental powers are perfect apart
from this trivial defect. Well, it isn’t trivial—a person who blocks out math is a mental couch
potato. You, by mastering the queen of the sciences, become truly “fit” in the world of the
mind. Whether you are a pure mathematician, or an applied mathematician, or a theoretical
statistician, or a computer scientist, you are each of you a mental athlete. The possessor,
and user, of a rigorously logical mind deserves public recognition and admiration just as
much as a champion athlete or a well-known movie star—but you wouldn’t think so to read
the newspapers.

Eveyln Chrystalla Pielou was born in Bognor Regis, England, on February 24, 1924.
She earned an honors degree in botany from the University of London in 1950, where she
later obtained her doctoral degree in Statistical Ecology in 1962. In addition, she earned a
Senior Doctorate from the university in 1975.
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Evelyn C. Pielou

First employed as a research scientist in Canada’s Federal Departments of Forestry
and Agriculture, Dr. Pielou then spent 1-year term as a visiting professor at North Carolina
State University and Yale University. She moved to Queen’s University in Kingston,
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Ontario, where she was appointed a professor in the Biology Department from 1968 to 1971.
A move eastward took her to Dalhousie University in Halifax where she served as a Killam
Research Professor and professor of Biology for the next 10 years. Dr. Pielou spent the last
5 years, prior to retiring in B.C. in 1986, working as a research professor in the Biology
Department of the University of Lethbridge.

In addition to authoring more than 60 research papers, Pielou wrote a number of books
on a variety of subjects. These include An Introduction to Mathematical Ecology, Population
and Community Ecology, Ecological Diversity, Mathematical Ecology, Biogeography, The
World of Northern Evergreens, After the Ice Age: The Return of Life to Glaciated North
America, A Naturalist’s Guide to the Arctic, Fresh Water, and The Energy of Nature.

Many universities and scientific societies have recognized Pielou’s contributions
to the mathematical modeling of natural systems. The Canadian Botanical Association
awarded her the George Lawson Medal in 1984. The Ecological Society of America pre-
sented her the Eminent Ecologist Award in 1986. In 1990, she received the Distinguished
Statistical Ecologist Award from the International Congress of Ecology. Several universi-
ties have given her honorary degrees, and she has been elected to the Royal Society of Arts.

G. A Final Note of Caution

In discussing the difficulties and limitations of the logistic model for the growth of human
populations, the sociologist Donald Olen Cogwill wrote [Bose et al. 1970]:

Initially the theory was based upon experiments with yeast, fruit flies, and chickens and the
conditions of these experiments should be carefully noted:

1. The initial population was very small in relation to the space that was provided
for it;

2. Ample food was provided throughout the experiments;

3. The food was introduced into the experimental environment by the experimenter
and it was not generated by the species that was the subject of the experiment;
and

4. The spatial limits of the environment were held constant.

The reader should consider carefully whether such conditions are reasonable to assume
operative for human populations.

EXERC I S E S

II. The Pure Birth Process

1. The rate of growth of a certain population of bacteria
in a culture is directly proportional to the size of the
population. If an experiment begins with 1,000 bacteria
and one hour later the count is 1,500 bacteria, then
how many bacteria are present at the end of 24
hours?

2. Suppose that 20 years ago the population of a town
was 2,000, and that the population increased continu-
ously at a rate proportional to the existing population.
If the population of the town is now 6,000, find a
formula relating population and time. What has been
the rate of growth?

100 CHAPTER 3 Ecological Models: Single Species



3. Suppose the population of a city doubles its original
size in 50 years and triples it in 100 years. Can the
population be increasing at a rate proportional to the
number present? Why, or why not?

4. Suppose the population of a yeast colony is given by
P t =P0eat and the population at time t1 is P1. Find a
formula for a in terms of t1, P0, and P1.

5. If population P t is growing exponentially, prove that
the changes in P in successive time intervals of equal
duration form the terms of a geometric progression.
This is the source of Thomas Malthus’s famous dic-
tum: “Population, when unchecked, increases in a
geometrical ratio. Subsistence increases only in an
arithmetic ratio. A slight acquaintance with numbers
will shew the immensity of the first power in com-
parison of the second.”

6. If a certain population increases at a rate proportional
to the number in the population and doubles in
45 years, in how many years is it multiplied by a factor
of 3?

7. A population of bacteria grows exponentially. When
initially observed, there were 100,000 bacteria.
Another observation t1 minutes later showed 200,000
bacteria. A third observation was taken 10 minutes
after the second one; this time 1,000,000 bacteria were
present.

(a) Find the equation of growth of the bacteria.

(b) How many bacteria were there after 20 minutes?

(c) What is the value of t1?

8. If the population of a country is undergoing expo-
nential growth at a rate of r percent per year, show that
the population doubles every log2 r years. This
number is called the “doubling time.” Compute the
doubling time if r= 2.

9. (Emmell) A human birth rate of 50 live births annually
per 1,000 population is considered very high. In 1971,
several countries in Africa had birth rates of 52 per
1,000. A low birth rate today is about 15 per 1,000; in
1971, Sweden and Luxembourg had the world’s lowest
birth rates of 13.5 per 1,000. Current death rates range
from 5 deaths per 1,000 to 30 per 1,000. On a world-
wide basis, the annual birth rate in 1971 was 34 per
1,000 and annual death rate was 14 per 1,000. What is
the annual rate of increase of the world’s population?

Complete the following table using the results of
Exercise 8.

Country Growth rate per 1,000 Doubling time

East Germany .1

Denmark .5

United States, Japan 1.1

Argentina, World 1.5

Afghanistan 2.5

Ghana 3

Costa Rica 4

Kuwait 8.2

10. What happened in the United States between 1860 and
1870 that could have accounted for a halt in expo-
nential growth?

11. Assume that the U.S. population has grown exponen-
tially. Estimate the growth rate using each of the fol-
lowing years in place of the year 1830 as done in the text.
Compare each set of predictions with the actual data.

(a) 1800

(b) 1850

(c) 1900

(d) 1970

12. In the pure birth process, suppose the birth rate is not
constant, but instead is proportional to Pk for some
small positive constant k. Find the differential equation
for growth of a population fitting this description.
Solve the equation and interpret the result. This model
gives a good picture of the population growth in some
developing countries (Watt, K. E. F., Ecology and
Resource Management: A Quantitative Approach,
New York: McGraw-Hill, 1968).

13. San Francisco Chronicle columnist Herb Caen
observed (October 27, 1993): “When Elvis Presley
died in 1977, there were an estimated 37 Elvis
impersonators in the world. By 1993, there were
48,000 Elvis impersonators, an exponential increase.
Extrapolating from this, by 2010 there will be 2.5
billion Elvis impersonators. The population of the
world will be 7.5 billion by 2010. Every 3rd person
will be an Elvis impersonator by 2010.”
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(a) If the data for 1977 and 1993 are correct and the
population of Elvis impersonators did in fact grow
exponentially, what was the annual growth rate a?

(b) Using this value for a, determine what the
impersonator population would actually be in
2010 if the population continues to grow at the
same exponential pace. Is 2.5 billion correct?

(c) In what year would the number of Elvis imperso-
nators reach 2.5 billion?

(d) Is there some year when there would be more
Elvis impersonators than people?

14. The population dynamics of a city may also be sub-
stantially influenced if there is a large rate of indivi-
duals moving into the community (immigration) or
moving away (emigration). A simple model of expo-
nential growth with immigration is dP

dt = aP+ b where
a and b are positive constants.

(a) Show that the change of variable y t =P t + b a
transforms the model into a pure exponential
growth model: dy dt= ay.

(b) Find P t as an explicit function of t.

15. During periods of war or great civil unrest, nations
may experience significant declines in population due
both to higher death rates and to large scale emigration.
Analyze the model dP

dt = aP+ b, where b is a negative
constant both in the case in which a is positive and in
which a is negative. What can you conclude about the
long-term prospects for the population in these situa-
tions? Locate, if possible, population data for a country
experiencing large emigration (e.g., Rwanda in the
1990s, Iraq and Syria in the first decades of the 21st
century) and determine whether this model provides an
accurate picture of the observed data.

III. Exponential Decay

16. A certain radioactive substance has a half-life of 10
years. What fraction of an amount of this substance
decays in 15 years?

17. Verify the claim made in the text that the half-life of a
radioactive substance is independent of P0.

18. A carved wooden stick found at an archaeological site
near Madison, Wisconsin, had 40 percent of the
radioactivity of a living tree. When was the stick
carved?

19. The Shroud of Turin, which many people believe was
used to wrap Christ’s body, bears detailed front and
back images of a man who appears to have suffered
whipping and crucifixion. First displayed in France in
the 1350s, the shroud was brought in 1578 to Turin,
where it was placed in the royal chapel of Turin
Cathedral in a specially designed shrine. Tests done on
the Shroud of Turin in 1989 found that it contained
92% of its original fraction of Carbon-14. If the half-
life of Carbon-14 is 5,530 years, estimate the true age
of the shroud.

20. A population, initially of 10,000 individuals, has an
annual decay rate of .1. In how many years will the
population decrease to 1 person?

21. Newton’s Law of Cooling asserts that the rate at which
an object cools is proportional to the difference
between the temperature of the object and the tem-
perature of the environment in which the object is
immersed. One proposed application of Newton’s Law
of Cooling is the determination of the time of death of
a murder victim whose body is found in a hotel room.

(a) If V denotes the temperature of the object (victim)
at time t, show that Newton’s Law of Cooling may
be formulated as a differential equation

dV dt= k V −R

where R is the constant temperature of the room
and k is a negative proportionality constant
dependent on the thermal properties of the corpse.

(b) Verify by substitution that V t =R+Cekt is a
solution to the differential equation.

(c) Derive the solution to the differential equation
either (1) by separating the variables and inte-
grating directly or (2) by making the substitution
y t =V t −R.

(d) Determine the value of the constant C if the vic-
tim’s temperature is V0 at time t0 = 0.

(e) If the temperature of the victim is V1 at some
positive time t1, then show that k has the value

1
t1

In
V1 −R

V0 −R

(f) From the solution V t =R+Cekt , show that if the
victim has a temperature of VN at time tN , then tN
can be found as
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tN =
1
k
ln

VN −R

C

(g) Police discover the dead body of a woman inside
her Los Angeles condominium around midnight.
The medical examiner arrived on the scene at
12:30 A.M. and immediately took the murder
victim’s body temperature; it registered as 94.6°F.
The police investigation of the murder scene las-
ted one hour. Just before the body was wheeled
away and the police left, the examiner took
the victim’s temperature again; this time, his
thermometer showed 93.4°F. If the room was
maintained at a temperature of 68°F, estimate the
time of death.

22. A forest products company cuts down 5% of the trees
in a national forest area each year, but also plants 1,000
new trees on an annual basis. What happens to the
number of trees in the area over the long term? Find
explicit expressions for the tree population as functions
of time using a continuous model and a discrete model.
Graph these functions if the initial tree population was
(a) 50,000 and (b) 10,000.

23. In what ways is the forest problem of Exercise 22
similar to the credit card problem of Chapter 1?

IV. Logistic Population Growth

24. A third derivation of the Verhulst-Pearl equation is
based on the notion that a term involving the square of
the population is a reasonable measure of “crowded-
ness.” It would represent the frequency with which
members of the population encounter each other. Is it
reasonable that this frequency would have an inhibi-
tory effect on the rate of population growth? Why?
How does this lead to the logistic equation?

25. Models of population growth may be derived from the
differential equation dP dt= f P by various choices
of simple functions for f . For each of the following
types of functions, determine reasonable choices for
the signs of the coefficients, solve the resulting equa-
tions and interpret the results:

(a) f P = a

(b) f P = a+ bP

(c) f P = a+ bP+ cP2

(d) f P = asin bt+ c

26. At some point in the solution of the logistic differential
equation, we implicitly assumed that population P was
always below the carrying capacity a b. Where? How
valid is this assumption?

27. Suppose a forest fire destroys a large portion of the
resources on which a population feeds. The carrying
capacity of the environment is then below the initial
population P0. Analyze the logistic model in this situa-
tion to the point that you can sketch the graph of popu-
lation as a function of time. (Compare with Exercise 26.)

28. Show that the logistic curve has a single point of
inflection. At what value of t does it occur? What is the
corresponding population? How does it compare to the
limiting population? Is the logistic curve symmetric
about the point of inflection?

29. Show that some of the answers for Exercise 28 can be
obtained from the Verhulst-Pearl equation without
solving for P in terms of t.

30. In Pearl and Reed’s model of U.S. population growth,
find the year when the rate of population growth first
began to slow (see Exercise 28).

31. How can you determine the constants in the logistic
equation if the populations at three different times are
known but the times are not equally spaced?

32. Assume that the growth of population in the United
States from 1790 to 1860 is adequately explained by a
pure birth process. How closely does the logistic
model explain growth in population from 1860 to
1970? Take 1870, 1920, and 1970 as the years to use
in computing the constants in the logistic equation.
What does this model predict as the “carrying capacity”
of the United States?

33. Find the value of the constants in the equation of the
logistic curve using the census data for the years 1790,
1880, and 1970. What is the predicted carrying
capacity? How well does the resulting curve fit actual
census data?

34. An initial population of 100 inhabits an area with a
carrying capacity of 100,000. In the first year, the
population increases to 120. Assume that the popula-
tion follows logistic growth.

(a) Determine the population as an explicit function
of time.

(b) How many years will it take the population to
reach 95,000?
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35. Find census data for the population of a western
European nation and determine how valid the logistic
model is for that population. Take t0, t1, and t2 to be
spaced 100 years apart.

36. Repeat Exercise 34 for world population. How accu-
rate do you think the available census data are?

37. Sociologists recognize a phenomenon called “social
diffusion,” the spreading of a piece of information, a
technological innovation, or a cultural fad among a
population. The individuals in the population can be
divided into those who have the information and those
who do not. In a fixed population whose size is known,
it is reasonable to assume that the rate of diffusion is
proportional to the number who have the information
and the number yet to receive it.

(a) If x denotes the number of individuals in a popu-
lation of N people who have the information, then
show that a mathematical model for social diffu-
sion is dx dt= kx N x , where t represents time
and k is a proportionality constant.

(b) Solve the equation in (a), and show that it leads to
a logistic curve.

(c) At what time is the information spreading fastest?

(d) How many people will eventually receive the
information?

(e) Discuss how this model might be modified to
analyze an epidemic of a communicable disease.

38. Show that if a= 2.57, then as k increases, the values of
Qk in the discrete logisticmodel cycle through 16 values.

V. The Allee Effect

39. The Allee effect has been described as the ecological
equivalent of the maxim “The more the merrier.” In
what sense is this statement true?

40. The existence of the Allee effect has been used to
justify the claim that “the evolution of social structure
was not only driven by competition, but that cooper-
ation was another, if not the most, fundamental prin-
ciple in animal species.” How are competition and
cooperation reflected in our model?

41. Verify that the signs of dP dt in Fig. 3.18 are correct.

42. For the logistic model with Allee effect, show both of
the following:

(a) K is a stable equilibrium.

(b) c> 0 is an unstable equilibrium.

43. Show that the per capita growth rate in the logistic
model with Allee effect reaches its maximum value at
P= K + c 2.

44. Show the growth rate in the logistic model with Allee
effect, there is an inflection point at P= K + c 3.

45. One alternative model with the Allee effect is the
differential equation

dP

dt
= bP 1−

P

K
1−

c+A

P+A

where c is the Allee threshold and K is the carrying
capacity. Show the following:

(a) The Allee effect is absent if and only if c= A.

(b) B is the maximum per capita growth rate in the
absence of the Allee effect.

(c) The constant A affects the overall shape of the per
capita growth rate curve in the sense that the curve
becomes flatter as A increases and reaches a lower
maximum value.

(d) The Allee effect is strong if c is positive.

SUGGESTED PRO J ECTS

1. Consider a model for the population of scientists alive
at any given time. It has been reported that 90% of all
scientists who have ever lived are alive today. What
sort of model is consistent with this fact?

2. A simple generalization of the logistic equation is the
differential equation dP dt= aP+ bP2 + cP3. Analyze
the consequences of this model. Discuss how to
evaluate the constants a, b, and c. Does this model

give a good picture of population growth in the United
States from 1790 to the present?

3. Some animal populations are periodically reduced by
hunters or trappers for commercial gain. Consider the
problem of determining the optimal rate of removal by
a hunter who wishes to maximize long-range eco-
nomic gain; killing the entire population in 1 year
means great profits that year but no income in
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subsequent years. Determine effective strategies for the
hunter if the population is growing (a) exponentially
and (b) logistically. See the papers of Colin W. Clark
(References) for some suggested approaches.

4. The average (or per capita) growth rateof a population is
given by 1 dP

P dt . In the logistic model, this average growth
rate is largest when the population is smallest. (Why?)
This is an unrealistic model for some species that may
face extinction if the population becomes too small.
Suppose that c is theminimumviable population for such
a species. Consider the modified logistic equation
dP dt= a bP P c . Solve this equation and
interpret the results. In particular, show that the popula-
tion eventually becomes extinct if P is ever less than c.

5. (Grossman and Turner) Biologists have discovered that
the growth, survival, and reproduction of cells are
determined by nutrients flowing across the cell walls.
During the early stages of a cell’s growth, the rate of
increase of the weight W of the cell will then be pro-
portional to its surface area. If the shape and density of the
cell do not change during growth, the weight will be
proportional to the cube of a radius while the surface area
is proportional to the square of a radius. Show that a
reasonable model for the growth of the weight of the cell

as a function of time is given by the solution of the dif-
ferential equation dW dt= cW2 3 where c is a positive
constant. Investigate the consequences of this model.
What are the limitations of this model of cell growth?
Develop a differential equation model that takes into
account the fact that theremay be amaximumweight that
the cell cannot exceed.

6. In experiments at Columbia University’s Institute of
Cancer Research, Fred R. Kramer and his associates
studied the growth of an RNA population in the pres-
ence of a fixed concentration of replicase molecules.
Kramer observed that the early stage of growth is nearly
exponential dP dt= aP , but that after a certain period
of time, population approaches linear growth
dP dt= b . Develop a differential equation model for
population growth consistent with these observations.
Solve the equation and interpret the results. Derive
some predictions from the model that Kramer can test
against his other experimental data.

7. Investigate discrete models that include logistic growth
with an Allee effect and examine conditions under
which chaos may arise. The paper by Elaydi and
Sacker cited in the online references is a good starting
point.
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CHAPTER
4

Ecological Models: Interacting
Species

There are craft standards in both mathematics and ecology and the

ideal interdisciplinary study simultaneously enhances our understanding

of the empirical world and constitutes an example of elegant

craftsmanship by both ecological and mathematical standards.

That is a difficult set of criteria, but there is no reason to believe that

science at its best is easy.

—Lawrence B. Slobodkin

I. Introduction
The previous chapter developed some models for population growth of a single species
inhabiting an environment in which the amount of resources never changed and the
numbers of other species also remained fixed. Although such a situation may sometimes
be approached in laboratory experiments, an effective mathematical model should not
ignore the fluctuations of the other important variables in an ecosystem.

In this chapter we present several models that attempt to represent the population
dynamics that can occur in a system when two or more species interact with each other in
the same environment. As is the case with most of the material in this book, we only
consider relatively simple models. We will look in detail at two particular models that were
the classic beginnings of mathematical ecology. They form the bases on which scientists
construct more sophisticated models.

Those readers unfamiliar with partial derivatives and the other basic ideas of the
calculus of several variables should read Appendix IV before tackling Section III.

II. Two Real-World Situations
A. Predator and Prey

Consider first the effects of interdependence of two species, one of which serves as food for
the other. A classic formulation of this situation is that of a population of gazelles, who feed
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only on grass, and a population of leopards, who feed exclusively on gazelles. The
assumptions usually made about the situation are these:

1. In isolation, the rate of change of population of one species is proportional to the
population of that species. In the absence of leopards, we assume that the gazelle
population will exhibit exponential growth. If there are no gazelles, the leopard
population will undergo a pure death process.

2. There is always so much grass that the gazelles have an ample supply of food. The
only food available to the predatory leopards are the gazelles.

3. The number of kills of gazelles by leopards is proportional to the frequency of
encounters between the two species. This, in turn, is proportional to the product of the
populations of gazelles and leopards. Thus, there will be few kills if there are few
gazelles or few leopards, andmany kills only when both populations are relatively large.

If G denotes the population of gazelles at time t and L is the number of leopards, then
the predator-prey model asserts that G and L are functions of time that satisfy the pair of
first-order differential equations

dG

dt
= aG− bGL

dL

dt
= mGL− nL

where a, b, m, and n are positive constants.
Although this model was initially developed to study actual animal populations, it has

been used to consider other interactions as well. In a series of research papers, George Bell
applied the concepts of this model to analyze the immune response to infections. When a
living being is infected by a replicating organism, such as bacteria or a virus, an immune
response may be produced. The response is characterized by the production of antibodies
that bind to the infecting material and hasten its destruction. Antigen plays the role of prey
(gazelles) and antibody the role of predator (leopard) [Bell, 1973]. Other scholars have used
variants of this model to study interactions between workers and capitalists [Goodwin,
1967] and between humans and vampires [Hartl et al. 1992]. Predator-prey analogies have
also been pursued to gain better understanding of the spread of epidemics and of revolutions
[Epstein, 1997].

B. Competitive Hunters

A different situation involving interacting populations is one in which two species have a
common prey or food source. Here the predators are in competition with each other. Each
removes from the environment a resource that would stimulate the growth of the population
of the other. We shall refer to this situation as one involving competitive hunters.
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The assumptions about this situation are somewhat similar to the ones set down in the
predator-prey case:

1. In the absence of one of the predators, the other predator’s population increases at a
rate proportional to its size.

2. There are sufficient numbers of prey to sustain any level of predator population.

3. The competition between the predators is proportional to the product of the popu-
lation of these two species.

If U and V denote the populations of the two predators, then the model asserts that U
and V are functions of time t satisfying the pair of differential equations

dU

dt
= aU − bUV

dV

dt
=mV − nUV

where a, b, m, and n again are positive constants.

III. Autonomous Systems
A. Three Autonomous Systems

In the discussion of mathematical models in this text, we have presented three different
pairs of differential equations: one for Richardson’s arms race between two nations, one for
a predator-prey relationship, and one for a competitive hunters situation. There are certain
similarities in these systems we want to explore.

In each of the three systems of differential equations, there are two variables, call
them x and y, which are functions of a third variable, say t. In each case, the model is an
assertion that a certain pair of differential equations involving these variables is true. The
models look like this:

Arms Race
dx

dt
= ay−mx+ r

dy

dt
= bx− ny+ s

Predator-prey
dx

dt
= ax− bxy

dy

dt
=mxy− ny

Hunters
dx

dt
= ax− bxy

dy

dt
=my− nxy

In all three models, the differential equations are of the type

dx

dt
= x′ t =F x,y

dy

dt
= y′ t =G x,y
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The rates of change of x and y are given as explicit functions of x and y alone and do
not include the third variable t.

Such systems of differential equations are called autonomous systems. A solution of
such a system is a pair of scalar functions x= x t and y= y t such that

x′ t =F x t , y t and y′ t =G x t , y t

for all t in some interval.
A nonautonomous system would have the form

dy

dt
=H x, y, t

dy

dt
= I x, y, t

where H and I are functions of the three variables. One such example would be the system

dx

dt
= xy− 2x+ sin t

dy

dt
=

x

t
+ y3

B. Some Mathematical Facts

If the functions F andG of an autonomous system and their first-order partial derivatives are
continuous in some domain D of the xy-plane, then the system always has a solution.
Furthermore, if x0,y0 is any point inD and t0 is any number, then there is a unique solution
defined on some interval about t0 satisfying the initial conditions x t0 = x0, y t0 = y0. (Any
advanced level differential equations text will contain a precise formulation and proof of
this existence-uniqueness result; in particular, see the books by Hirsch, Smale and Devaney,
or Hubbard and West listed in the References.)

It is a simple matter to check whether in our three models the functions F, G, Fx, Fy,
Gx, and Gy are continuous over the entire xy-plane. We leave this as an exercise.

Autonomous systems of differential equations have been extensively studied and
there is a rich literature about the nature of solutions to such systems. We will consider only
a few basic properties here.

As time t varies, a solution x= x t , y= y t of the system describes parametrically a
curve lying in the xy-plane. This curve is called an orbit, or trajectory, of the system.
Fig. 2.1 shows two possible orbits for the elementary spiraling arms race model
dx dt= ay, dy dt= bx.

In ecological models the concern is primarily with the possible values attained by x
and y and only secondarily with the times at which these values are achieved. What is
wanted, then, is information about the geometric nature of the possible orbits. The first
theorem we have asserts that the orbit is independent of the starting time.
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THEOREM 1 If x= x t , y= y t is a solution of the autonomous system

x′ t = F x, y

y′ t = G x, y

and t0 is any constant, then the functions x1 t = x t + t0 , y1 t = y t + t0 also give a
solution to the system.

Proof of Theorem 1 We must show that

x′1 t =F x1, y1 and y′1 t =G x1, y1

We can easily do this by making use of the chain rule for differentiation.
According to the chain rule,

x′1 = x′ t+ t0 t+ t0 ′= x′ t+ t0 1 = x′ t+ t0

and, similarly,

y′1 t = y′ t+ t0

Since x′ t =F x t , y t and y′ t =G x t , y t , replacing t by t+ t0, gives

x′1 t = x′ t + t0 =F x t+ t0 , y t + t0 =F x1 t , y1 t

and

y′1 t = x′ t + t0 =G x t+ t0 , y t + t0 =G x1 t , y1 t

which was to be shown. This concludes the proof. ⋄
It is very important to notice the basic distinction between a solution of the system

and an orbit of the system. An orbit is a curve that may be represented parametrically by
more than one solution. The pairs of functions x t , y t and x t+ t0 , y t + t0 , for t0 ≠ 0,
represent distinct solutions, but they represent the same curve parametrically—that is, both
solutions give rise to the same orbit.

Our second theorem guarantees that two distinct orbits for an autonomous system
cannot cross anywhere; otherwise there would be two different orbits through the same point.

Example

The pairs x t = cos t, y t = sin t, and x t = cos t+ π 3 , y t = sin t+ π 3 are different
solutions to the system x′ t = − y t , y′ t = x t . Both, however, represent the same orbit,
the familiar unit circle with equation x2 + y2 =1.
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THEOREM 2 Through any point there passes at most one orbit.

Proof of Theorem 2 Suppose, to the contrary, that C1 and C2 are distinct orbits that
both pass through the same point x0, y0 . Let x1 t , y1 t be a solution that represents
C1 parametrically, and let x2 t , y2 t be a solution representing the orbit C2.

The two orbits must reach the common point x0, y0 at different times, since
otherwise the uniqueness of the solutions would be violated. Thus there are distinct
numbers t1 and t2 such that

x1 t1 , y1 t1 = x2 t2 , y2 t2 = x0, y0

By Theorem 1, the pair of functions

x t = x1 t+ t1 − t2 , y t = y1 t+ t1 − t2

also serve as a solution to the autonomous system of differential equations.
Note now that x t2 = x1 t2 + t1 − t2 = x1 t1 = x0, and, similarly, y t2 = y0. By

the uniqueness of solutions of the system with prescribed initial values, the pair x t ,
y t is identical to the pair x2 t , y2 t . Thus, the orbit associated with x t , y t must be
C2. On the other hand, from the definition of x t , y t , we see that this pair is a
parameterization of the orbit given by x1 t , y1 t . Hence, the orbit associated with x t ,
y t must be C1. The conclusion is that C1 and C2 coincide and are not distinct. This
contradiction to the initial assumption that the orbits were distinct establishes the truth
of the theorem. ⋄

Armed with these two theorems and the existence-uniqueness result, we will be able to
show that the orbits of an autonomous systemmust either be single points or “simple” curves.

C. Types of Orbits

Consider the autonomous system of differential equations

dx

dt
= 7y− 4x− 13

dy

dt
= 2x− 5y+ 11

One simple solution to this system is the pair of constant functions

x t = 2

for all t

y t = 3

The orbit of this solution is the single point (2, 3) in the xy-plane. A quick calculation
shows that dx dt= dy dt= 0 at this point. This result is consistent with the fact that the
derivatives of constant functions are zero.
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More generally, suppose there is a constant solution x t = x0, y t = y0, for
−∞< t <∞, to an autonomous system. By the uniqueness of solution, no other orbit could
pass through the point x0, y0 . Since these are constant functions, it is true that

x′ t = 0, y′ t = 0, −∞< t <∞

and since the functions are solutions to the system, we have

x′ t = F x t , y t =F x0, y0
y′ t = G x t , y t =G x0, y0

Thus, if there is such a constant solution, it must be the case that

F x0, y0 =G x0, y0 = 0.

Conversely, if there is a point x0, y0 in the plane at which both F x0, y0 and
G x0, y0 equal zero, then certainly the constant functions x t = x0, y t = y0,−∞< t <∞
form a solution of the system.

The first step in the analysis of an autonomous system of differential equations is to
locate these special points.

DEFINITION Any point x0, y0 in the plane at which the functionsF andG are both zero
is called a critical point of the system. Any other point in the plane is called a regular point.

The critical points for this example can be found by graphing the curves F x, y = 0
and G x, y = 0 and determining their points of intersection. Here we have the intersection
of a circle and a straight line (see Fig. 4.1).

Other names for critical points are singular points, stable points, points of equi-
librium, and equilibrium states. You may think of a critical point as a point where the
motion described by the pair of differential equations of the system is in a state of rest;

Example

The autonomous system

dx
dt

= x2 + y2 −100=F x, y

dy
dt

= x− 2y+ 10=G x, y

has two critical points, (−10, 0) and (6, 8). The point (−8, 6) is a regular point, since
G − 8, 6 = − 10≠ 0, even though F − 8, 6 = 0. The point (0, 0) is also a regular point,
because F 0, 0 = − 100 while G 0, 0 = 10.
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both horizontal velocity dx dt and vertical velocity dy dt are zero. At a critical point,
both rates of change are zero so that if the orbit starts at such a point, it remains there
forever. You can find the critical points by determining the intersections of the two
“stable curves” F x, y = 0 and G x, y = 0. These curves are also called the nullclines of
the system.

Simple curve orbits
If an orbit begins at a position that is not a critical point, then at least one of the rates of
change, dx dt or dy dt, will be nonzero, and the orbit will move away from the point. In an
autonomous system, only two things are possible:

1. The orbit will never return to the starting point. This is illustrated in Fig. 2.1 where
the orbit is a piece of one branch of a hyperbola.

2. If the orbit ever returns to the starting point, it will simply retrace the same closed curve
over and over again. As an example of this, consider again the solution x t = sin t,
y t = cos t of the system dx dt = − y, dy dt = x whose orbit is the unit circle.

The orbit for an autonomous system can never cross itself to produce a path—for
example, like that traced out by a figure eight (see Fig. 4.2). This is true because the
velocities at any point, x′ t1 , y′ t1 , are completely determined by the coordinates of
the point x t1 , y t1 . If we come back to this point at a later time t2, then the velocities
are the same: x′ t2 = x′ t1 =F x t1 , y t1 and y′ t2 = y′ t1 =G x t1 , y t1 . In par-
ticular, the slopes of the tangent lines to the curve are the same at the two times, and so the
direction of motion is exactly the same both times.

In an autonomous system, the orbit is traversed in a fixed direction determined by the
system of equations. The direction could only be reversed if a critical point is reached or if
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(-10, 0)

FIGURE 4.1 The stable curves and critical
points for the autonomous system
dx dt= x2 + y2 − 100, dy dt= x− 2y+ 10.
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the curve crosses itself. We have seen that neither of these is possible if the orbit contains a
regular point.

Although the orbit can never actually reach a critical point if it does not begin at one,
it is possible to approach a critical point asymptotically. As an example, consider the system

dx dt = − x

dy dt = − y

This system has one critical point, the origin (0, 0). This corresponds to the constant
solution x t = y t = 0, −∞< t<∞. Another solution to the system is the pair x t =
y t = e− t, −∞< t <∞. This solution describes parametrically an orbit that is the subset of
the line y= x lying in the positive first quadrant. Since limt→∞ e− t = 0, the points of this
orbit asymptotically approach the origin as time increases.

We can obtain an approximation for the orbit of an autonomous system by using the
Euler method (see Chapter 2). For the system

x′ t =F x, y x 0 = x0
y′ t =G x, y with y 0 = y0

the sequence Pi + 1 where P0 = x0, y0 and Pi + 1 = xi + 1, yi + 1 and

xi + 1 = xi +F xi, yi Δt
yi + 1 = yi +G xi, yi Δt

generally provides a good approximation of the exact orbit if Δt is small and the functions
F and G are well behaved—for example, if both are differentiable. Other approximation
schemes, such as the Runge-Kutta method (see Suggested Project 13), may provide more
accurate pictures for the same-sized Δt.

D. Behavior Near a Critical Point

It is of some interest to discover how an orbit behaves in the neighborhood of a critical
point. In the ecological models, a critical point corresponds to a “steady state” of zero

FIGURE 4.2 If the orbit
begins at P, then the first
time it reaches the point
S, the tangent line will
have positive slope; the
second time it has nega-
tive slope. This curve
cannot be the orbit of an
autonomous system of
differential equations.

y

x

P

S
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population growth or decline for both species. What happens if population levels are near a
critical point, but not exactly at it?

We will be looking at three different kinds of behavior that may occur:

1. Stable equilibrium: Every orbit near a critical point always approaches it
asymptotically.

2. Unstable equilibrium: Orbits starting near the critical point always proceed away
from it.

3. Cyclical behavior: The orbits move around the critical point in tracing out simple
closed curves.

Examples of (1) and (2) occurred in the analysis of Richardson’s arms race model.
Cyclical behavior appears in the system dx dt= − y, dy dt= x, which has the origin as its
only critical point. The other orbits are circles centered at the origin. See also Figs. 4.3 4.5.

The basic properties of autonomous systems that have been developed here make
possible fruitful analysis of the ecological models presented at the beginning of this chapter.
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y

FIGURE 4.3 Stable equilibrium. Orbits that pass through regular points near the critical
point S asymptotically approach S.

S

x

y

FIGURE 4.4 Unstable equilibrium. Orbits that pass through regular points near the
critical point tend to move away from the critical point.
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y

FIGURE 4.5 Cyclical behavior. The orbits passing near the critical point form simple
closed curves moving around the critical point.
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IV. The Competitive Hunters Model
A. Initial Analysis

As in the study of the Richardson arms race model, analysis begins by locating the critical
points, the points where both time derivatives are zero. Since dx dt = x a− by , note that
dx dt = 0 along the lines x= 0 and y= a b. Similarly, dy dt= 0 along the lines y= 0 and
x=m n, since dy dt= y m− nx . There are two critical points: (0, 0) and m n, a b . Each
of these single points represents a possible orbit. If initially there are no members of either
species, then obviously there can be no gain or loss of any individuals. If there are exactly
m n members of one species and a b of the other at the start, then the populations will
remain at these levels indefinitely, according to the model.

We can also readily identify several other orbits for the competitive hunters system. If
x= 0 and y is positive at some instant, then at that moment, dx dt = 0 while dy dt=my> 0.
The population of the first species will remain at zero while the population of the second is
increasing. Geometrically, this means that the positive y-axis is a possible orbit. By a similar
argument, the positive x-axis is shown to be an orbit.

The one-point and open ray orbits just found are, of course, quite special and do not
indicate the shape of a more typical orbit. They give information, however, that helps
determine what those other orbits look like. For example, the fact that orbits cannot intersect
each other implies that an orbit that begins in the interior of the first quadrant must always
remain there; the boundaries of the first quadrant are made up of other orbits. Thus, if initially
there are positive numbers of each species present, then therewill always be positive numbers.

Continuing the analysis in the spirit of the Richardson model, note that the lines
y= a b and x=m n divide the first quadrant into four rectangular regions. The derivative
dx at is positive whenever y< a b and is negative when y> a b. The derivative dy dt is
positive if x<m n and negative if x>m n. These facts help establish the general drift of
the various orbits. These are indicated in Fig. 4.6.

Fig. 4.6 indicates that if initial population levels are in region IV where x>m n and
y< a b, then the population of the x species will increase, while the population of the y
species will decrease. The orbit would remain in region IV.

On the other hand, if initially the population of the y species is above its critical level
of a b while the numbers of the x species are below the critical level m n, then the former
species will flourish and the latter will decline. An orbit beginning in region II remains in
this region.

If both species are initially below their critical level, the orbit will begin in region III.
Analysis of the signs of dx dt and dy dt shows that both species will increase in numbers
for a while, but the ultimate behavior is unclear. The orbit might enter region IV, enter
region II, or asymptotically approach the critical point.

Analogous remarks may be made if the initial populations of both species are above
the critical levels, although in that case, both populations will decrease at the start.

B. Further Analysis

There is a powerful technique that sheds further light on the qualitative behavior of an orbit
of an autonomous system of differential equations. It is based on a theorem that asserts that
the nature of an orbit near a critical point S of the system dx dt=F x, y , dy dt =G x, y
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may be determined by expanding F and G in Taylor series about the point S and retaining
only the linear terms. The solutions of these linear equations near the critical point will often
have the same general qualitative nature as the exact solutions.

Some explanations are necessary here. Suppose that z= f x, y is a function of x and y
that behaves nicely near the point p, q = S. Let h and k be small numbers. A Taylor series
expansion of f about S is an infinite series of the form

f p,q + a1h+ a2k + a3h
2 + a4k

2 + a5hk + a6h
3 + a7h

2k +⋯

where each term is a constant multiple of a product of a power of h and a power of k. The
coefficients ai are found by evaluating partial derivatives of f of various orders at the point
S= p, q . The first two coefficients are a1 = fx p, q and a2 = fy p, q .

If the function f is “nice” near p, q , then the series converges to the value
f p+ h, q+ k . More exactly, if there is some circle centered at p, q inside of which all the
partial derivatives of f of all orders are continuous, then the series converges to
f p+ h, q+ k whenever p+ h, q+ k lies inside that circle.

Terminating the Taylor series at a finite number of terms would then give an
approximation to the value of f p+ h, q+ k . In particular, a crude approximation may be
obtained by using only the first three terms—that is,

f p+ h, q+ k ∼ f p, q + fx p, q h+ fy p, q k.

This approximation is a good one provided that h and k are both small in absolute
value; the error, in fact, is bounded by Ah2 +Bhk +Ck2 for fixed constants A, B, C. In this
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I < 0 < 0
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IV
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FIGURE 4.6 Signs of dx dt and dy dt for the competitive hunters model.
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approximation, we have neglected all powers of h and k beyond the linear terms. (A fuller
treatment of the Taylor series expansion is given in most textbooks on several variable
calculus; one reference is Section 3.2 of J. E. Marsden and A. J. Tromba, Vector Calculus,
New York: W. H. Freeman, 2011.)

In the competitive huntersmodel, the functionF x, y has the formF x, y = ax− bxy so
that Fx x, y = a− by while Fy x, y = − bx. At the critical point S= m n, a b , both func-
tions F and Fx are zero, while Fy m n, a b = − bm n. Applying the linearized Taylor series

F
m

n
+ h,

a

b
+ k ≈

−bm

n
k

approximation with f =F, p=m n, and q= a b, we conclude that

F
m

n
+ h,

a

b
+ k ≈

−bm

n
k

A similar analysis for G x,y =my− nxy shows that

G
m

n
+ h,

a

b
+ k ≈

−an

b
h

Define, next, two new variables u and v by u= x− m n and v= y− a b . Then
du
dt =

dx
dt and dv

dt =
dy
dt. Furthermore, x= m n + u and y= a b + v. The Taylor series

approximation can be rewritten as

F x,y ≈−
bm

n
v

G x,y ≈−
an

b
u

Thus, we have

du

dt
=

dx

dt
=F x,y ≈−

bm

n
v

dv

dt
=

dy

dt
=G x,y ≈−

an

b
u

By the theorem on the general nature of the orbit, we conclude that the orbits near the
critical point of the original system behave like the orbits of the simpler system

du

dt
=−

bm

n
v

dv

dt
=−

an

b
u
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The orbits of this simpler system are obtained by first noting that the chain rule gives

du

dv
=

b2m

an2
v

u

and separation of variables yields

an2udu= b2mvdv

Integrate and rewrite to obtain

an2u2− b2mv2 =K

where K is an integration constant.
Rewrite this last equation in terms of the original variables

am2 x−
m

n

2
− b2m y−

a

b

2
=K

which is the equation of a hyperbola in the xy-plane with center at m n, a b . The value of
the constant K depends on the initial population levels of the two species. Once these are
known, K may be determined, and with it which of the two branches of the hyperbola
represents the actual orbit. One branch of the hyperbola asymptotically approaches the
x-axis, and the other asymptotically approaches the y-axis.

The qualitative behavior of the orbits of the original competitive hunters model that
pass close to the critical point must be like the qualitative behavior of these hyperbolas—
that is, either the x values increase indefinitely as the y values tend to zero or the y values
increase indefinitely as the x values tend to zero.

C. Exact Orbits

To obtain the exact orbits for the competitive hunters model, note that the equations of the
system

dx

dt
= ax− bxy,

dy

dt
=my− nxy

may be combined into a single first-order differential equation:

dy

dx
=

my− nxy

ax− bxy
=

y m− nx

x a− by

Separating the variables and integrating gives

a− by

y
dy=

m− nx

x
dx
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and, when the aniderivatives are found,

a log y− by=m log x− nx+C

where C is an integration constant.
Exponentiate each side to obtain

yae− by =Kxme− nx

where K is the constant eC.
It is not possible to solve this last equation to obtain y as an explicit function of x.

However, it is possible, thanks to a technique invented by Vito Volterra, to obtain a graph of
this relationship in the xy-plane.

Volterra began by noticing that he could graph the functions v= xme− nx and
u= yae− by in the x, v and y, u planes, respectively, and that these graphs are similar in
form. Fig. 4.7 shows this curve for a particular choice of constants m and n.

The initial analysis showed that the orbit will remain in the first quadrant of the x, y -
plane. The other three quadrants will be used to represent the first quadrants of the
y, u -, u, v -, and v, x -planes, respectively. Fig. 4.8 indicates how to do this.

To find a point on the orbit of the solution to the system, use Volterra’s procedure:

1. Select a positive value for x—say, x0.

2. Determine the value v0 corresponding to x0 from the equation v= xme− nx.

3. Determine the value u0 corresponding to v0 from the relationship u=Kv.

4. Determine the y values (in general, there will be two) corresponding to u0 by finding
where the vertical line through u0, v0 intersects the curve u= yae− by.

5. Extend horizontal lines through these y values until they intersect the vertical line
through x0, 0 in the x, y -quadrant. These intersections determine points on the orbit.

FIGURE 4.7 The graph
of v= xme− nx with m= 6,
n= 2.
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If this procedure is followed for a large number of choices for x0, an accurate picture
of the orbit in the x, y -plane emerges (see Fig. 4.9). Note again that each orbit asymp-
totically approaches one of the coordinate axes, even if the initial point of the orbit is chosen
to be relatively far from the critical point. Although the Volterra mapping technique
requires careful graphing, it has greater applicability than the analytic technique of using the
linearized Taylor series expansion.

D. Interpretation of Results

The mathematical analysis of the competitive hunters model yields several conclusions:
Equilibrium is possible. There is a critical positive population for each species. If

each maintains that level, they can coexist in the same environment.
The equilibrium is highly unstable. If, at any instant, the population levels are not

at the critical sizes, then the effects of competition will be for one species to flourish and
the other to die out. If one species exceeds its critical size while the other fails to achieve
its, then the first one emerges triumphant. If both species are either above or below the
critical sizes, then more detailed knowledge of the size of the parameters a, b, m, and n
and exact numbers of initial population levels must be known to predict which species
will win out.

Two points
on orbit

(x0, y0)

(x0, y0’)

u = y a
e
-by

v = xm
e
-nx

u

u = Kv v0

x0

x

u0

y

v
FIGURE 4.8 Illustration of the Volterra
mapping technique.
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The prediction emerging from the model that only one species is likely to survive is
consistent with known biological laws. It is called the principle of competitive exclusion. The
noted zoologist ErnstMayr comments in his bookPopulations, Species and Evolution [1970]:

The result of competition between two ecologically similar species in the same locality is either
(1) the two species are so similar in their needs and their ability to fulfill these needs that one of
the two species becomes extinct, either (1a) because it is “competitively inferior,” that is, it has
a smaller capacity to increase or (1b) because even though competitively equivalent it had an
initial numerical disadvantage; or (2) there is a sufficiently large zone of ecological nonoverlap
(area of reduced or absent competition) to permit the two species to coexist indefinitely. In sum:
two species cannot indefinitely coexist in the same locality if they have identical ecological
requirements. This theorem is sometimes referred to as the Gause principle, after the Russian
biologist Gause who was the first to substantiate it experimentally. Yet . . . the principle was
known long before Gause. Darwin discussed it at length in his Origin of Species. . . . The
validity of this exclusion principle has been tested in numerous laboratory experiments in which
mixed populations of two species were established in a uniform environment. In virtually every
case, one of the two species was eliminated sooner or later.

How accurately the principle of competitive exclusion describes what occurs in the
very complex ecosystems that actually characterize the real natural world is a source of
much discussion among ecologists. As Thomas Ray notes:

Although the principle of competitive exclusion has been experimentally demonstrated in the
laboratory, and is considered theoretically sound, natural communities widely flout the prin-
ciple. In tropical rain forests, for example, several hundred species of trees coexist without any
dominant species in the community. All species of trees must spread their leaves to collect light

FIGURE 4.9 Orbits of the
competitive hunters
model. Here a= .5,
b= .3, m= .6, n= .2. The
critical points are (0, 0)
and (3, 5/3). 0 5
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and their roots to absorb water and nutrients. Evidently there are not several hundred niches
for trees in the same habitat. Somehow the principle of competitive exclusion is circumvented.

There are many theories on how competitive exclusion may be circumvented. One
leading theory is that periodic disturbance at the proper level sets back the process of com-
petitive exclusion, allowing more species to coexist. There is substantial evidence that moderate
levels of disturbance can increase diversity.

E. Modifying the Model

The competitive hunters model makes two major predictions:

1. One species will die out.

2. The other species will grow indefinitely numerous.

Thefirst prediction, as just noted, is consistentwithmany observations and experiments.
The second is not. The source of this second prediction is one of the assumptions made in
building themodel: in the absence of one of the species of hunters, the other species increases at
a rate proportional to its population size—that is, it would experience exponential growth.

To improve the model, this assumption should be replaced by a more realistic one.
Perhaps the assumption should be that in the absence of one species, the other species
experiences logistic growth. The reader is invited to formulate a model built on this
assumption and to derive the appropriate mathematical conclusions and real-world inter-
pretations from it.

V. The Predator-Prey Model
A. Analysis

We turn now to an examination of the predator-prey model, the system

dx

dt
= ax− bxy= x a− by

dy

dt
= mxy− ny= y mx− n

where a, b, m, n are positive constants, x is the population of prey (gazelles), and y is the
population of predators (leopards). As in the case of the competitive hunters model, dx dt= 0
along the lines x= 0 and y= a b, while dy dt= 0 on the lines y= 0 and x= n m. The critical
points are (0, 0) and n m, a b . The positive x-axis and the positive y-axis are also orbits.
All other orbits of interest are contained entirely in the first quadrant of the xy-plane.

The lines y= a b and x= n m divide the first quadrant into four rectangular regions.
The differences between the predator-prey model and the competitive hunters model
become evident when the signs of the derivatives dx dt and dy dt are determined in each of
these four regions. See Fig. 4.10. Note that dx dt is positive if y< a b and negative if
y> a b, while dy dt is positive whenever x> n m, but negative if x< n m. The general
drift of the orbits of the system is evident from Fig. 4.10.
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No matter where the initial population levels are located, the orbit will follow a
counterclockwise direction about the critical point. For example, if there are a small number
of gazelles and leopards at the start (initial level in region III), then the gazelle population
will increase at first, while the leopard population decreases. The small number of leopards
poses little threat to the gazelles, while the scarcity of gazelles means that the leopards have
a difficult time finding ample food.

When the gazelle population reaches a critical level of n m, then the leopard pop-
ulation also begins to increase. For a time, while the orbit is in region IV, both species
experience a growth in numbers. Eventually the leopard population exceeds its critical level
of a b. Now the leopards are sufficiently plentiful to endanger the gazelle population,
whose numbers begin to decline while the leopard population increases; the orbit is in
region I. When the gazelle population declines below n m, as the orbit enters region II, then
there is not a sufficient supply of prey to sustain a large leopard population. Both species
lose numbers until the orbit reaches region IV again.

The fluctuations of the populations then seem to be following a cyclical pattern of
some sort. What is not clear from this initial analysis is whether the orbits are spiraling
toward the critical point, spiraling away from it, or possibly exhibiting some other type of
oscillation. To answer this question, consider the linearized Taylor series expansion.

The functions to be approximated are F x, y = ax− bxy and G x, y =mxy− ny. The
calculations yield

F
n

m
+ h,

a

b
+ k ≈ −

bn

m
k

and

G
n

m
+ h,

a

b
+ k ≈

am

b
h

Make the change of variables u= x− n m , v= y− a b so that

du

dt
=

dx

dt
=F x,y ≈ −

bn

m
v

dy

dt
=

dv

dt
=G x,y =

am

b
u

FIGURE 4.10 Signs of
dx dt and dy dt for the
predator-prey model.
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The orbits near the critical point of the predator-prey system will have the same
general behavior as the orbits of the simpler system

du

dt
= −

bn

m
v

dy

dt
=

am

b
u

(For a proof of this claim, see Chapter 8 of Bruce P. Conrad, Differential Equations: A
Systems Approach, Upper Saddle River, NJ: Prentice Hall, 2003.) Using the fact that

du dv= − b2n am2 u v

we separate variables, integrate, and conclude that the simpler system has a solution
satisfying

am2u2 + b2nv2 =K

where K is a constant of integration. Rewriting this equation in terms of the original
variables gives

am2 x−
n

m

2
+ b2n y−

a

b

2
=K

This is the equation of an ellipse with center at n m, a b and with axes parallel to
the coordinate axes of the xy-plane. Near the critical point, the orbits are elliptical trajec-
tories centered at the critical point. The orbits do not spiral toward the point or away from it
(see Fig. 4.11).

It is possible to solve the simpler system for u and v explicitly as functions of t. This is
done by computing second derivatives with respect to t:

u″ =
− bn

m
v′=

− bn

m

am

b
u= − anu

v″ =
am

b
u′=

am

b

− bn

m
v= − anv

a/b

y

x
n/m FIGURE 4.11 Elliptical orbit of the linearized version of the predator-prey model.
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Note that both these equations are of the form z″= − pz, where p is a positive constant. The
general solution of such a second-order differential equation is z=A sin pt+B cos pt,
where A and B are constants. Thus, z is a periodic function with period 2π p.

The solution of the simpler system is a pair of functions of t, u, and v, with the same
period 2π p. Recalling that the average value of a continuous function f on an interval

[a,b] is defined as
β
α f t dt

β− α
, it is easy to check whether u and v have average values of 0.

Since u= x− n m and v= y− a b , this means that x and ywould have average values of
n m and a b, respectively. The conclusion is that near the critical point the trajectories
display periodic movement and are approximated by ellipses with period 2π p.

The Volterra mapping technique can be used to find a more exact orbit to the original
predator-prey model. Note that

dy

dx
=

G x,y
F x,y

=
y mx− n

x a− by

in the original system. After the variables are separated in this differential equation and
integration is completed, the solution looks like

a log y− by=mx− n log x+C

which we can rewrite as

yae− by xne−mx =K

For any particular choice of constants a, b, m, n, K, Volterra’s method gives a graph
of the set of all points x, y satisfying the equation. The only modification required in the
procedure of Section IV.C is in Step 3, where the relationship uv=K must now be used in
place of u=Kv. Note that Volterra’s method shows that for each x-value, there are at most
two y-values. Thus, the orbit for the predator-prey can not be spiral, for in a spiral, there
would be some vertical line (a particular x-value) that hit the orbit infinitely many times.
Fig. 4.12 shows a typical result.

B. Interpretation and Testing of Results

Alfred J. Lotka was the first person to formulate and study closely mathematical models of
interacting populations. In his 1925 book Elements of Physical Biology, Lotka considered a
wide variety of relationships that can occur between two species, including the models
presented in this chapter. Vito Volterra began to consider such models at the request of a
zoologist, Umberto D’Ancona, who was studying the variations in numbers of fishes caught
in the Adriatic during the period of World War I. Beginning in 1926, Volterra developed a
mathematical analysis for interactions among any number of species.

The early work of Lotka and Volterra has been revised and generalized by many
mathematicians and mathematical biologists and many experiments have tested the con-
clusions of their models in laboratory situations. The simple predator-prey model devised
by Lotka and Volterra predicts oscillations in the numbers of the two species. Such
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oscillations have been observed in experiments, but only in fairly complex ones. A common
outcome of simpler (and thus less natural) experiments is that the predators devour all the
prey and then die out themselves. In a carefully designed experiment, C. B. Huffaker in
1957 created a predator-prey oscillation using as prey a mite that feeds on oranges and
another species of mite as its predator. The Lotka-Volterra model compares reasonably well
with the observed data.

Population oscillations in the world have also been observed. E. R. Leigh, in a 1969
study, concluded that the fluctuations in the numbers of Canadian lynx and its primary food,
the hare, trapped by the Hudson’s Bay Company between 1847 and 1903 were periodic.
The observed period is not in good agreement with that predicted by the Lotka-Volterra
model. This may be because the numbers of animals trapped were not a fair representative
sampling of the actual populations, but more likely there are other environmental factors
affecting the lynx and the hare that are not included in the model.

An interesting property of the predator-prey model is revealed by considering the
effect of removing both species from the community in quantities proportional to their
numbers. This commonly happens when the environment is subject to pesticide sprays
inimical to both species. The effect is reflected by a decrease in the coefficient a and an
increase in the coefficient n in the differential equations defining the model. Since the
average number of predators is about a b and that of prey is about n m, the long-term
consequences are to decrease the average predator population while increasing the
average number of prey. One moral is clear: it can be self-defeating for man to use an
insecticide against a species whose population is already being controlled by a natural
predator.
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FIGURE 4.12 Orbits for the predator-prey system
dx dt= ax− bxy, dy dt=mxy− ny obtained from
the Volterra mapping technique. Here a= 5, b= 3,
m= 2, and n= 6. Critical points are (0, 0) and
(3, 5/3). All orbits move counterclockwise. The
constant K is determined by initial conditions
x0, y0 and is equal to

xn0y
a
0

eby0 +mx0
. At (3, 5/3), K = .156.
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An example reinforces this observation. The accidental introduction in the United
States of the cottony cushion insect icerya purchasi from Australia in 1868 threatened to
destroy the American citrus industry. To counteract this, a natural Australian predator, a
ladybird beetle (novius cardinalis) was imported. The beetles kept the scale insects down to
a relatively low level. When DDT was discovered to kill scale insects, farmers applied it
in the hopes of reducing further the scale insect population. DDT, however, was also fatal
to the beetle; the overall effect of using insecticide was to increase the numbers of the
scale insect.

C. Modifying the Model

Several variations of the Lotka-Volterra predator-prey model have been proposed that offer
more realistic descriptions of the interactions of the populations.

1. If the population of gazelles is always much larger than the number of leopards, then
the considerations that entered into the development of the logistic equation may
come into play. If the number of gazelles becomes sufficiently great, then the gazelles
may be interfering with each other in their quest for food and space. One way to
describe this effect mathematically is to replace the original model with the more
complicated system

dx

dt
= ax− bx2 − cxy

dy

dt
= mxy− ny

where a, b, c, m, n are positive constants.
2. Most predators feed on more than one type of food. If the leopards can survive on an

alternative resource, although the presence of their natural prey (gazelles) favors
growth, a possible alternative model is the system

dx

dt
= ax− bx2 − cxy

dy

dt
= mxy+ ny− py2

where a, b, c, m, n, p are positive constants.
3. P. H. Leslie and J. C. Gower studied a third variation, the system of equations

dx

dt
= ax− bxy

dy

dt
= c− e

y

x
y
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where the parameters a, b, c, e are again positive constants. Here the term y x arises
from the fact that this ratio ought to affect the growth of the predator. When
leopards are numerous and gazelles are scarce, y x is large and the growth of
leopard population will be small. Conversely, when the supply of gazelles is ample
for the leopards, y x is small and there is slight restriction on the increase of the
predators.

The orbits associated with the Leslie-Gower model are curves that spiral in
toward the critical point. Fig. 4.13 illustrates a typical situation of this stable
equilibrium.

4. The original predator-prey model and the variations just discussed all reflect an
assumption that the predators are insatiable: there is no upper limit to the amount of
prey they will consume. In reality, however, limits on gut size and time available for
hunting indicate that the consumption rate should approach an upper bound as the
prey density increases.

20.00

0.00
0.00 25.00 50.00

x

40.00 y

40.00

20.00

0.00 2.00 4.00

x(t)

y(t)

6.00 8.00
0.00

t

FIGURE 4.13 Results of the Leslie-Gower model for
a predator-prey system. Here dx dt= ax− bxy,
dy dt= c− e y x y. The curves illustrated are for
a= 1, b= .1, c= 1, e= 2.5 and initial populations
x0 = 80, y0 = 20. The critical point is (25, 10). The top
graph shows the orbit of a solution of the system of
differential equations; it spirals in toward the critical
point. The bottom graph shows x and y as functions of
t. From E. Pielou, An Introduction to Mathematical
Ecology, New York: John Wiley, 1969. Reprinted by
permission of the publisher and author.
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Gary Harrison [1995] proposed a generalization of the Lotka-Volterra equations,
which includes a term, f x , measuring a functional response of the predator as prey
population increases. His equations have the form

dx

dt
= ax 1−

x

k
− bf x

dy

dt
= mf x y− ny

dx

dt
= ax 1−

x

k
− bf x y

dy

dt
= mf x y− ny

Note that Harrison’s approach also uses the more realistic assumption that prey
experience logistic growth in the absence of predators. Michael L. Rosenzweig and Robert
H. MacArthur studied this model using the function

f x =
x

c+ x

which gives a “saturation” effect in functional response when prey is abundant. Fig. 4.14
shows two typical orbits for the Rosenzweig-MacArthur model. Predator and prey popu-
lations do oscillate over time, but an orbit does not close up; it approaches a closed curve,
called a stable limit cycle.

The detailed development and analyses of these variations and the creation of new
ones are left as suggested modeling projects for the reader.

FIGURE 4.14 Two
trajectories in the (prey,
predator)-plane converg-
ing to a stable limit cycle
in Harrison’s model. 0

0

1

2

p
re
d
at
or

2 3prey

130 CHAPTER 4 Ecological Models: Interacting Species



VI. Concluding Remarks on Simple Models
in Population Dynamics

“Criticizing mathematical models in ecology,” the American mathematical biologist
George Oster once wrote, “is like harpooning a blimp; it is almost impossible to miss, and
every thrust is likely to be fatal!”

It is easy to list many ecological factors that have been omitted from the simple
models considered here:

1. Nonuniformity of the environmental conditions. The ecological system under inves-
tigation will not be uniform in either space or in time. The simple models will then
have their best validity only over small geographical areas and short periods of time.

2. Individual differences in organisms constituting the population. The growth rate for a
population of gazelles, for example, is only an average for the entire population and
may differ markedly among individuals, especially those of differing ages.

3. Immigration and emigration. Except in carefully controlled laboratory experiments,
the ecosystem is not isolated from the rest of the world. Animals may enter or leave
at any time.

4. Spatial clumping of the organisms so that the effects of density dependence will not
be the same everywhere.

5. Effects of time lag in the response of organisms to environmental change. The simple
differential equations models assert that growth rates adjust instantaneously to
changes in population levels.

6. Effects of other species that interact with the system. Gazelles have other enemies
than leopards, for example, while leopards do not limit their diet to gazelles.

7. Random disturbances. An unexpected fire, flood, or epidemic affects population
levels immediately and often with catastrophic results.

Even though we have not taken into account these and many other factors, it
sometimes is found that actual populations behave in a manner very similar to that
predicted by the simple models. There are several possible explanations for this:

▪ The factors neglected may indeed be of negligible importance.
▪ Some of the neglected factors may be important, but may cancel each other out.
▪ The resemblance of a model to the real-life process it is intended to represent may

not be as close as it seems. Closer investigation of the predictions of the model
and the actual situation may reveal crucial differences.

These three explanations should always be considered in the evaluation of any
mathematical model of a real-world phenomenon.

Scholars in fields far removed from ecology have found the models we have studied
in this chapter to be useful in the analysis of other situations that involve human interac-
tions. We’ll briefly mention a few here.

In trying to gain a deeper understanding of revolutions, Jason Epstein initiated the use
of a variation of a predator-prey model. Noting that revolutionaries have widely varying
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goals—overthrow a monarchy, install a theocracy, establish a democracy—Epstein sought
a mathematical model whose dynamic behavior mimicked revolutionary processes in
general, “regardless of their political ‘substance.’”

Epstein considers a population divided into two groups whose populations change
over time. Here y t represents the number of individuals actively involved in articulating
“a revolutionary vision” and winning over converts from a population x t of persons
thought to be receptive the idea of revolution. The revolutionaries gain in numbers by
winning over individuals to their side but lose strength when they are imprisoned by the
authorities. One mathematical model Epstein considers has the form

dx

dt
= ax− bxy

dy

dt
= bxy− cy

where the positive constants a, b, and c measure, respectively, the intrinsic growth rate of
the x population, the conversion rate, and the imprisonment rate.

Richard Goodwin employed a Lotka-Volterra model to study cycles in economic
growth rates. Goodwin’s model incorporates many factors such as output, capital, wage
rates, labor productivity, workers’ share of product, labor supply and employment, but ends
up as a classic predator-prey pair of differential equations. Roberto Veneziania and Simon
Mohunb [2006] describe Goodwin’s model as “one of the first and most elegant dynamic
formalisations of Marx’s theory of distributive conflict and a seminal contribution in the use
of non-linear models drawn from mathematical biology to analyse economic phenomena.”

Several tongue-in-cheek papers about vampires have been published in serious
academic research papers. Most begin with the model [Hartl et al. 1992]:

H′ t = nH − dVH

V ′ t = dVH − aV

where H is the stock of humans in an isolated Transylvanian community and V is the
number of vampires. The parameters d, n, and a are positive constants, where d is a contact
coefficient, n is the growth rate of the human population, and a is the “death rate of
vampires due to contact with sunlight, crucifixes, garlic, and vampire hunters.” Note that
this pair of equations is equivalent to the Lotka-Volterra model.

Anthropologist Jeffrey Brantingham and his colleagues at UCLA used Lotka-
Volterra equations to study the territories of rival gangs. Theirmodel [Brantinghamet al. 2012]
predicted that 59% of gang crimes would occur within two blocks of a border between two
gangs and 87.5% would occur within about three blocks. When the researchers mapped more
than 500 crimes attributed to 13 gangs in Los Angeles, they found that, in fact, 58% and 83%
occurred within two blocks and three blocks of a border, respectively. This research may
eventually be used to identify zones to bemore intensively patrolled by police with the goal of
disrupting assaults and murders perpetrated by gangs.

In your earlier study of mathematics (see also Chapters 1 and 3), you saw many
different applications where the underlying mathematical model was the differential
equation for exponential growth. It should not be surprising, then, that the same system of
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nonlinear differential equations may arise in the study of a wide variety of situations that, on
the surface, may appear to have nothing to do with each other. The term dynamical
analogies is used to describe processes whose mathematical descriptions have the same
functional form where we can put into one-to-one correspondence the variables and
parameters. “It is a startling fact,” Epstein [1997] notes, “that a huge variety of seemingly
unrelated processes are analogous in this sense. . . . Analogy . . . has played a powerful
role in the development of science, engineering and also social science.”

Employing the same mathematical model to study diverse phenomena is often cited
as an example of the unifying power of mathematics and certainly has a strong aesthetic
appeal. But it also has a powerful practical purpose. As Harry Olson [1958] argued:

Analogies are useful for analysis in unexplored fields. By means of analogies an unfamiliar
system may be compared with one that is better known. The relations and actions are more
easily visualized, the mathematics more readily applied and the analytical solutions more
readily obtained in the familiar system.
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Alfred J. Lotka

A. Alfred James Lotka

The father of demographic analysis, Alfred James Lotka (1880 1949) made many
important early contributions to the development of a mathematical approach to the study of
social phenomena. Besides his own considerable research on population theory, evolu-
tionary processes, and self-renewing aggregates, Lotka wrote books and articles informing
social scientists and the general public of new developments in science and suggesting
ways that mathematics might be used to study behavior.

Lotka was born in Lemberg, Austria (formerly Lwów, Poland, and now Lviv,
Ukraine), on March 2, 1880. His father Jacob, a convert from Judaism to Christianity,
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headed a group of missionaries associated with the London Society for Promoting Chris-
tianity Amongst the Jews. Alfred Lotka received his early education in France, but obtained
his professional training in England (Birmingham University), Germany (University of
Leipzig), and the United States (Cornell, Johns Hopkins). This variety of educational
background produced in his works, according to one critic, “a happy alliance of the
deductive turn of the French spirit, the pragmatic tendency of the English character, and the
Germanic concern for precision and erudition.”

After his arrival in the United States in 1902, Lotka worked as a chemist for a
commercial chemical company, an assistant in physics at a major university, an editor for
Scientific American publications, and an examiner for the U.S. Patent Office. In 1924, he
joined the statistical bureau of the Metropolitan Life Insurance Company in New York
City. During the quarter century he worked for Metropolitan, Lotka developed system-
atically and in collaboration with others the demographic analysis he had initiated as a
young man.

His 95 technical papers and six books comprise “permanent contributions of high
scholarly standing” according to Frank W. Notestein. He wrote, “To Dr. Lotka’s work, the
field of demography owes virtually its entire central core of analytical development.”
Among his major discoveries was a demonstration of how a closed population (no immi-
gration or emigration) develops a stable age distribution and a characteristic rate of increase.
Lotka showed how the intrinsic growth rate should be computed and revealed how mis-
leading is the more naive approach that uses only the crude difference between birth and
death rates.

Lotka’s most significant impact on the progress of mathematical modeling has been
through his book Elements of Physical Biology. Originally published more than 80 years
ago, it was reissued in 1956 under the more descriptive title Elements of Mathematical
Biology. In reviewing the book, Herbert A. Simon [1959] discussed its contribution:

A sect—and by any reasonable definition, mathematical social scientists formed one—needs
arcana, as source both of its special wisdom and of passwords by which its members can
recognize each other. In the Thirties, a person who had read Lotka’s Elements of Physical
Biology and Richardson’s Generalized Foreign Policy, and who was acquainted with the
peculiar empirical regularities compiled by Zipf was almost certainly a fellow-sectarian. These
works represented a large fraction of the literature, outside of economics, in mathematical
social science. . . . It is easy to show that much that has happened in mathematical social
science in the thirty years since the publication of the first edition of Elements of Physical
Biology lies in the direction along which the book points.

Simon [1959] describes Lotka as a “forerunner whose imagination creates plans of
exploration that he can only partly execute, but who exerts great influence on the work of
his successors—posing for them the crucial questions they must answer, and disclosing
more or less clearly the directions in which the answers lie.”

Lotka was widely respected by his colleagues who elected him to the presidencies of
the American Statistical Association and the Population Association of America.
“Dr. Lotka was a scientist of the first rank, but he was much more,” wrote Notestein [1950].
“His popular writings . . . reveal a delicate sense of humor and a deep consideration of the
arts. A quiet, learned, modest, and gently humorous man, a wise counselor . . . Dr. Lotka
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will always be held in highest esteem by his colleagues of the demographic profession
among whom his is the greatest name, and by his friends, who valued the man above his
knowledge.”

Lotka’s attitude toward the role of scientific models can be seen in some excerpts of
an article on Einstein’s theory of relativity that he wrote for a general audience in 1920
[Lotka, 1920]:

One of the foremost aims of science is to build up a conception of the world which shall
correspond more and more closely with our experience. As the scope of our experience, our
observation, enlarges we shall naturally be forced, from time to time, to modify the world-
picture we have already formed. . . .

We must seek to overcome mental inertia, to liberate ourselves from preconceived ideas.
History has taught us that men are apt to fail to distinguish the absurd, the illogical, from the
merely unfamiliar. Profiting by former experience of the race, we may reasonably expect to cut
short our term of apprenticeship. . . .

We are so constituted that of the world in which we live we perceive at any instant only
one aspect, a snapshot, as it were, taken from the point of space and time at which we happen to
be stationed. . . .

The thing of paramount importance to us humans, living in a real world, is not what
relations ought to exist among our observations, but what relations actually do exist. If there is
disagreement, we shall do well to change our conceptions to fit the facts, for facts are stubborn
things which refuse to adapt themselves to fit our conceptions

It is not for us to shape the external world in accordance with our concepts; we must
build up our conceptual world-picture in accordance with observation. If a new observation
cannot by any manner of means be made to fit into our conception of the world, we may be
forced to change that conception.

B. Vito Volterra

Born in Ancona, Italy on May 3, 1860, Samuel Giuseppe Vito Volterra was an only child of
a Jewish family of modest means. His father died when Volterra was barely 2 years old. He
began the serious study of arithmetic and geometry at age 11 and was pursuing calculus by
the time he was 14. Resisting his family’s wishes that he enter a commercial profession,
Volterra opted for a scientific career. He was awarded his doctorate in physics from the
University of Pisa in 1882. He served first as a professor of mechanics and of mathematics
at Pisa and later spent 30 years on the faculty of the University of Rome.

Volterra was the leading Italian mathematician of his day and was a central figure in
international academic, intellectual, and political circles. He served as president of the
world’s oldest scientific society, the Academia dei Lincei (a post once held by Galileo), and
founded and headed Italy’s National Research Council. When he was 45, Volterra was
appointed a senator of the Kingdom of Italy, serving as a member for life of Parliament’s
upper house.

Volterra’s major contributions to pure mathematics lay in the development of
functional analysis and the theory of integral equations. By means of the functional cal-
culus, Volterra was able to show that the Hamilton-Jacobi theory of the integration of the
differential equations of dynamics could be extended to more general problems of
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mathematical physics. His research work on problems of elasticity is also quite well known
and led to his creation of a fairly general theory of “dislocations.”

R
ep

ro
du

ce
d

w
ith

pe
rm

is
si

on
fr

om
Is

tit
ut

o
de

lla
E

nc
ic

lo
pe

di
a

It
al

ia
na

fo
nd

at
a

da
G

io
va

nn
i

T
re

cc
an

i

Vito Volterra

At the outbreak of World War I, Volterra and others organized meetings and dis-
tributed propaganda urging Italy to enter the war on the side of the Allies. When Italy did
so, Volterra enlisted in the armed forces, joining the air force at the age of 55. He estab-
lished the Office of War Inventions in Italy and traveled frequently to England and France
in order to help promote technical and scientific cooperation among the Allies.

After the war, Volterra resumed his position at the university in Rome. His most
important work after 1918 was in the field of mathematical biology. Volterra investigated in
great detail complex models for the interaction of species. We have seen that the Lotka-
Volterra model predicts the existence of periodic fluctuations in the predator and prey
species. Ecologists had previously observed such fluctuations, but had generally believed
them to be explained only by external causes.

Volterra was drawn into studying this problem by a request from his son-in-law.
Volterra’s daughter Luisa had married her thesis advisor, a young marine biologist
Umberto D’Ancona. D’Ancona had been examining data from the fish markets in Italian
cities on the Adriatic between 1914 and 1923, a decade that included World War I. “He
asked me,” Volterra recalled, “if it were possible to give a mathematical explanation of the
results he was getting in the percentages of the various species in these different periods.”
Volterra’s subsequent research in mathematical models in biology resulted in more than 30
papers and books.

Volterra rebelled against the anti-Semitic Fascist government of Mussolini that held
power in Italy from the 1920s until the early years of World War II. When Volterra refused
to take an oath of allegiance to the government, he was stripped of his university position in
1931 and forced the next year to resign from all Italian scientific academies. He continued
his mathematical research nonetheless and published continuously until shortly before his
death on October 11, 1940. His published papers, numbering nearly 300, have been col-
lected in five large volumes.
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In her introduction to Volterra’s biography, Judith R. Goodstein [2007] notes the
situation 3 years after his death:

Volterra died in such obscurity that when the Nazis occupied Rome in 1943, German soldiers
knocked on the door of his house . . . confidently expecting to arrest him and deport him to a
concentration camp.

Volterra’s life exemplified the post-unification rise of Italian mathematics, its promi-
nence in the first quarter of the 20th century, and its precipitous decline under Mussolini. This
intellectual history in turn parallels the rise of Italian Jewry in the latter half of the 19th century
and its travails during the Second World War. The meteoric rise and tragic fall of Volterra and
his circle thus constitutes a lens through which we may examine in intimate detail the fortunes
of Italian science in an epic scientific age.

EXERC I S E S

II. Two Real-World Situations

1. Is the relation between a parasite and its host the same
as that between predator and prey?

2. What assumptions underlie the conclusion that fre-
quency of encounters between two species is propor-
tional to the product of the two populations? Are these
assumptions reasonable?

3. Show that the system dG dt= aG− bGL, dL dt =
mGF − nL reflects the three verbal assumptions made
about the predator-prey situations.

4. Formulate another model that is consistent with the
verbal assumptions about predator-prey situations.

5. Show that the system dU dt= aU − bUV , dV dt =
mV − nUV reflects the verbal assumptions made about
the competitive hunters situation. Formulate a different
model consistent with these assumptions.

III. Autonomous Systems

6. Show that y= 0, x= eat is a solution of both predator-
prey and competitive hunters models. What do the
orbits look like? In which direction are they traced out?
Answer the same questions if it is specified that x= 0 is
one of the functions in a solution.

7. Show that the functions F, G, Fx, Fy, Gx, Gy are
continuous over the entire xy-plane in the cases where
F and G come from

(a) Richardson arms race model

(b) Predator-prey model

(c) Competitive hunters model

8. Verify the details of the claims related to the example
presented immediately before Theorem 2.

9. Show that in general, the Richardson arms race system
has only a single one-point orbit.

10. Can the predator-prey or competitive hunters models fail
to have two distinct one-point orbits? Why, or why not?

11. A critical point S of an autonomous system is called an
isolated critical point if there is a circle of positive
radius centered at S inside of which there are no other
critical points.

(a) Show that the critical points of the predator-prey
and competitive hunters models are isolated.

(b) Find an autonomous system with a nonisolated
critical point.

12. An isolated critical point S of an autonomous system
is stable if, given any positive number ɛ, there is a
positive number δ such that (1) every orbit in the
δ-neighborhood of S for some t= t1 is defined for all
t> t1 and (2) if a trajectory satisfies (1), it remains in
the ɛ-neighborhood of S for t > t1.

Are the critical points of the ecological models
that are presented in this chapter stable?

13. A stable critical point is called asymptotically stable if
every orbit satisfying (1) and (2) of Exercise 12 also
satisfies limt→∞ x t , y t = S.

Are the critical points of the ecological models
presented in this chapter asymptotically stable?

14. Which cases of the Richardson arms race model
exhibit stable equilibrium? unstable equilibrium?

EXERCISES 137



15. Check whether x= y= e− t is a solution of the system
x′= − x, y′= − y. Can you find any other solutions?

IV. The Competitive Hunters Model

16. Can Euler’s method be applied to analyze this model?
What are the results?

17. Find a linearized Taylor series expansion for each of
the following functions about the indicated point:

(a) F x, y = y x about (1, 2)

(b) F x, y = sin xy about (0, 0)

(c) F x, y = y+ log x, about (4, 1)

18. If G x, y =my− nxy, show that the Taylor series
approximation gives

G
m

n
+ h,

a

b
+ k ≈ −

an

b
h

19. Use linearized Taylor series to study the nature of
orbits of the competitive hunters model near the critical
point (0, 0).

20. Consider the function f x = xme− nx, where m and n
are positive constants, and suppose that the domain of
f is the set of all nonnegative numbers.

(a) Show that f x ≥ 0 for all x≥ 0.

(b) Show that f x = 0 if and only if x= 0.

(c) Use l’Hôpital’s rule to determine limx→∞ f x .

(d) By consideration of the first derivative, show that f
has a maximum value when x=m n. What is the
maximum value?

(e) Find the points of inflection and regions of positive
and negative concavity in the graph of f .

(f) Sketch a careful graph of f .

21. Choose numerical values for the parameters in the
competitive hunters model, and use the Volterra
mapping technique to locate at least a dozen points on
an orbit of a solution.

22. The competitive hunters model is approximated, near
the critical point m n, a b by the simpler system
u′ t = − bm n v, v′= − an b u. Compute u″ t and
v″ t and solve the resulting second-order differential
equations to find exact solutions for u and v as func-
tions of t. (This problem requires knowledge of dif-
ferential equations beyond that demanded in the text.)

23. The equation am2 x− m
n

2
− b2m y− a

b
2 =K does not

represent a hyperbola if K = 0.

(a) What does it represent?

(b) Are there initial levels of population x0, y0 that
would make K = 0?

(c) If K = 0, show that the orbit asymptotically may
approach the critical point. Does this contradict
the principle of competitive exclusion?

V. The Predator-Prey Model

24. Verify the details of the linearized Taylor series
expansion for the predator-prey model.

25. Check whether z=A sin pt+B cos pt satisfies
z″= − pz.

26. What can you say about the nature of the orbits for the
predator-prey model if initial population levels make
the constant K = 0 (Fig. 4.12)?

27. Carry out the indicated integration to verify that the
average values of u and v are 0.

28. Use the Volterra mapping technique to graph some
orbits of the predator-prey model if a= 4, b= 2, m= 3,
and n= 1.

29. The orbits of the competitive hunters model are the
graphs of solutions to the first-order differential equation

dy

dx
=

my− nxy

az− bxy
while orbits of the predator-prey model are graphs of
solutions to the equation

dy

dx
=

mxy− ny

ax− bxy

By consideration of d2y dx2 discuss whether
the orbits have inflection points.

30. (Kemeny and Snell) The predator-prey and competitive
hunters models are special cases of the more general
model

dx dt = xG y

dy dt = yH x

where G 0 and H 0 are nonzero.

(a) Find the critical points of such a system.

(b) Are there any one-point orbits? Straight-line
orbits?
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(c) Prove that if x0 > 0 and y0 > 0, then x t > 0 and
y t > 0 for all t, where x0 = x 0 and y0 = y 0 .

(d) By consideration of dy dx, find an equation whose
graph is the orbit of such a system.

(e) Prove that if the solution is periodic, of period
T , then

T

0
H x dt =

T

0
G y dt= 0

(f) Let p, q be a critical point in the first quadrant
other than the origin. Prove that the approximate
orbits near this point are hyperbolic if
G′ q H′ p > 0, and are elliptic if G′ q H′ p < 0.

(g) Show that the behavior of the solutions on the axes
and near the origin depends only onG 0 andH 0 .

(h) Show that these results are consistent with the
information obtained about the predator-prey and
competitive hunters models.

SUGGES T ED PRO J ECTS

1. Re-examine the analysis of the arms race model of
Chapter 2 in the light of the mathematical techniques
presented in this chapter. Now that you know more
about autonomous systems, you ought to be able to say
more. Can you?

2. How does Bell modify the predator-prey model to
study the immune response to infections? What are his
conclusions? (See References.)

3. Generalize the competitive hunters model to reflect the
assumption that one species experiences logistic pop-
ulation growth in the absence of the other. Formulate
the model as a system of differential equations. Ana-
lyze the model using the techniques of this chapter.
What are the conclusions? Are they consistent with
observed behavior?

4. Analyze mathematically one or more of the three sug-
gested variations of the predator-prey model. How do
the conclusions differ from those of the simpler model?

5. Consider an ecological system with three interacting
species that contains both predator-prey and competi-
tion as features. Formulate a system of differential
equations to model this situation. Analyze the mathe-
matical system and interpret the conclusions.

6. If the constants b and n are taken to be negative in the
competitive hunters model, the resulting model repre-
sents what ecologists label mutualism or symbiosis.
This is a relationship in which both species gain from
their association with each other. It is a relationship
favored by natural selection and is very common in
nature. Find some instances of mutualism. Analyze the
mathematical model. Interpret the results.

7. Modify the predator-prey model by assuming that in the
absence of predators, the growth rate of the prey is
constant instead of being proportional to the prey

population—that is, dx dt= a− bxy. Analyze this var-
iation using the techniques developed in this chapter.

8. Investigate the field of “mathematical vampirology.”
Examine how the Lotka-Volterra model is the starting
point for investigation such questions as “What is the
optimal bloodsucking policy for the vampires?” and
“Howmuchof human labor should go for the production
of stakes to kill vampires?” See the papers by Richard
Hartl, Gustav Feichtinger, Alexander Mehlmann,
Andreas Novak, and Dennis Snower listed below.

9. Examine Goodwin’s [1967] Class Struggle Model of
the relationship between wage-earning workers and
profit-earning capitalists where cyclical behavior is
captured. High employment generates wage inflation,
which can increase the wage share of workers in out-
put, lowering the profits of capitalists and reducing
future investment and output. That reduction in output
will in turn decrease labor demand and employment,
consequently driving down the wage share of workers.
But as wage share declines, then profits and hence
investment increase, leading to greater employment.
Then the bargaining power of workers improves and
consequently their wages—and the rest of the cycle
then repeats itself. Determine how the additional fea-
tures Goodwin considers (e.g., growth in labor supply
and improved productivity) affect the results of the
Lotka-Volterra framework with which he began.

10. Analyze how Joshua Epstein [1997] expands on the
Lotka-Volterra model to analyze political unrest and the
spread of revolutionary ideas. Critically examine how
he handles what he describes as (a) explosive uphea-
vals, (b) revolutions that fizzle for lack of a receptive
population, (c) revolutions that spread but that are
reversed and crushed by an elite, (d) longer-term cycles
of revolutionary action, (e) endemic levels of social
discontent, and (f) traveling waves of revolution. What
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features of revolutionary action does he omit? How
might they be reflected in a revised model?

11. Analyze the Rosenzweig-MacArthur version of
Harrison’s model using the techniques we’ve developed
in this chapter. Consider other choices for the response
function f x and analyze the resulting models.

12. Formulate and study a discrete dynamical version of
one of the competition or predator-prey models. Do the
discrete and the continuous models produce the same
qualitative results? Are there values for the parameters
that lead to chaos?

13. Analyze the behavior of the predator-prey or compet-
itive hunters models if one or more species is subject to
a strong Allee effect.

14. Carle Runge (1856 1927) and Martin Kutta
(1867 1944) developed numerical methods for approx-
imating solutions of systemsof differential equations.One
of the most popular is the Runge-Kutta Method of
Order 4. It generates approximate points for the orbit of
an autonomous system of differential equations

x′ t =F x, y , x 0 = x0

y′ t =G x, y , y 0 = y0

by the computations

h1 = F xi, yi Δt
k1 = G xi, yi Δt h2 = F xi +

h1
2
,yi +

k1
2

Δt

k2 = G xi +
h1
2
,yi +

k1
2

Δt

h3 = F xi +
h2
2
,yi +

k2
2

Δt

k3 = G xi +
h2
2
,yi +

k2
2

Δt

h4 = F xi + h3, yi + k3 Δt

k4 = G xi + h3, yi + k3 Δt
h =

h1 + 2h2 + 2h3 + h4
6

k =
k1 + 2k2 + 2k3 + k4

6

Then let
xi+ 1 = xi + h
yi+ 1 = yi + k

.

Use the Runge-Kutta technique to plot orbits for
the competition and predator-prey models. Investigate

the accuracy of the Runge-Kutta method as compared
to the Euler method. What is the geometric basis for
the Runge-Kutta approach? Most differential equations
texts will provide an introduction.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
5

Tumor Growth Models

What we call growth of even a simple organism is a tremendously

complex phenomenon from the biochemical, physiological, cytological

and morphological viewpoints. There are, however, certain aspects that

are amenable to quantitative analysis, and such an approach appears to

lead to some insight into the connections between metabolism and

growth, and to some answer to the seemingly trivial, but in fact hardly

explored question, “Why does an organism grow at all, and why, after a

certain time, does its growth come to a stop?”

—Ludwig von Bertalanffy

I. Introduction
Cancer is a leading cause of cause of death worldwide, accounting for nearly 8 million
deaths per year. Experts predict that deaths globally will continue rising, with an estimated
9 million people dying from cancer in 2015 and 11.4 million succumbing in 2030. Thus,
cancer poses major public health questions.

Cancer is a generic term for a large class of diseases that can affect any part of the
body; malignant tumors and neoplasms are often used as synonyms. A characteristic
feature of cancer is the rapid creation of abnormal cells growing beyond their usual
boundaries and often invading adjoining parts of the body, spreading to other organs. Many
cancers can be detected early and powerful treatments exist. Yet our understanding of
cancer is far from complete, and a diagnosis of cancer often results in great anxiety and fear
for the patient. The writer Susan Sontag has noted how frequently words such as “horror”
and “dread” are associated with cancer. In her book Illness as Metaphor, she argues that
cancer is often seen “as no mere disease but a demonic enemy”:

Two diseases have been spectacularly, and similarly, encumbered by the trappings of meta-
phor: tuberculosis and cancer. The fantasies inspired by TB in the last century, by cancer now,
are responses to a disease thought to be intractable and capricious—that is, a disease not
understood—in an era in which medicine’s central premise is that all diseases can be cured.
Such a disease is, by definition, mysterious. For as long as its cause was not understood and the
ministrations of doctors remained so ineffective, TB was thought to be an insidious, implacable
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theft of a life. Now it is cancer’s turn to be the disease that doesn’t knock before it enters,
cancer that fills the role of an illness experienced as a ruthless, secret invasion—a role it will
keep until, one day, its etiology becomes as clear and its treatment as effective as those of
TB have become.

Understanding the dynamics of cancerous tumor growth may help develop better
prognoses for patients and more effective treatment plans. In this chapter, we will inves-
tigate several mathematical models of tumor growth that have proved effective in pro-
moting knowledge about cancer. We also introduce the important method of least squares
for fitting a model to observed data by determining appropriate values for the model’s
parameters.

An ideal mathematical model for a real-world situation should satisfy several criteria:

• The model should have a basis in reality.

• The model should have a minimum number of parameters.

• Variables represented in the model should be measurable so that it is possible to collect
experimental data.

• The model’s predictions should be reasonably accurate and give a good fit to exper-
imental data.

• The model should improve our understanding of the real-world situation.

To these criteria, Vinay Vaidya and Frank Alexandro Jr. add several more desirable
features for an ideal model of tumor growth:

• The model should have a physiological basis.

• The model should improve general understanding at microscopic as well as macro-
scopic level of tumor growth.

• The model should have breadth, in the sense that it should be applicable to different
patients or animals with the same type of tumor.

Since more than 100 different diseases fall under the label of cancer, it would not be
reasonable to expect that a single mathematical model would represent well all the diverse
tumors that can beset some many different parts of the body. We will begin with a gen-
eralized “two-parameter” model, move on to examine a special limiting case of this generic
model, and then focus on some models of a particular type of cancerous tumor.

II. A General Tumor Growth Model
The size of a dynamically changing entity (be it a single cell, tumor, urban population or
economy) depends on a rate of increase and a rate of loss. In biology, terms such as pro-
liferation and synthesis indicate growth. Words like death or degradation describe loss.
Scientists have often employed allometric or power law models in which rates of change of
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the size of a biological organism are proportional to powers of the size. In the mid-20th
century, Ludwig von Bertalanffy proposed a general form for such models,

dy

dt
= ayα + byβ 1

where y is a measure of the size of the organism and a, b, α, and β are constants. Eq. (1) is
called a generalized Bertalanffy model with parameters α and β.

For tumors, size can be measured by volume, biomass, or number of cells. For
convenience, we will use volume V as the measure of size. Taking the first term on the
right-hand side of Eq. (1) as representing increase and the second term for loss, we can
rewrite that equation as

dV

dt
= aVα bVβ 2

where a and b are positive.
Note that the special case α= 1, β= 2 gives the logistic equation

dV

dt
= aV bV2, V 0 =V0 3

we studied in Chapter 3 and that has the solution

V t =
aV0

bV0 + e−at a− bV0
=

a

b
1− 1−

a

bV0
e−at

−1

4

Von Bertalanffy himself was quite interested in the relationship between body size
(as measured by weight) and metabolic rate. While weight is directly proportional to
volume, metabolic rate seemed to be proportional to surface area. Since volume is measured
in cubic units of length and area in square units, surface area is proportional to the two-
thirds power of volume.

“Animal growth,” von Bertalanffy observed, “can be considered as a result of a
counteraction of synthesis and destruction, of the anabolism and catabolism of the
building materials of the body. There will be growth so long as building up prevails over
breaking down.” Experimental evidence indicated that the building up process was
largely tied to metabolism while catabolism, the loss of building material, is directly
proportional to weight and hence directly proportional to volume. These considerations
led von Bertalanffy to investigate the particular version of Eq. (1) in which case α= 2 3
and β= 1:

dV

dt
= aV2 3 bV , V 0 =V0 5

Fig. 5.1 shows the direction field for the Bertalanffy equation. Note that it shares
some of the qualitative features as the direction field for the logistic equation.
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We can solve Eq. (5) by separation of variables and integration to obtain

V t =
a

b
−e−

bt
3
a

b
−V0

1
3

3
6

In Fig. 5.2, we display the graph of Eq. (6) for a particular choice of a, b, and V0.
The logistic and von Bertalanffy equations have both been used successfully to model

the growth of some tumors in mice. See V. G. Vaidya and F. J. Alexandro Jr., “Evaluation
of Some Mathematical Models for Tumor Growth,” International Journal of Bio-medical
Computing 13(1982): 19 35.

FIGURE 5.1 Direction
field for Bertalanffy
equation.
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III. The Gompertz Model
In 1825, the English mathematician Benjamin Gompertz proposed a new model for certain
growth processes that scientists in many disciplines have found to be a valuable tool. We
will examine two different lines of thought that lead to this model.

A. Introducing the Model

First, consider an expression of the form

AVα +BVα Vx
− 1
x

and replace B by bx and A by a+B x to rewrite this expression as

a+
B

x
Vα + bxVα Vx

− 1
x

= aVα +
B

x
Vα

− bVα + bVα+x 7

which, since B x= b, simplifies to aVα + bVβ, where β= α+ x.
Hence, the differential equation

dV

dt
=AVα +BVα Vx

− 1
x

8

is equivalent in form to the generalized Bertalanffy equation
dV

dt
= aVα + bVβ.

Now we consider the limiting case of Eq. (8) when x→ 0. By l’Hôpital’s Rule,

lim
x→ 0

Vx
− 1
x

= lim
x→ 0

Vx lnV − 0
1

= InV 9

and Eq. (8) becomes

dV

dt
=AVα +BVα lnV 10

In the particular case in which α= 1, we have

dV

dt
=AV +BV lnV 11

which is called the Gompertz equation. Eq. (10) is called the generalized Gompertz
equation. Thus, the generalized Gompertz equation may be seen as a limiting case of the
generalized Bertalanffy equation.

Setting A= a and B= −b where a and b are positive, we may write the Gompertz
equation as

dV

dt
= aV − bV lnV =V a− b lnV 12
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Observe that Eq. (12) implies that the time derivative dV dt is zero when V = 0 and
when V = ea b. Note also that this derivative is positive for 0<V < ea b and is negative when
V > ea b.

Fig. 5.3 displays the direction field for the Gompertz equation.

B. Solving the Gompertz Equation

TheGompertz differential equation is easy to solve by separating the variables and integrating:

1
V a− b lnV

dV = 1 dt 13

Make the change of variable u= a b lnV so du= −
b

V
dV , and our integral problem

becomes

−1
bu

du= 1 dt or
1
u
du= −b dt 14

and hence,

ln u= bt +C 15

which gives us

u=Ce−bt 16

or, in terms of our original variables,

a b ln V =Ce−bt 17

FIGURE 5.3 Direction
field for Gompertz curve.
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Since V 0 =V0, we have

C= a b lnV0

Solving Eq. (17) for V , we obtain

lnV =
a−Ce−bt

b

V = e
a−Ce−bt

b

V = e

a− a−b lnV0 e−bt

b

= e
a
b−

a
b−lnV0 e−bt

18

Fig. 5.4 displays a Gompertz curve, the graph of the function in Eq. (18).

C. An Alternative Derivation

It’s useful to examine a different derivation of the Gompertz equation, one that ismotivated by
a consideration that growth occurs within environments that have limited natural resources.

The logistic model we studied in Chapter 3 provides one way to represent the fact that
biological environments have limited resources that make sustained exponential growth
impossible. A chief characteristic of the logistic model is the idea of carrying capacity, a
maximum sustainable population size.

The Gompertz model addresses limited resources from a different perspective. This
model takes into account that even in a resource-rich environment, the amount of resources
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FIGURE 5.4 A graph of the Gompertz curve.
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available to an individual cell in a tumor may depend on the cell’s location within the tumor.
Cells on the outer surface of the tumor have better access to the oxygen and nutrients necessary
for replication to continue, so they are more fit than the cells at the interior of the tumor.

If we assume that a tumor is roughly in the shape of a sphere, then the surface area-to-

volume ratio is 4πr2
4
3πr

3 = 3
r, which decreases as a tumor grows. Thus, one would expect the

growth rate of a tumor to decrease correspondingly as the tumor became larger.
Suppose that at every instant the size of the tumor is growing at a constant percentage

rate, but that rate is also decreasing in a similar manner. Then we can describe the dynamics
of tumor growth as a simple system of differential equations,

dV

dt
= r t V

dr

dt
= −kr

19

where k is a positive constant. From the second equation of (19), we have r t = r0e−kt.
Then the first equation of (19) becomes

dV

dt
= r0e

−ktV 20

which we can solve by separating the variables and integrating:

1
V
dV = r0e

−ktdt 21

lnV = −
r0
k
e−kt +C for some constant C 22

Solving for V as a function of t, we obtain

V =Ce−
r0
k e

−kt
for some constant C 23

If V 0 =V0, then we have V0 =Ce−
r0
k so C=V0e

r0
k , and the solution of this form of the

Gompertz equation becomes

V V0e
r0
k e−

r0
k e

−kt
eln V0e

r0
k e−

r0
k e

−kt
e
r0
k −

r0
k e

−kt ln V0 24

Although the forms of the two versions of the Gompertz model and their solutions
appear somewhat different, it is not difficult to verify that they are equivalent. One way to
see this equivalence is to let k= b and r0 = a b ln V0 in Eq. (24). These substitutions
convert Eq. (24) to

V = e
a−b lnV0

b −
a−b lnV0

b e−bt+ lnV0 = e
a
b−lnV0+−lnV0−

a−b lnV0
b e−bt = e

a
b−

a−b lnV0
b e−bt

which is identical to Eq. (18).
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D. Estimating the Parameters

Suppose we plot data on the growth of some organism over time and observe that the graph
appears to have the shape of a Gompertz curve. How can we estimate the values of the
parameters of a Gompertz curve? How closely do these parameters predict the observed data?

We begin with the solution of the Gompertz equation in the form V t =V0e
r0
k e−

r0
k e

−kt
.

Assuming that our first measurement V0 occurs at time t= 0, we want to make the best
estimates for r0 and k. We’ll begin by taking the logarithms of each side of this equation
for V t :

lnV t = lnV0 + ln e
r0
k + ln e−

r0
k e

−kt
25

so

lnV t = lnV0 +
r0
k
−

r0
k
e−kt

and hence (replacing t by t 1)

lnV t − 1 = lnV0 +
r0
k
−

r0
k
e−k t−1 .

If we take the difference of these last two expressions, we have

lnV t − lnV t − 1 = −
r0
k
e−kt +

r0
k
e−k t−1 = e−kt

r0
k
ek −

r0
k

26

which has the form

W t =Ae−kt

where W t = lnV t − lnV t − 1 and A=
r0
k
ek −

r0
k

=
r0
k

ek − 1 .

Now if examine the logarithm of W t , we have

Y t = lnW t = lnA− kt 27

so the graph of Y as a function of t is a straight line.
If the growth of V is indeed determined by a Gompertz curve, then we can find A and

k if we can find the coordinates of any two points on this straight line. This is possible if we
know the values of V for any three consecutive equally spaced times: t, t 1, and t 2.

Once we know A, we can determine r0 as r0 =
Ak

ek − 1
. We followed a similar approach in

fitting a logistic curve to U.S. census data in Chapter 3. But real-world measurements are
seldom, if ever, exact. Errors in experimental measurement are the rule, not the exception.
Thus, a different triple of consecutive values for V might well yield a different set of values
for k and r0. Is there a different approach to obtain a best set of values for the parameters k
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and r0? An oft-used technique is to choose the parameter values that minimize the total
difference between measured values and predicted values.

If we have a set of measured values Y1, Y2, . . . , YN corresponding to times
1, 2, . . . , N that graphically appear to lie along a straight line y= a kx, and we wish to
determine the “best” choices for a and k, then the difference between the observed value
and the predicted value at time i would be a ki Yi. There are several ways we can
measure the cumulative fit between observations and predictions. These include

N

i=1

a− ki− Yi or
N

i=1

a− ki− Yi or
N

i=1

a−ki−Yi
2

The first sum adds up all the differences and seems the most natural measure to use, but this
sum might turn out to be very small—not because all the individual differences are small, but
because some very large positive differences are balanced out by equally large negative
differences. In such a case, all our individual predictions might be considerably far from the
observed values. The second sum, which takes the absolute values of the “error” terms, avoids
this problem. The second sum can be small only when all the individual terms are small. It’s a
much better sum to use, but suffers from the fact that it is analytically rather difficult to
minimize a sum of absolute values. The third sum is easier to deal with using the tools of
calculus and also has the property that it is small only when all the individual terms are small.
Note also that summing the squares of the differences between predicted and observed values
givesmore weight to any predictions that are significantly different from themeasured values.

E. Method of Least Squares

Minimizing the sum of squares of differences is called the method of least squares. In this
method, we want to choose values for a and k that produce the smallest value of the least
squares function

f a, k =
N

i=1

a− ki− Yi
2 28

There are several ways to determine these best values of a and k. We’ll illustrate a
calculus-based approach here, using a theorem that states that the minimum value of f will
occur at choices for a and k that make both partial derivatives of f equal zero. See Appendix
IV for more details.

In our case,

∂f

∂a
=

N

i=1

2 a− ki− Yi and
∂f

∂k
=

N

i=1

a− ki− Yi −i 29

The condition that both partial derivatives be 0 at a minimum gives the equations

N

i=1

2 a− ki− Yi = 0 and
N

i=1

2 a− ki− Yi −i = 0 30
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which simplify to

N

i=1

a−
N

i=1

ki=
N

i=1

Yi and
N

i=1

− ai+
N

i=1

ki2 = −

N

i=1

Yii 31

or

Na−
N

i=1

i k =
N

i=1

Yi and −

N

i=1

i a+
N

i=1

i2 k= −

N

i=1

Yii 32

Noting that
N

i=1

i−
N N + 1

2
and

N

i=1

i2 =
N N + 1 2N + 1

6
, the equations become

Na−
N N + 1

2
k =

N

i=1

Yi and
−N N + 1

2
a+

N N + 1 2N + 1
6

k = −

N

i=1

Yii 33

But this is just a system of two linear equations in two unknowns (a and k), which is easily
solved.

We illustrate this process with data collected by three Croatian scientists. Dragan
Jukic, Gordana Kralik, and Rudolf Scitovski recorded the weight V in kilograms of a
female chicken over a period of 13 weeks. Table 5.1 displays their results.

We’ll let t= 0 correspond to the end of the week 1. Then t = 1 represents the time at
the end of week 2, t= 2 the time at the end of week 3, and so on. These will give us values
V0 =V 0 = .147, V 1 = .357, . . . , V 12 = 3.925.

From our earlier discussion, the Gompertz model may provide a good fit for this data
if the graph of ln W t = ln ln V t − ln V t − 1 as a function of time appears to fall
along a straight line. Fig. 5.5 shows this graph; it does appear that the observed data produce
points that seem to lie along a line

In this case, f a, k = 39.88968422a− 330.9345822k+ 650k2 − 156ak + 12a2 +
42.17943682. The system of linear equations we need to solve is

1300k − 156a= 330.9345821

156k − 24a= 39.88968422

The solution is k = .2505301912 and a= −0.03362393333. Since the original measured
data on chicken weight is accurate only to a limited number of decimal places, we will use

Table 5.1 The weight Vi in kilograms of a female chicken at the end ti of week i. The data are
taken with permission from Dragan Jukic, Gordana Kralik, and Rudolf Scitovski, “Least-Squares
Fitting Gompertz Curve,” Journal of Computational and Applied Mathematics 169 (2004):
359 375.

ti 1 2 3 4 5 6 7 8 9 10 11 12 13

Vi .147 .357 .641 .98 1.358 1.758 2.159 2.549 2.915 3.251 3.510 3.740 3.925
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rounded-off values k = .25 and a= −0.03. For these particular values of a and k, we have
f a, k = 0.05490074579.

Recalling that a= lnA, we have A= ea = e 0.03 = 0.97. Thus, our best estimate for r0

is r0 =
Ak

1− ek
= 0.854. To complete our fitting of the data to a Gompertz function, note that

V0 = .147.
In our chicken example, our estimated Gompertz function would be g t =

V0e
r0
k e−

r0
k e

−kt
= 0.147e

0.854.25 e
−0.854.25 e−0.25t = 4.47e−3.41e

−.251t
. Table (5.2) displays the observed and

FIGURE 5.5 The graph
of ln W t for the
chicken data of Table 5.1,
where W t = ln V t
ln V t− 1 .
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Table 5.2 The observed and predicted values for the weights of the chickens obtained by the
method of least squares. We have rounded off the predicted values to 3 decimal places, the
accuracy of the observed values.

Week Observed Value Predicted Value Predicted Observed Error Squared

1 0.147 0.147 0 0

2 0.357 0.313 0.044 0.002

3 0.641 0.564 0.077 0.006

4 0.98 0.892 0.088 0.008

5 1.358 1.274 0.084 0.007

6 1.758 1.683 0.075 0.006

7 2.159 2.090 0.069 0.005

8 2.549 2.474 0.075 0.006

9 2.915 2.821 0.094 0.009

10 3.251 3.125 0.126 0.016

11 3.51 3.384 0.126 0.016

12 3.74 3.600 0.140 0.020

13 3.925 3.778 0.147 0.021
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predicted values for the weights of the chickens and the differences between these numbers.
Fig. 5.6 presents the observations and model predictions in visual form. It certainly appears
from the graph in Fig. (5.6) that the Gompertz function we have found does an excellent job of
matching the observed data.

Is there a quantitative way of measuring how well the model first the real-world data?
In Chapter 3, we looked at the percentage errors the model makes and declared the model a
good one if the largest percentage error was small. A more commonly used indicator of
“goodness of fit” is the sum of the squared errors, where we add up the squares of the
differences between the observed values and the model’s predicted values. For our chicken
example, the observed values are the Vt’s and the predicted values are the g t ’s. Our

measure of goodness of fit is
13

t=1
Vt − g t 2. In this example, that sum is 0.121. We can then

compare two different choices of parameter values V0, r0, k for the Gompertz models by
seeing which one gives a smaller sum of squared errors.

We may also use the method of least squares to determine which of several different
models for the same situation gives a better fit to the observed data. For example, we could
ask how the Gompertz model for the chicken example compares with the logistic one.

Let’s fit a logistic curve V =
k

1+ ed−at
to the data for the chicken weights, using the

same limiting value for the weight, 4.479; V =
4.479

1+ ed−at
for some parameter values d and a

that we need to estimate.
Rearrange the terms ed−at =

4.479
V

− 1.

Then take the logarithm of both sides: d− at= ln
4.479
V

− 1 .

Introduce the change of variables: Z = ln
4.479
V

− 1 . The previous equation
becomes the linear relationship

Z = d at
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15 FIGURE 5.6 Comparison of the Gompertz model (solid curve) with the
observed data (circled points) on chicken weights found in Table 5.1.
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We can proceed to use the method of least squares to estimate d and a. The analysis
yields d= 3.155450907 and a= 0.4124054532. If we use these parameter values, then the
graphs of the resulting logistic equation and the original data can be seen in Fig. 5.7.
Visually, it appears that our “best” Gompertz model does a slightly better job of matching
the observed data than our “best” logistic model. In fact, the sum of squared differences
between predicted and observed values for this logistic model is 0.269, which is larger than
the value of 0.121 we found for the Gompertz model. Therefore, the Gompertz model is a
better description of the growth of a chicken’s weight than the logistic model, at least for
this particular data set.

Fig. 5.8 shows an example a tumor growth data for which the Gompertz approach
clearly mirrors reality much better than the logistic one. Scientists have found that in many

FIGURE 5.7 Comparison
of the logistic model
(solid curve) with the
observed data (circled
points) on chicken weight
found in Table 5.2.
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FIGURE 5.8 Best-fit
curves by Gompertz and
logistic models where the
horizontal axis represents
time in days and the ver-
tical axis represents
tumor volume. From
Miljenko Marušić,
“Mathematical Models of
Tumor Growth,” Mathe-
matical Communications
(Department of Mathe-
matics), University of
Osijek 1 (1996):
175 192.
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tumor growth situations, the Gompertz model provides a more accurate description of the
real-world observed data than the logistic model, but in other cases of tumor dynamics, the
logistic fits the observations better than the Gompertz model. No single model type uni-
formly provides the best fit for every type of tumor.

In the next section, we will examine some models of tumor growth in the human
colon that take into account particular features of this type of cancer. Before we do, it’s
useful to take a brief look at what’s similar in the logistic, von Bertalanffy, and Gompertz
models. These are all differential equations of the form dx dt= g x , where g is a continuous
function of x. One way to see qualitative similarities among these models is to examine the
graph of g as a function of x in each case. Fig. 5.9 shows typical examples of these graphs.
Note that all three curves are concave down, increase to a unique positive maximum, and
then decrease.

The graphs of solutions to the Bertalanffy, logistic, and Gompertz models have a
shape that resembles an elongated letter S. As the input variable increases, the output at first
increases fairly slowly, then builds up more rapidly as the graph has a midsection that looks
like a straight line before transitioning to an almost horizontally flat curve. The graphs of
other functions with a similar shape are called S-curves or sigmoid curves.

The qualitative nature of an S-curve has been observed in the plotting of data in many
fields, including demographics, biology, and economics. The growth of various components
of an economy, the diffusion of new technologies and ideas, and the demand for new pro-
ducts often exhibit the three characteristics of an S-curve: emergence, inflexion, and satu-
ration. The papers in the References by Gloria Jarne, Julio Sánchez-Chóliz, and Francisco
Fátas-Villafranca examine the mathematical properties and applications of S-curves.

IV. Modeling Colorectal Cancer
While the Gompertz model often provides a good predictive model for how tumors grow in
general, there are better models for some particular types of cancer that incorporate specific
features of that growth. We present in this section several such models that shed light on
colorectal cancer.

A. Colon Cancer

Colorectal cancer, also called colon cancer or large bowel cancer, includes cancerous
growths in the colon, rectum, and appendix. It is the third most common form of cancer and
is the second leading cause of cancer-related deaths in the Western world. Colorectal cancer
causes 655,000 deaths worldwide per year. Many colorectal cancers are thought to arise
from adenomatous polyps in the colon. These mushroom-like growths are usually benign,
but some may develop into cancer over time.

Author David Guterson captures some of the individual human drama and the course
of the disease of colon cancer in his novel East of the Mountains:

Dr. Ben Givens shrugged off his past to devote himself to the rain’s steady cadence, but no
dreams, no deliverance, came to him. Instead he . . . lay tormented by the unassailable fact
that he was dying—dying of colon cancer. . . .

Now he’d been told—it was the dark logic of the world—that he had months to live, no
more. Like all physicians, he knew the truth of such a verdict; he knew full well the force of
cancer and how inexorably it operated. He grasped that nothing could stop his death, no matter
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how hopeful he allowed himself to feel, no matter how deluded. Ben saw how his last months
would be, the suffering that was inevitable, the meaningless trajectory his life would take into a
meaningless grave. . . .

His cancer had metastasized, traveling from the mucosa of his colon to the lymph nodes
closer to his tumor, and from there to sites in his liver. . . . He knew exactly what to expect and
could not turn away from meeting it. After the bedsores and bone fractures, the bacterial
infection from the catheter, the fluid accumulating between his viscera that would have to be
expunged through a drainage tube; after the copious vomiting, the dehydration and lassitude,
the cracked lips, dry mouth, tube feedings, and short breath, the dysphagia, pneumonia, and
feverishness, the baldness and endgame sensation of strangling; after he had shrunk to eighty-
five pounds and was gasping his last in a nursing-home bed. . . .

The colon is a common site for cancer. The reasons for a relatively high rate of colon
cancer are not completely known; they may involve diet and/or the large quantities of new
cells are produced there every day. A high replication rate results in a greater incidence of
mutations, some of which may cause the impairment of control mechanisms and thus result
in tumor growth. The physical organization of the colon into 107 crypts (invaginations in
the lining of the colon), however, helps to prevent uncontrolled growth.

Each crypt contains stem cells at its base. This model assumes that a stem cell can
divide to create either two new stem cells (a process called regeneration or renewal) or two
differentiated cells. [Some biologists conjecture that a single stem cell may also evolve into
one stem cell and one differentiated cell.] The differentiated cells migrate up the crypt,
becoming progressively more specific as they reach the top, at which point they undergo
apoptosis (programmed cell death). Each cell’s journey from the bottom to the top of the
crypt takes several days. Since each cell stays within its own crypt and has a relatively short
life cycle, any mutation is not likely to become part of a permanent cell line and thus
become a tumor. When abnormal cells do amass in a crypt, however, they form a polyp,
which can become a large polyp if further mutations occur. Ten to twenty percent of large
polyps develop into cancerous tumors.

Normally, the crypt ishomeostatic—that is, itmaintains an internal equilibriumbetween
cell proliferation and cell loss due to death or shedding. Each cell is responsible for its own
replication (which occurs whenmore cells are needed), aswell as for its own self-destruction if
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FIGURE 5.10 The location and major sections of the human colon.
Source: www.moiracolonicclinic.com/images/colon.jpg.
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FIGURE 5.11 A repre-
sentation of the stages of
tumor growth in the
colon. Diagram courtesy
of the National Institute
of Cancer of the U.S.
National Institutes of
Health (www.cancer
.gov/cancertopics/pdq/
treatment/colon/Patient/
page2). Courtesy of the National Institute of Cancer of the U.S. National Institutes of Health
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FIGURE 5.12 Stem cells
anchored at the bottom of
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produce proliferating/
differentiating daughter
cells, which replicate an
estimated eight times,
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thelial surface.
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the cell becomes too damaged. Thus, the initiation of a tumor requires two basic malfunctions:
the failure of the cell first to control its own division and second to recognize that it is too
damaged and must undergo apoptosis. Cancer cells are those that have “escaped apoptotic
control” and that have bypassed all genetic mechanisms that prevent unnecessary growth.
Once these control mechanisms have failed, the cell may replicate without bound.

In this section, we present several models for cell population growth in colorectal
cancer developed by Matthew Johnston and colleagues at the University of Oxford. The
basic model views a crypt as made up of three different types of cells. Stem cells reside near
the bottom of the colorectal crypt; they can produce a variety of cell types required for tissue
renewal and regeneration after injury. Stem cells divide to produce semi-differentiated or
transit cells. These cells migrate up the crypt wall toward what is called the luminal surface.
As the transit cells proceed upward, they differentiate into several types of cells. Once they
reach the top of the crypt, the differentiated cells will eventually die or are shed and
transported away. For simplicity, we divide the process of differentiation into three steps,
stem cells N0 , semi-differentiated cells N1 , and fully differentiated cells N2 .

B. Initial Model

To arrive at the equations in our first model, we need to determine the rate of change of each
cellular population over time. In general, this rate should be equal to the difference between
the number of cells that are added to the population and the number of cells that leave the
population at the end of each cycle.

We model stem cells first. Stem cells can only die, differentiate, or renew at the end of
their cycles. We assume that a certain fraction α1 die, a certain fraction α2 differentiate,
and a certain fraction α3 renew themselves. Thus, α3N0 cells undergo renewal and α3N0

cells are added to the population (since each cell that undergoes renewal results in two
renewed cells, the net addition to the population is one cell), while α1N0 cells are lost to
death and α2N0 to differentiation. This analysis gives us the differential equation

dN0

dt
= α3N0 α1N0 α2N0 = α3 α1 α2 N0 34

For the semi-differentiated cell population, we have a similar situation: the contri-
bution of the renewal process is β3N1 cells, while β1N1 and β2N1 cells die and are differ-
entiated, respectively. We also have to take into account the stem cells that differentiate and
join the population of semi-differentiated cells, so we arrive at the equation

dN1

dt
= β3N1 β1N1 β2N1 + α2N0 = β3 β1 β2 N1 + α2N0 35

The cells that are added to the fully differentiated cells are those that differentiated from
N1, while those that leave the population are those that die. This leaves us with the equation

dN2

dt
= β2N1 γN2 36

for the fully differentiated cellular population. Fig. 5.13 represents this model in a sche-
matic form.
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Thus, our initial model is the trio of differential equations

dN0

dt
= α3 α1 α2 N0

dN1

dt
= β3 β1 β2 N1 + α2N0

dN2

dt
= β2N1 γN2

We can solve the equations of this model to find explicit representations of all three
cell populations as functions of time if the αs and the βs are constants. The first equation is
the differential equation for simple exponential growth with constant rate α3 α1 α2.
Thus, the solution is

N0 t =N00e
α3−α1−α2 t =N00e

αt 37

where N00 =N0 0 and α= α3 α1 α2.

FIGURE 5.13 A sche-
matic diagram for the
initial model of colon
crypt cells.
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To solve the second equation for the number of semi-differentiated cells
dN1

dt
= β3 β1 β2 N1 + α2N0, we first let β= β3 − β1 − β2, so the equation takes the form

dN1

dt
= βN1 + α2N0 or

dN1

dt
− βN1 = α2N0. Using Eq. (37), we have

dN1

dt
βN1 N00 e

αt 38

Eq. (38) is an example of a first-order linear differential equation. This particular
equation can be solved by first multiplying both sides by the term e βt, which is never zero.
This action transforms Eq. (38) into

e βt dN1

dt
βe βtN1 =N00 e

αte βt 39

Observe that the left-hand side of Eq. (39) is the derivative, with respect to t, of e βtN1 so
we may rewrite this equation as

e βtN1 ′ N00 e
α−β t 40

We may then integrate both sides of Eq. (40) with respect to t and then multiply through by
the nonzero factor eβ t to obtain

N1 t =
N00

α− β
eαt +Ceβt 41

assuming α≠ β. If the initial number of semi-differentiated cells isN10 =N1 0 , then we have

N10 =
N00

α− β
+C

so that

N1 t =
N00

α− β
eαt + N10 −

N00

α− β
eβt 42

The technique for solving the differential equation for the fully differentiated cells is quite
similar to the one we’ve just carried out. We begin by rewriting Eq. (36),

dN2

dt
= β2N1 γN2

as

dN2

dt
+ γN2 = β2N1

Next we multiply through by eγ t and use our solution for N1 to obtain:

eγtN2 ′
β2N00

α− β
eαteγt β2 N10 −

N00

α− β
eβteγt 43
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Integrating Eq. (43) with respect to t and dividing through by eγ t yields

N2 t =
β2N00

α− β α+ γ
eαt +

β2 N10 −
N00
α− β

β+ γ
eβt +Ce−γt 44

for some constant C. [Note that we are assuming that α≠ β.]
Now that we have found explicit formulas for N0, N1, and N2 as functions of t, let’s

examine the stability and long-term behavior associated with this model.
The stem cell population N00eαt grows exponentially, decays exponentially, or remains

constant when α> 0, α< 0, or α= 0, respectively. Since α= α3 − α1 − α2, in the case in which
α1 + α2 + α3 = 1, we have stability of the stem cells exactly when 0= α3 − α1 −
α2 = α3 − 1− α3 —that is,α3 =½. Stability of the stemcells in this particular case corresponds
to the situation when precisely half of them renew, since α3 is the renewal fraction.

Let’s look now at the semi-differentiated cell population when stem cells are stable
α= 0 . We have

N1 t =
N00

α− β
eαt + N10 −

N00

α− β
eβt =

N00

−β
+ N10 +

N00

β
eβt 45

If β> 0, then the semi-differentiated cells grow exponentially without bound, and if β= 0,
the number of these cells remains constant at N10. The third case, in which β is negative, is
an interesting one, since here in the long term

lim
t→∞

N1 t = lim
t→∞

N00

−β
+ N10 +

N00

β
eβt =

N00

−β
=

N00

β1 + β2 − β3
46

and

lim
t→∞

N2 t = lim
t→∞

β2N00

α− β α+ γ
eαt +

β2 N10 −
N00
α− β

β+ γ
eβt +Ce−γt =

β2N00

α− β α+ γ

47

since γ > 0. Since α= 0 when stem cells are stable, the limit simplifies to −
β2N00

βγ
.

An interesting conclusion of this analysis is that a mutation or other alteration that
changes the value of β or γ can lead to a new steady state in the size of the populations of the
transit and fully differentiated cells, provided that α remains zero.

Stability for the stem cell population, however, requires that α remain zero or,
equivalently, that α3 be exactly 0.5. We call a model structurally unstable if the mainte-
nance of a certain property requires that some parameter take on a particular numerical
value. Since stem cells are differentiating, replicating, or renewing constantly, mutations
are very likely to occur. It is unrealistic to expect that α will remain zero.

To obtain a model that exhibits structural stability, we need to build in some form of
feedback that will maintain homeostasis, the ability to maintain internal equilibrium.
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Johnston and his associates explored two possible feedback mechanisms: linear and sat-
urating. Both build on the idea that the proportion of cells differentiating may depend on
the sizes of the cell populations themselves.

C. Linear Feedback

In the linear feedback model, we assume that the per-capita rate of differentiation is pro-
portional to the population. Thus, for the stem cells, we replace the original differential
equation (Eq. (34)),

dN0

dt
= α3N0 α1N0 α2N0 = α3 α1 α2 N0

by

dN0

dt
= α3N0 α1N0 α2 + k0N0 N0 = α3 α1 α2 k0N0 N0 48

for some positive constant k0.
In this revised model, the stem cells exhibit logistic growth with a carrying capacity

of N0 =
α3 − α1 − α2

k0
=

α

k0
. If α is positive, then every solution of Eq. (48) approaches N0,

whereas if α is negative, the solutions approach N0 = 0. There are no values of the para-
meters that permit unbounded growth in the stem cell population. Linear feedback for the
semi-differentiated or transit cells replaces Eq. (35),

dN1

dt
= β3N1 β1N1 β2N1 + α2N0 = β3 β1 β2 N1 + α2N0

with

dN1

dt
= β3N1 β1N1 β2 + k1N1 N1 + α2 + k0N0 N0

= β3 β1 β2 k1N1 N1 + α2 + k0N0 N0

= β k1N1 N1 + α2 + k0N0 N0

49

for some positive constant k1.
Now the right-hand side of Eq. (49) is a quadratic expression in N1 of the form

− k1N2
1 − βN1 −C , which has value zero when N1 =

β± β2 + 4k1C
2k1

, where C= α2 +

k0N0 N0. Thus, there is one positive, stable steady state for the transit cells

N1 =
β+ β2 + 4k1 α2 + k0N0 N0

2k1
50

As with the stem cells, there are no values of the parameters that result in exponential
growth of the transit cells.
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The differential equation for the fully differentiated cells in the linear feedback model
becomes

dN2

dt
= γN2 + β2 + k1N1 N1 51

and hence their population approaches a steady state of

N2 =
N1 β2 + k1N1

γ
52

The linear feedback model predicts that the stem cell population will sustain itself and
approach a nonzero steady state provided the renewal rate α3 exceeds a critical size
α1 + α2 . A mutation that alters the parameters will produce new values for the steady state
populations, but unbounded growth can only result if a genetic “hit” knocks out the
feedback mechanism.

D. Saturating Feedback

We turn now to the saturating feedback model. This variation of our original model also
assumes that as the number of stem or transit cells increases, their rates of differentiation
also grow. In contrast to the linear feedbackmodel that posits a per capita proportion response,
the saturating feedback model assumes a maximum per capita rate of differentiation.

Hence, instead of replacing α2 with α2 + k0N0, as we did in the linear feedback

approach, we replace α2 with α2 +
k0N0

1+m0N0
where k0 and m0 are positive constants.

Similarly, we replace β2 with β2 +
k1N1

1+m1N1
, where k1 and m1 are also positive constants.

Thus, the dynamic equations of the saturating feedback model are

dN0

dt
= α3 − α1 − α2 N0 −

k0N2
0

1+m0N0
= αN0 −

k0N2
0

1+m0N0
53

dN1

dt
= β3 − β1 − β2 N1 −

k1N2
1

1+m1N1
+ α2N0 +

k0N2
0

1+m0N0

= βN1 −
k1N2

1

1+m1N1
+ α2N0 +

k0N2
0

1+m0N0

54

dN2

dt
= − γN2 + β2N1 +

k1N2
1

1+m1N1
55

For the stem cell population, we see from Eq. (53) that
dN0

dt
is zero when N0 = 0 or

N0 =
α

k0 − αm0
. If α is negative, then

dN0

dt
is negative and the population of stem cells will

move toward extinction, N0 = 0, regardless of the initial level. For the crypt to maintain a
positive stem cell population, therefore, we need α to be positive. For the second possible

steady state, N0 =
α

k0 − αm0
, to be positive we need 0< α<

k0
m0

. In this case,
dN0

dt
will be
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positive when N0 <
α

k0 − αm0
and negative if N0 >

α

k0 − αm0
. The stem cell population will

necessarily approach N0 =
α

k0 − αm0
in the long run. Fig. 5.14 shows a schematic view.

Should it be the case that α>
k0
m0

, then there is no positive steady state for the stem

cells, and their numbers will grow unboundedly. It’s possible then that a series of genetic
hits increasing α by decreasing the death or differentiation rates or increasing the prolif-
eration rate could move the crypt through increasing steady cell populations until α finally

exceeds the critical
k0
m0

rate, after which unbounded growth will take place.

Let’s consider the case 0< α<
k0
m0

, in which we have a steady state for the stem cell

population, N0 . We investigate the long-term behavior of the transit cell population N1 that
satisfies the differential equation

dN1

dt
= βN1 −

k1N2
1

1+m1N1
+ α2N0 +

k0N2
0

1+m0N0

=N1 β−
k1N1

1+m1N1
+ α2N0 +

k0N2
0

1+m0N0

=N1 β−
k1

1
N1

+m1

+ α2N0 +
k0N2

0

1+m0N0

56

where β= β3 β1 β2. The last two terms will approach a fixed positive constant D=

α2N0 +
k0N0

2

1+m0N0
. If β exceeds the threshold value of

k1
m1

, then β−
k1

1
N1

+m1
will be pos-

itive for all positive values of N1. Thus, when β>
k1
m1

, the derivative dN1 dt remains positive

and is bounded away from zero. Hence, the transit cells will undergo unbounded growth.

If β is below the threshold value
k1
m1

, we can determine a steady state for the transit cell

population by solving
dN1

dt
= 0, where

dN1

dt
= βN1 −

k1N2
1

1+m1N1
+D. This equation becomes

βN1 1+m1N1 − k1N
2
1 +D 1+m1N1 = 0

0
0

αdN0

dt
> 0

dN0

N0

dt
<

k0 – αm0 FIGURE 5.14
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Multiplying out and collecting like terms yields the quadratic equation

k1 − βm1 N2
1 − β+Dm1 N1 −D= 0 57

which has a single positive root

N1 =
β+Dm1 + β− dm1

2 + 4Dk1

2 k1 − βm1
.

Observe also that if N1 is the steady state for the transit cells, then the steady state for

the fully differentiated cells is N2 =
β2N1 +

k1N
2

1
1+m1N1

γ
.

The saturating feedback model thus shows that successive mutations increasing β
may also give rise to a sequence of increasing steady state cell populations, which become
unbounded only if β a surpasses a critical threshold value.

We can illustrate this process with an example. Suppose k0 andm0 are each 0.1 and k1
andm1 are each 0.01 while α2 and β2 are each 0.3 and γ = .323. The critical threshold values
are k0 m0 = 1 and k1 m1 = 1. We assume that initially α= 0.286 and β= 0.432. In the long
term, the cell populations will approach N0 = 4, N1 = 85, and N2 = 200. Now we examine
what happens if there are a series of genetics hits, equally spaced in time.

At time 100, assume that there is a mutation causing β to increase to 0.512. This
change does not affect N0 , but makes N1 = 114 and N2 = 294. Then, at time 200, another
genetic hit raises α to 0.5; the new steady states are N0 = 10, N1 = 134, and N2 = 361. A
third mutation, occurring at time 300, bumps β up to 0.697, yielding N0 = 10, N1 = 266, and
N2 = 847. Finally, a fourth mutation at time 400 pushes β above the critical threshold level
to 1.1. Then both the semi-differentiated and fully differentiated cell populations grow
exponentially. Fig. 5.15 shows the graphs of the cell populations over time under this
scenario; these were obtained using the Euler approximation technique for differential
equations introduced in Chapter 2.

FIGURE 5.15 Cell popu-
lation growth affected by
“genetic hits.”
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Fig. 5.16 provides a visual summary of our stability findings. In the first model (Eqs.
(34 36)) with no feedback, the only stable solutions lie on the line α= 0, β< 0. Otherwise,
there is either unbounded growth if either α or β is positive or extinction if both α and β are
negative. In the linear feedback model, there is a steady state whenever α> 0 and extinction
when α< 0. There is never unbounded growth.

In the saturating feedback model, steady states are possible only in the strip

0< α<
k0
m0

, β<
k1
m1

. If the parameters lie outside this strip, there is either extinction or

unbounded growth.
The feedback models created by Johnston et al. predict results fully consistent with

real-world observations. As they note,

This process simulates the widely assumed multistage process of carcinogenesis. Successive
mutations could cause parameter changes which incrementally raise the size of the steady state.
However, once the mutations have accumulated to a certain degree, and the parameters are
raised above a certain threshold, unregulated cell population growth occurs and the tumor
grows exponentially.

V. Historical and Biographical Notes
A. Benjamin Gompertz

Benjamin Gompertz was born in London on March 5, 1779, into a distinguished Jewish
merchant family that had emigrated to England from Holland. Gompertz displayed bril-
liance from his boyhood and had a deep thirst for knowledge; when his parents removed the
candles to prevent him from injuring his health by studying too late into the night, Gom-
pertz would frequently continue his reading by moonlight in the garden.

Until well into the 19th century, British universities required oaths of allegiance to
the Protestant Church of English, effectively barring Jews from higher education. Blocked
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FIGURE 5.16 Plots of the regions of stability of the cell
population models.
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from obtaining a formal college education by religious discrimination, Gompertz was
largely self-taught. At the age of 18, he joined the Spitalfields Mathematical Society,
which later merged with the Royal Astronomical Society of London. Gompertz contrib-
uted regularly to the Gentleman’s Mathematical Companion, winning the journal’s prize
competition every year from 1812 to 1822. Later work on complex variables, published
under the title The Principles and Application of Imaginary Quantities, established his
reputation as an eminent mathematician, earning him election as a Fellow of the Royal
Society in 1819.

In 1821, Gompertz was an unsuccessful candidate for the position of actuary at the
newly established Guardian Insurance Office. Partly in response to a report that Gompertz
had been denied the job because of his religion, but also to take advantage of Gompertz’s
mathematical abilities, his brother-in-law, Sir Moses Montefiore, and Nathan Rothschild set
up the Alliance British and Foreign Life Assurance Company. Gompertz served as the very
successful business’s actuary and chief executive officer.
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The profit of a company selling life insurance policies lies in collecting more in
premiums from customers than it has to pay out in death benefits in any given year. To
determine how much to charge in premiums, the company needs accurate estimates of how
many of its policyholders are likely to die in the next year. Toward this end, actuaries and
statisticians had compiled “life tables” that recorded how many people had died in a
community, along with the age and cause of death. Before Gompertz, a life table served
mainly as a way to compute the number of persons surviving to a later age out of a given
number alive at an earlier age. Gompertz sought to discover the laws that produced con-
sistent age patterns of death. The law of human mortality associated with his name was
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propounded in papers published in the Philosophical Transactions in 1820 and 1825, with a
supplementary paper published there in 1862. Gompertz’s contributions ushered in a new
era for actuarial science. His insights have remained central to the study of human mortality.

What Gompertz observed in the early 1820s was an exponential rise of death rates in
a population between sexual maturity and old age. He attributed this phenomenon to an
underlying law of mortality: “the average exhaustions of a man’s power to avoid death” are
such that “at the end of equal infinitely small intervals of time” he loses “equal portions of
his remaining power to avoid destruction.”Well versed in the ideas and tools of calculus (he
was once described as “the last of the learned Newtonians”), Gompertz quickly translated
this verbal description into the differential equation (11).

Physical ill health forced Gompertz’s retirement from active work in 1848, but he
continued to work on problems in mathematics and astronomy. In 1850, he published a
sequel, Hints on Porisms, to his earlier books on complex numbers. He also wrote on
comets and meteors, contributed a paper on human mortality to the International Statistical
Congress in 1860, and was working on a paper for the London Mathematical Society at the
time of his death on July 14, 1865.

Although Gompertz made many significant contributions to astronomy and the
actuarial sciences, he was equally enthralled by the interplay of mathematical ideas
detached from practical applications. Consider, for example, these thoughts of his:

In the contemplation of the sciences there is, besides the pleasure arising from the acquirement
of knowledge of practical utility, a peculiar charm bestowed by the reasoning faculty in a well-
directed pursuit of facts; and though the results shown by the arguments are frequently con-
sidered to be the only objects of value by the unlearned, the man of absolute scientific ardour
will often, whilst he is enraptured with the argument, have not the least interest for the object
for which his argument was instituted.

The renowned American geneticist Sewall Wright (1889 1988) was apparently the
first to suggest using the Gompertz curve to model biological growth. In a 1926 review of
Raymond Pearl’s The Biology of Population Growth, Wright pointed out that Pearl had
focused on one particular S-curve, the logistic, but that other mathematical forms might better
reflect nature. Wright contrasted the growth of populations to that of individual organisms:

Populations of fruit flies and certain human populations, notably the United States, follow this
simple [logistic] law of growth very satisfactorily. Indeed, populations from yeast cells to man
appear to conform to it much more closely than do individual organisms, which in general show
a point of inflection at an earlier stage. Perhaps this points to a fundamental difference in the
nature of the limiting conditions. In populations the inherent reproductive capacity of the indi-
viduals is not necessarily changed as the cycle advances. The restraint to growth is external and
apparently does increase as a certain limit is approached in some conformity with the simple rule
described above. In organisms, on the other hand, the damping off of growth depends more on
internal changes in the cells themselves, the process which Minot called cytomorphosis. The
average growth power as measured by the percentage rate of increase tends to fall at a more or
less uniform percentage rate, leading to asymmetrical types of S-shaped curves of which the form
log log k y= a b− x is a simple example, instead of the logistic curve,

log
k

y
− 1 = a b− x
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In 1964, Anna Kane Laird (“Dynamics of tumor growth,” British Journal of Cancer 18:
490 502) was the first scientist to use the Gompertz curve to fit data of growth of tumors
successfully.

B. Ludwig von Bertalanffy

Ludwig von Bertalanffy, in the words of his biographer Mark Davidson, “may well be the
least well known titan of the Twentieth Century. As the father of the interdisciplinary
school of thought known as general systems theory, he made important contributions to
biology, medicine, psychiatry, psychology, sociology, history, education, and philosophy.
Yet he spent his life in semi-obscurity and he survives today mostly in footnotes.”

Born in a little village near Vienna on September 19, 1901, Bertalanffy began his
studies with history of art and philosophy at the University of Innsbruck and then at the
University of Vienna. He completed his doctoral thesis on the German physicist and phi-
losopher Gustav Theodor Fechner in 1926, and published his first book on theoretical
biology, Modern Theories of Development, 2 years later.

Kenneth Boulding, a renowned economist and an early follower of Bertalanffy in the
creation of general systems theory, provides the following picture of Bertalanffy:

A man I remember as being like no other—kindly, rather shy, a curious mixture of confidence
that he was saying something important and diffidence that grew out of lack of people to receive
it. He presented a façade that was almost a caricature of the Viennese professor, but behind the
façade one felt a remarkable mind and spirit with an extraordinary sense both of the immense
complexity of the real world and strong faith that it was not wholly beyond our grasp.

Bertalanffy held a number of teaching and research positions during his career, the
longest at the University of Vienna from 1934 to 1948. Awarded a Rockefeller Foundation
fellowship in 1937, he spend a year in the United States, studying developments there in
biology and giving seminars on philosophy and science. Ludwig and his wife Maria hoped
to remain in America to avoid the gathering storm of anti-Semitism and German militarism,
but he was unable to secure the promise of a permanent position and reluctantly returned to
Europe. During World War II, von Bertalanffy conducted pioneering research on cancer
and lectured on biology to classes of hundreds of medical students.

The Third Reich considered Bertalanffy somewhat of a subversive. He had published
an essay “The Science of Life and Education” in 1930 in which he denounced biological
theories that were used to justify racism. Nazi book burners destroyed copies of this work.
He often provoked arguments with Nazi sympathizers on the faculty, and the Bertalanffys
had a number of close friends who were Jewish. During the Russian siege of Vienna in
April 1945, his family was displaced from his house. “After the siege,” Davidson reports,
“when they made their way back home through rubble and corpses, they found a smoul-
dering wreckage where their apartment building had stood. Their neighborhood had been
destroyed by German flame throwers as part of the Nazi policy of scorched-earth retreat.”
All their personal possessions were lost, including a library of 15,000 books and major parts
of books Bertalanffy had been writing. At the university, he discovered that a bomb had
destroyed his office and lab, and that his entire department had been ransacked and was in
shambles.
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He also worked at the University of London, the University of Montreal, the Uni-
versity of Ottawa, the Center for Advanced Study in the Behavioral Sciences, Mount Sinai
Hospital of Los Angeles, the Menninger Foundation, the University of Alberta, and the
State University of New York. He died from a sudden heart attack on June 12, 1972, in
Buffalo, New York.

Bertalanffy was the first scientist to undertake a mathematically rigorous approach to
the understanding of biochemical synergies. The interrelationships of individual cells,
individual organisms, individual people and societies intrigued Bertalanffy, who recog-
nized that studying these interdependencies and interactions was critical to appreciating and
comprehending living things. As he phrased it

Entities of an essentially new sort are entering the sphere of scientific thought. Classical science
in its diverse disciplines, be it chemistry, biology, psychology or the social sciences, tried to
isolate the elements of the observed universe—chemical compounds and enzymes, cells, ele-
mentary sensations, freely competing individuals, what not—expecting that, by putting them
together again, conceptually or experimentally, the whole or system—cell, mind, society—
would result and be intelligible. Now we have learned that for an understanding not only the
elements but their interrelations as well are required . . . .
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Ludwig von Bertalanffy

Bertalanffy lived through times that saw the evil consequences of Hitlerism, Sta-
linism, McCarthyism, jingoism, and chauvinism, yet he maintained a single standard of
morality toward all people. For him, Davidson observes, “a wrongful act was equally wrong
whether perpetrated by capitalist or communist, archbishop or atheist, professor or pipe-
fitter, a friend or foe.”

V. Historical and Biographical Notes 171



Although he made significant advances in many disciplines, Bertalanffy maintained a
good degree of modesty about his achievements. Shortly before his death, he commented to
his students

I cannot offer a wonder drug or panacea for the salvation of society. I’m not Mister-Know-It-
All and I cannot promise you answers. But perhaps our discussion will help us a little bit to
better understand those pressing problems with which we are confronted. The only thing we
can hope for is perhaps getting a little bit wiser about our problems and about what can be
done. So let us discuss these things as far as you and I are able to do so—because you see, I
want to be of some use to you. If I succeed in making a very tiny contribution in that way, then I
would be satisfied.”

C. Anna Kane Laird

Born in New York City on June 7, 1922, Anna Kane Laird was a distinguished biologist
and psychiatrist. She earned her B.A. and M.D. degrees at the University of Pennsylvania in
the 1940s and finished a doctoral degree at the University of Wisconsin in 1952. Dr. Laird
was a postdoctoral fellow in cancer research at the U.S. Public Health Service and the
American Cancer Society before she assumed a long-term position as biologist and
pathologist at the Argonne National Laboratory.
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Anna Kane Laird near the time of her graduation from the University of Pennsylvania
Medical School in 1946.
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Laird published dozens of papers and monographs, many of them co-authored with
her husband Ambrose Donald Barton. Much of her work centered on the mathematical
analysis of animal growth, biological time, heritable factors in normal growth, and prop-
erties of malignant growth.

She also completed residencies in clinical pathology and psychiatry at the University
of Wisconsin. In the latter part of her career, she was a psychiatrist in Madison, Wisconsin.
Laird died on June 10, 2007.

Laird pioneered in the use of the Gompertz model in biology. She saw that real-world
data on tumor growth was not consistent with the prevailing model at the time. As she wrote
in a groundbreaking paper “Dynamics of Tumor Growth,”

It is commonly believed that tumor growth under ideal conditions is a simple exponential
process terminated by the exhaustion of the nutritional support provided by the host. However,
a survey of the literature shows that exponential growth of tumors has been observed only
rarely and then only for relatively brief periods. When we consider those tumors whose growth
has been followed over a sufficiently extensive range (100 to 1000-fold range of growth or
more), we find that nearly all such tumors grow more and more slowly as the tumor gets larger,
with no appreciable period of growth at a constant specific growth rate as would be expected
for simple exponential growth.

Laird described the experimental observations as demonstrating “continuous decel-
eration of growth.” She viewed the dynamics of tumor growth as one governed by an
equation of the form dV dt = rV where r, instead of being a constant, is itself an expo-
nentially decreasing function of time—that is, dr dt= −kr. We saw this system of
differential equations earlier (Eq. (19)) and showed that it is equivalent to the Gompertz
approach.

D. Sylvanus Alexander Tyler Sr.

Laird was assisted in the mathematical analysis that appeared in this paper by Sylvanus
Alexander Tyler Sr. Tyler (August 21, 1914 July 23, 1986) was a notable African
American mathematician and biostatistician. He received a bachelor’s degree from Fisk
University and a master’s degree from the University of Chicago, where he wrote his thesis,
The Projective Generation of Curves. After service in the Signal Corps in World War II,
Tyler began a 34-year career with the Argonne National Laboratory in Chicago, where
Laird and Barton also worked. He published more than 70 articles and books. Tyler also
compiled statistics for a 1945 volume Black Metropolis: A Study of Negro Life in a
Northern City.

Tyler was co-author with Laird and Barton of a 1965 paper “Dynamics of Normal
Growth,” which demonstrated that a modified Gompertz function fits growth of the normal
mammalian organism, from early embryonic periods to young adulthood.
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Laird’s use of the Gompertz model inspired Lawrence Norton and Richard Simon to
propose a new treatment regime of cancerous tumors. Norton had a patient with Hodgkin’s
disease who had a spectacular response to chemotherapy. He stayed in complete remission
for about a year, then his tumor recurred in the same location with the same pathology.
After subsequent treatment. The patient went back into complete remission. “But some-
thing puzzled me,” Dr. Norton said. “How could such a large mass disappear into complete
remission, and then recur? . . . So I looked at the math, trying to understand the exponential
mathematical model we used to describe tumor growth. I discovered that the mathematical
model we used to tailor our treatment didn’t make sense.”

Norton soon found Laird’s paper and confirmed that measurements of tumor growth
he had collected matched the Gompertz function. Since the Gompertz curve shows that the
growth rate is nearly exponential at early stages of development and slower at later stages,
Norton and Simon proposed that tumors be given less time to regrow between treatments.
They noted that many drugs killed cancer cells at rates proportional to tumor growth rates,
so smaller tumors should be easier to eradicate than larger ones. As Charles Schmidt
reported in Journal of the National Cancer Institute,

The Norton-Simon hypothesis flew in the face of conventional views, which held that tumor
growth is exponential and that chemotherapy kills in log intervals, meaning it kills constant
fractions of tumor. When it was published in the 1970s, the hypothesis was met with such fierce
hostility that Norton considered leaving oncology altogether.

Norton was able to oversee clinical trials that yielded results consistent with his
hypothesis. Standard therapy changed with intervals between chemotherapy treatments
were shortened, improving survival rates among patients. In 2004, the American Society of
Clinical Oncology awarded its highest honor to Norton—“sweet vindication,” Schmidt
wrote, “for Norton and his efforts to advanced an unpopular and poorly funded topic: the
application of mathematical concepts to cancer biology.”
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E. Matthew Johnston

Matthew David Johnston was born on April 21, 1981, in Wimbledon, England. He grew up
in Ewell, a small village in Surrey, just south of London. His interest in mathematics was
sparked by teachers in his primary school, Lynton Preparatory, which was operated by two
sisters and their husbands for more than half a century.

Johnston finished his secondary school program at King’s College School in Wim-
bledon. He did his undergraduate work at Trinity College Oxford, where he earned First
Class Honours and won several prizes in mathematics. For 2 years, he worked evenings and
weekends as a gas station attendant. “It brought in much needed funds that supported me
through undergraduate study,” Johnston recalls, “although it did curtail my social life a bit
at the time!”

An avid tennis player in high school and college, Johnston won several singles and
doubles tournaments. At Oxford, he was captain of the Trinity tennis team. In a gap year
after his undergraduate degree, Johnston did voluntary duty at an Oxfam charity shop and
also worked on models of road networks at WS Atkins engineering firm. He also worked at
the London School of Pharmacy for 4 months on a project sponsored by Cancer Research
UK, using a C++ model to analyze DNA sequencing in the human genome to ascertain the
prevalence of G-quadruplex sequences that could be used as potential therapeutic targets.

He completed his doctoral degree at the University of Oxford in 2008, where he
worked in the applied mathematics departments of the Oxford Centre for Industrial and
Applied Mathematics and the Centre for Mathematical Biology. As a graduate student,
Johnston was a leading member of a team developing mathematical models of the colonic
crypt in colorectal cancer. They created discrete, continuous age-structured, and spatial
models to recreate observations of a healthy crypt, and extended these models to incor-
porate cancerous growth.
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EXERC I S E S

II. A General Tumor Growth Model

1. Show that the general growth model of Eq. (2) reduces
to exponential growth if α= β= 1.

2. What can you say about behavior of the growth model
of Eq. (2) in the general case that α and β are equal?

3. Use the fact that the volume V of a sphere is 4 3πr3 and
its surface area A is 4πr2 to show that A is a constant
multiple of V2 3.

4. If an object is in the shape of cube, show that the
surface area is proportional to the two-thirds power of
the volume. Is the conclusion true if the shape is a
circular cylinder or a cone?

5. Show that the “carrying capacity” of the Bertalanffy

model of Eq. (5) is
a

b

3
.

6. Carry out the details of solving the Bertalanffy Eq. (5)
to derive Eq. (6).

7. Compare/contrast direction fields for logistic and
Bertalanffy equations.

III. The Gompertz Curve

8. Whydoes l’Hôpital’s rule apply to limx→ 0
Vx

− 1
x

, and

precisely why is this limit equal to limx→ 0
VxlnV − 0

1
?

9. Show that Eq. (12) implies that for positive values of
V , V is increasing whenever V is less than ea b and
decreasing for V > ea b. Can you conclude that ea b is a
stable equilibrium value for V?

10. Use the Gompertz equation in the form
dV

dt
=

a− blnV V to explain why limt→∞ V t = e
a
b.

11. Sketch the graph of dV dt versus V for 0≤V ≤ e
a
b.

What can you conclude about the behavior of V from
this graph?

12. In solving the Gompertz differential equation, we

assumed that
1
u
du= lnu+C rather than the more

formally correct answer
1
u
du= ln u +C. Were we

safe in ignoring the absolute value signs?

13. Here’s a different approach to solving the Gompertz

differential equation
dV

dt
= a− blnV V .

(a) Show that the change of variable Q= e−a bV
transforms the Gompertz equation into the differ-
ential equation dQ

dt = − bQ lnQ. Note that as V

ranges from 0 to e
a
b, the variable Q will range from

0 to 1.

(b) Solve the transformed differential equation by
separation of variables and integration, noting that
d

dt
ln lnQ =

1
Q lnQ

.

14. Show that the Gompertz curve has a single point of
inflection at the time when lnV =

a

b
− 1.

15. Verify the equivalence of two different forms of the
Gompertz model by substituting b= k and
a= r0 + klnV0 into the first form.

16. Use the principle of mathematical induction to prove

(a)
N

i=1
i= N N + 1

2

(b)
N

i=1
i2 = N N + 1 2N + 1

6

17. With the estimated parameter values for the Gompertz
model of chicken growth, show that the predicted
long-range limit to the size is 4.476.

18. Carry out the details of fitting the logistic model to the
chicken weight data to show that d= 3.155450907 and
a= 0.4124054532.

19. Another technique for approximating V0 is based on
estimating V∞, the upper limit of V as t gets large.

Verify that limt→∞ V t = limt→∞ V0e
r0
k e

r0
k e

−kt
=V0e

r0
k

so that V∞ =V0e
r0
k and V0 =V∞e−

r0
k . Show that for our

chicken example, if we estimate V∞ as 4.6, then
V0 = 0.0585934. If we use this value for V0, show that
the sum of squared errors is reduced to 0.0120392.

20. What can you conclude about the qualitative behavior
of a growth model of the form dx dt= g x where g is
concave down, increases to a unique positive maxi-
mum, and then decreases to zero? Is the solution
necessarily an S-shaped curve?

21. Show that the solutions of dx dt= sin x and
dx dt= sin 2x on 0≤ x≤ π are S-shaped curves.

22. Show that the solutions of dx dt= cos x and
dx dt= cos 2x on π 2≤ x ≤ π 2 are S-shaped curves.
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23. Without explicitly solving the differential equation,
show that the solution of the generalized logistic
equation dx

dt = a x− b1
c b2 − x d will be an S-curve if

a, b1, b2, c, d are positive and b2 > b1.

24. Without explicitly solving the differential equation,
show that the solution of the generalized Gompertz

equation
dx

dt
=

a x− b1
c ln

b2 − x

x− b1

2

if x> b1

0 if x= b1
will be an S-curve if a, b1, b2, c, d are positive and
b2 > b1.

25. Without explicitly solving the differential equation,
show that the solution of the exponential sigmoid

equation
dx

dt
= a x− b1

c eb2 − ex d will be an S-curve

if a,b1,b2,c,d are positive and b2 > b1.

IV. Colorectal Cancer

26. Since α1 + α2 +α3 = 1, show that equation (34) can be
rewritten as

dN0

dt
= 1 2α1 2α2 N0

27. Show that Eq. (35) can be rewritten as

dN1

dt
= β3N1 β1N1 β2N1 + α2

N0 = 1 2β1 2β2 N1 + α2N0

28. The general first-order linear differential equation, of
which Eq. (38) is an example, has the form dy

dt −

p t y= q t , where p and q are continuous functions of t.

(a) Show that multiplying through this equation

by the integrating factor e− p t dt produces

the equation e− p t dt dy

dt
− p t e− p t dty=

q t e− p t dt where the left-hand side is
exactly the derivative, with respect to t, of

e− p t dty.

(b) Deduce from (a), that the solution of the
general first-order linear differential equation

has the form y= e p t dt q t e−p t dtdt +

Ce p t dt where C is a constant whose value
depends on the initial value of y.

29. Use the technique outlined in Exercise 28 to solve the
differential equation

dy

dt
+ tan t y= cos 2t

where y 0 = 2.

30. Use the technique outlined in Exercise 28 to solve the
differential equation

dy

dt
=

2t
1+ t2

y+
2

1+ t2
with y 0 = 2 5

31. Find the value of the constant C in Eq. (44) if
N2 0 =N20.

32. Note that Eq. (46) is undefined if β= 0. What can you
conclude about the population of semi-differentiated
cells when β= 0?

33. Use Eq. (48) to show that under the linear feedback
model, the number of stem cells N0 will increase if

N0 <
α

k0
and increase if N0 exceeds

α

k0
.

34. For the saturating feedback model, verify the claim

that if 0< α<
k0
m0

, then
dN0

dt
will be positive when

N0 <
α

k0 − αm0
and negative if N0 >

α

k0 − αm0
.

35. Why is it that the quadratic in Eq. (57) has exactly one
positive root?

36. Verify the claim that for the saturating feedback
model, if N1 is the steady state for the transit cells,
then the steady state for the fully differentiated cells is

N2 =
β2N1 +

k1N 2
1

1+m1N1

γ

SUGGES T ED PRO J ECTS

1. Investigate the discrete form of the Gompertz model
using the form Qi+1 −Qi = −bQlnQi. Are there values
of b for which chaos is observed? See our discussion
of the discrete logistic model in Chapter 3. You may
also wish to examine the paper by Daisuje Satoh
(2000).

2. Examine methods for obtaining exact or approximate
solution for the generalized Bertalanffy and Gompertz
models. SeeMiljenkoMarušić and Zeljko Bajzer (1993).

3. Michael Savageau derived the generalized Bertalanffy
equation from a different set of first principles.
Investigate his approach. See Savageau (1979).
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4. Steven Piantadosi (1985) proposed a model of tumor
growth, which views the tumor as a cell population of
size N divided into a reproducing group P and a quies-
cent group Q. A proportion g of the Q cells reenters the
reproducing group while a different proportionw die off.
The P population dies off at the same rate w, but also
gains in size through splitting at a constant rate a. These
assumptions lead to differential equations Q′= −gQ
−wQ and P′= gQ+ aP−wP. Show that you can
combine these into a single differential equation
N′= aFN wN, where F =PN is the growth fraction.
Piantadosi proposed one relationship between F and
tumor volume V , while other scientists (see Cox (1980)
and Matusic (1991)) considered others. Investigate the
mathematical consequences of these models, and the
ways that their predicted values match observed data.

5. One way to describe dynamic processes that give rise
to S-curves is that they are solutions to differential
equations of the form dx dt= g x where there are
positive numbers a< b< c such that

(a) g x > 0 on the interval a, c

(b) g a = g c = 0

(c) g′ x > 0 on the interval a, b

(d) g′ x < 0 on the interval b, c

Show that the logistic and Gompertz models are of this
form for appropriate choices of g. What general
properties (e.g., must there be a single point of
inflection?) can you derive from conditions (a) (d)?

6. We have presented a discussion of the continuous
models of colon cancer dynamics investigated by
Johnston and his colleagues. Their papers (2006, 2007)
also develop a discrete model you may be interested in
investigating.

7. Johnston’s models assume that a stem cell can either
divide to create two new stem cells or two differenti-
ated cells. Some biologists conjecture that a single
stem cell may also evolve into one stem cell and one
differentiated cell. Extend Johnston’s models to
include this third possibility.

8. Sales over time of consumer electronic products often
follow a Gompertz curve with moderate initial interest
followed by near exponential growth tapering off as
the market reaches saturation. Sanjay Singh (2007)
found that mobile phone sales in India were accurately
modeled as Gompertz growth. Investigate other mar-
kets for cell phones and other products (for example,
large screen flat TV screens) whose sales curves are
S-shaped to see how closely a Gompertz or a logistic
model fits the available data.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
6

Social Choice and Voting
Procedures

The general will is always right and tends to the public advantage; but it

does not follow that the deliberations of the people are always equally

correct. Our will is always for our own good, but we do not always see

what that is; the people is never corrupted, but it is often deceived.

—Jean-Jacques Rousseau

I. Three Voting Situations
This chapter illustrates the use of axiomatic models by investigating some of the procedures
groups of voters use to determine collective judgments from individual preferences. These
procedures characteristically have certain injustices associated with them. An axiomatic
approach reveals that attempts to redesign the procedures or invent new ones to avoid these
inequities are doomed to frustration.

An illustrative real-world example is the U.S. Senate and its attempts to reach
agreement on certain types of important issues. The model we develop concerns certain
kinds of collective judgments, which are exemplified by the following three illustrations.

Example 1

The president nominates a South Carolina lawyer for a position on the U.S. Supreme Court.
The Senate must decide whether to confirm the nomination or not.

Example 2

Three proposals for dealing with the dependents’ deduction feature of the federal income
tax have been offered. Proposal A calls for a substantial increase in the amount of the
deduction so that it will more accurately reflect the costs of rearing children in today’s
economy. Proposal B seeks the abolition of the dependents’ allowance; its advocates wish
to discourage parents from planning large families. Proposal C is simply that the present
level of the deduction be retained. The Senate must adopt one of these mutually exclusive
proposals. This is an example of a Social Choice Problem.
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II. Two Voting Mechanisms
A. Simple Majority Voting

The first situation, that of confirming a nomination to the Supreme Court, poses little
difficulty. Each senator announces a vote for or against the nominee. If a simple majority of
those voting favors the nominee, the nominee is confirmed. Otherwise, the nominee is
rejected. (Should the Senate split evenly, then the ballot of the vice president is counted to
Vice President determine the majority position.)

Decision making by simple majority voting is, of course, the most familiar scheme for
determining the collective judgment of a group of individual voters. Together with the
concept that each individual has but a single vote, it forms the heart of what many would
define as democracy. “The very essence of democratic government,” wrote Alexis De
Tocqueville in Democracy in America (1835), “consists in the absolute sovereignty of the
majority; for there is nothing in democratic states which is capable of resisting it.” In his
first inaugural address, Abraham Lincoln observed, “Unanimity is impossible; the rule of a
minority, as a permanent arrangement, is wholly inadmissible; so that, rejecting the
majority principle, anarchy or despotism in some form is all that is left.”

As you will see, simple majority voting is a fair and effective procedure to adopt when
a group must decide between two alternatives or candidates. But there are many situations in
which a society needs to make a choice among three or more alternatives. In each of the U.S.
presidential elections of 1980, 1992, 1996, 2000, and 2004, there were strong “third-party”
candidates who appealed to millions of voters as more attractive than the major party
nominees. There are numerous elections for governors, state and county offices, and legis-
lative positions where no single candidate is the first choice of a majority of the voters.

What happens, then, when the group must choose among three or more alternatives?
How does the Senate actually reach a decision when faced with a situation like that
described in Example 2? It adopts a procedure used by many legislative bodies: change the
format of the problem from one involving a choice among three alternatives to a series of
choices between two alternatives.

To illustrate this process with the income tax example, the Senate might first decide
between proposals A and B on a simple majority vote. The winning proposal would then be
pitted against C and the eventual winner then decided by a simple majority vote between
these two alternatives.

Example 3

A commission on national goals asks the Senate for its evaluation of the order of impor-
tance of three current problems: the economy, the plight of urban areas, and the protection
of the environment. In this situation, the Senate must indicate an ordering of three alter-
natives. This is an example of a Social Welfare Problem.

There are 100 senators, two from each state. Assume that there has been sufficient
discussion and debate on the matters before the Senate so that each member has already
determined his or her own personal preferences among the alternatives open. What pro-
cedure should be used in passing from this set of 100 individual preferences to a collective
preference?
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The idea is to use the simple majority principle—because of a strong belief in its
fairness—even when it may not be immediately applicable. Is there anything wrong here?

Re-examine for a moment the individual preferences of the senators. Assume
that a certain amount of reasonableness and consistency exists in each senator’s personal
ordering of the desirability of the three proposals. In particular, assume that each senator’s
ordering is transitive. Transitivity means that if x, y, and z are any three alternatives and a
senator prefers x over y and prefers y over z, then the senator must prefer x over z.

If an individual’s preferences are transitive, then his preference list can be denoted in
a convenient way. Suppose a senator finds proposal C most attractive, proposal B least
attractive, and proposal A intermediate to the other two. We may denote the preference list
by CAB . Then transitivity implies that one proposal is favored over another exactly if
it appears to the left of the other in the list.

We now make our first demand on the decision-making process: the collective
preference must also be transitive. We want to guarantee that whenever the group prefers
x to y and prefers y to z, then it must also prefer x to z. It is on this imminently reasonable and
apparently innocent demand that simple majority voting stumbles badly. At least since the
time of the Marquis de Condorcet (1743 1794), those concerned about just voting pro-
cedures and mechanisms noted the possibility that intransitive social preferences could
result when the variation of simple majority voting we described is applied to a list of
individual transitive preferences.

To be specific, there are six possible ways an individual can rank-order the three
proposals: ABC , ACB , BCA , BAC , CAB , and CBA . Suppose that the pre-
ferences of the senators on the dependents’ allowance proposals break down as follows:

ABC 31votes, BCA 34 votes, CAB 35 votes

To simplify this example, we assume that none of the other three orderings are
represented.

Which proposal will be adopted? If the originally outlined procedure is followed, the
Senate will first choose between A and B. Since 66 senators prefer A over B, B will be
eliminated from consideration. A second vote will be taken between A and C. Now 69
senators will opt for C, and only 31 for A. Thus, the Senate would adopt Proposal C.

A loud objection can be expected from the advocates of proposal A. It has already been
established, they would argue, that the Senate prefersA toB. It is also clear that in a direct vote
between B and C, B would receive 65 votes so that the Senate certainly prefers B to C. But if
the Senate prefers A to B and B to C, then it must prefer A over C to maintain transitivity.

As you have just seen, the Senate’s normal procedures do not necessarily lead to
transitive group preferences. But is transitivity always so important? In any legislative
situation, it might be argued, the body always has at any moment only the option between
two proposals. Only after one of the original two proposals is voted down in favor of the
other may a third proposal be introduced.

If group transitivity is not guaranteed, however, more serious problems arise. The
result of the legislative deliberation may depend, not on the individual wishes of the members
or the inherent worth of the proposals, but on the order in which the proposals are offered for
consideration. To illustrate with this same example, suppose the agenda is arranged so that
A and C are the two original proposals discussed. When a vote is taken, C triumphs over
A. When proposal B is finally introduced, it competes against C and wins, 65 to 35.
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The author of each of the three proposals A, B, and C then has a legitimate argument
that his or her proposal is the one that is “most favored” by the Senate as a whole. Although
legislative bodies almost universally employ the modification of simple majority voting
we’ve discussed here, we see that it fails to be a just one. The procedure yields nontransitive
group preferences. It does not always produce the same collective preference given the
same set of individual preferences. It is subject to manipulations by those who control the
ordering of items on the agenda.

A suggested modification of simple majority voting when there are more than two
alternatives is to conduct all possible two alternative elections, decide each one by majority
vote, and declare as the winner the single alternative that beats all others. Such an alter-
native, which triumphs over every other choice in head-to-head balloting, is called the
Condorcet Winner. While this is an appealing decision rule, it doesn’t always work, as it is
possible that no Condorcet Winner exists. In our Senate example, there is no Condorcet
Winner, since C beats A, A beats B, and B beats C.

What procedure should be used if the group wishes to guarantee transitivity and to
guarantee that the group decision is purely a function of the individual preferences? How is
the “will” of the group to be determined? One possibility often suggested is to adopt a
weighted voting scheme.

B. Weighted Voting

Weighted votingmechanisms are often used to score athletic, artistic, and beauty contests. The
individual ratings of a collection of judges are pooled to determine the final overall rankings of
the contestants. Preassigned numerical weights are attached to each first-place rating, each
second-place rating, and so on. A contestant receives a score that is the sum of the weights of
the opinions of the individual judges. The group ranking of the contestants is then determined
by their total scores. The personwith the highest number of points is the winner, the individual
with the next highest number is the first runner-up, and so on down the list. Notice that this
procedure can be employed in a situation either like Example 2 or like Example 3.

Example 4

An instructor offers a class of 25 students the option of a take-home final examination, an
in-class final examination, or a major term paper. The class will choose the single option
that every student will experience.

Table 6.1 shows how many students rated each option first choice, second choice,
and third choice.

Table 6.1

Take-Home Exam In-Class Exam Term Paper

First Choice 7 10 8

Second Choice 12 3 10

Third Choice 6 12 7
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Suppose 4 points are given for each first-place vote, 2 for second place, and 1 for
third. Then the points for each option and total points are displayed in Table 6.2. The term
paper emerges as the winner.

But suppose a different number of points are designated for each place. If, for
example, we give 10 points for each first-place vote, 7 for second, and 3 for third, then a
different outcome arises. Table 6.3 shows the results. Here the take-home exam is the
overall top choice.

This example demonstrates the first problem with weighted voting: the outcome may
depend on exactly how many points are given for each place.

Is there an allocation of points under which the in-class exam wins? Take 10 points
for first, 3 for second, and 1 for third. Table 6.4 shows the results.

Table 6.2

Take-Home Exam In-Class Exam Term Paper

Points

4 for First 28 40 32

2 for Second 24 6 20

1 for Third 6 12 7

TOTAL 58 58 59

Table 6.3

Take-Home Exam In-Class Exam Term Paper

Points

10 for First 70 100 80

7 for Second 84 21 70

3 for Third 18 36 21

TOTAL 172 157 171

Table 6.4

Take-Home Exam In-Class Exam Term Paper

Points

10 for First 70 100 80

3 for Second 36 9 30

1 for Third 6 12 7

TOTAL 112 121 117
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There are even more serious weaknesses with a weighted voting scheme: individual
voters may have incentives to falsify their true preferences.

Consider a beauty contest example in which there are four contestants, labeled w, x, y,
and z and three judges. Judges 1 and 2 each rank the contestants in the order x y zw , while
judge 3 ranks them zw x y . If 5 points are assigned for a first-placed ranking by a judge, 4
points for second, 2 for third, and 1 for fourth, then x earns 12 points, y and z each earn 9,
and w earns 6. The winner is contestant x, while y and z tie for second, and w is last.

Suppose that between the time the judges’ ratings are submitted and the winner is
announced, it is discovered that y has broken the rules of the contest. He is disqualified. The
scoring system is now applied to the remaining contestants. It should yield the same results,
we believe, especially since y is inferior to x, according to the tastes of each individual judge.

Yet if y is deleted, the rankings become x zw for judges 1 and 2 and zw x for judge 3.
Nowwhen the weights are tabulated, x still has 12 points, but z has 13 andw has 8. The master
of ceremonies dutifully declares z the winner of the contest. Needless to say, x is furious and
his attorney sues the contest committee, claiming her client has been treated unjustly.

This weighted voting scoring mechanism violates an ethical value and poses a
practical political problem. Whether a group believes x is better than z or not should be a
judgment independent of the group’s feelings about a third contestant y. Weighted voting
does not preserve this independence.

Here is the practical political problem: In the example, judges 1 and 2 have given their
true preferences in their ratings. They think x is best and would like to see x emerge as the
eventual winner. Suppose that they have heard rumors that y has not been completely
rigorous in following the rules. If judges 1 and 2 were to switch their ratings to x yw z ,
they would make it more likely for x to win over z in the event that y is disqualified. These
two judges would be falsifying their own preferences.

A fair and equitable voting mechanism should not encourage such falsification.
Each voter should feel secure in casting a personal ballot that lists the alternatives exactly
in the order in which she would like to see the outcome. Weighted voting schemes remove
this security.

The procedure of weighing places in individual preference orderings with numbers and
using these numbers to find the societal ordering of proposals or candidates is attributed to
Jean-Charles de Borda (1733 1799). His “Mémoire sur les Élections au Scrutin,” published
in 1781, was the first mathematical theory of elections. When confronted with the possibility
that voters might mask their true preferences in order to help their favorite candidate emerge
on top, Borda is reported to have replied “My scheme is only intended for honest men.”

DEFINITION We call a voting mechanism manipulable if there is at least one voter
who by disguising his true preferences may ensure a group preference ranking he prefers to
the one that would have been obtained had he submitted his true preference ordering.

We have just seen that weighted voting is a manipulable mechanism. The terms
nonmanipulable, strategy-proof, or sincere are used to describe voting mechanisms that are
not manipulable.

Various other schemes have been proposed for determining a group-preference
ranking from lists of individual preferences, and some of them are widely used. These
include plurality voting, instant runoff voting, approval voting, range voting, and propor-
tional representation. Each seems to suffer from one or another defect. The injustices of
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these voting mechanisms raises the question of whether it is possible to design one that
everyone will agree is just and democratic. If it is possible, what would the rules of such a
voting procedure look like?

III. An Axiomatic Approach
What is a just voting mechanism? To answer this question, we begin by listing some
conditions or axioms that a voting system might reasonably be required to satisfy if it is to
be labeled a “fair” one. Once the set of axioms is set, we can ask mathematical questions. Is
the set of axioms consistent? If so, how many different structures satisfy them? If the
axioms are inconsistent, which ones should be eliminated or modified?

In the first place, the mechanism will be translating a list of individual voter pre-
ferences into a group-preference list. The voters may differ greatly in their likes and dislikes
of candidates or proposals. We do not wish to restrict the freedom of any voter to state her
true preferences. Accordingly, the first axiom looks like this:

AXIOM 1 (INDIVIDUAL SOVEREIGNTY) Each voter may order the candidates (or
alternative proposals) in any way he or she chooses and may even indicate indifference
between pairs of candidates.

The second axiom demands that the system always produce a societal judgment that
is transitive and depends only on the individual ballots cast by the voters.

AXIOM 2 (EXISTENCE OF SOCIAL WELFARE FUNCTION) For every collection
of lists of individual preferences, the mechanism produces a unique list of society’s
preferences. The society’s preferences are transitive.

Note that Axiom 2 removes the inequities associated with simple majority voting
when more than two alternatives are being considered. It also rules out some schemes that
do guarantee transitivity. For example, one mechanism might be to put all the individual
lists into a hat and draw out at random one of these, which will be designated society’s
preference list. Since the societal choice corresponds to some particular individual’s, it will
be transitive. This scheme would not satisfy Axiom 2, because a second implementation of
the mechanism (drawing again from the hat) might result in a different outcome. The
uniqueness feature of the societal list would be violated.

A decision procedure that simply makes the societal outcome the alphabetical listing
of the alternatives or one that selects the eldest voter and declares that person’s preferences
to be the group’s preference would be consistent with Axiom 2.

The third axiom is a weak constraint that has generated no controversy among voting-
theory experts. It simply asks that in those cases in which everyone prefers x to y, so does
the society.

AXIOM 3 (UNANIMITY) If every individual prefers one alternative to another, so does
the society.

It would certainly be unreasonable to claim that the society’s ranking reflected that of
its members if no one agreed with it. In the context of a “Social Choice Function” where all
we require is the determination of a winner (society’s top choice), the principle of

III. An Axiomatic Approach 185



Unanimity is usually called Pareto efficiency. A social choice function is Pareto-efficient if
it chooses alternative a whenever a is at the top of every voter’s list.

The weighted voting schemes discussed in Section II satisfy Axioms 1, 2, and 3; the
proof is left to the reader. The fourth axiom is designed to eliminate the difficulties asso-
ciated with such systems.

AXIOM 4 (INDEPENDENCE OF IRRELEVANT ALTERNATIVES) The social
ordering of any pair of alternatives depends only on the preferences of the individuals
between the members of that pair.

This axiom implies that if we want to know whether the society prefers x to y or y to x,
we need only examine the relative rankings of x and y on each voter’s preference list; we
need not look at the rankings of any other candidates.

To understand this axiom better, return for a moment to the beauty contest example. If
the rankings as originally turned in by the judges give a group judgment of x higher than z,
then any other set of ballots in which judges 1 and 2 rank x higher than z and in which judge
3 ranks z higher than xwill result in a group judgment of x higher than z if Axiom 4 holds. In
other words, any two elections in which all voters preserve their preference between two
particular candidates will yield the same group preference between those two candidates.

Let’s illustrate this point with an example. The American Film Institute (AFI) selects
a panel of three famous critics to choose the best movie ever produced. The critics are
Roger, Janet, and Zoey and the three finalist films are Citizen Kane, The Godfather, and
Casablanca. Each critic will submit a ranking of the three movies. A social welfare function
will then be used to obtain an overall ranking of the three. The exact details of the particular
social welfare function are unknown, but the AFI guarantees that it does satisfy Axiom 4.

We’ll consider the relative rankings of Citizen Kane and Casablanca. Suppose that
the individual rankings of the critics are those shown in Ballot 1, and in the overall ranking,
Citizen Kane winds up above Casablanca. If Axiom 4 holds, then Citizen Kane would also
end up rated higher than Casablanca if the individual rankings are those of Ballot 2. This
would be true because Roger and Janet rated Citizen Kane above Casablanca and Zoey
listed Casablanca higher than Citizen Kane in both ballots. No individual voter changed a
relative ranking of these two alternatives. Note that we do not know that the social ranking
actually put Citizen Kane in a higher position than Casablanca; that is not material to the
question of whether Axiom 4 holds.

Ballot 1

Roger Janet Zoey

(1) Citizen Kane The Godfather Casablanca

(2) Casablanca Citizen Kane The Godfather

(3) The Godfather Casablanca Citizen Kane

Ballot 2

Roger Janet Zoey

(1) Citizen Kane Citizen Kane Casablanca

(2) The Godfather Casablanca The Godfather

(3) Casablanca The Godfather Citizen Kane
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A voting mechanism that satisfied Axiom 4 would ensure that voters gain nothing by
disguising their true preferences.

It is very easy to design a voting mechanism that satisfies the first four axioms.
Simply designate some particular voter as a dictator and decree that society’s preference list
will just be a copy of that one person’s list. The reader should verify that this dictatorial
mechanism is consistent with Axioms 1 4. Although having a dictator is certainly an
extremely efficient voting mechanism, it is not what most people would call a “democratic”
institution. The final axiom rules out such systems.

AXIOM 5 (NONDICTATORSHIP) There is no voter with the power that for all choices
x and y, if he ranks x over y, then so does the society regardless of how other voters feel
about x and y.

A dictator is a voter whose submitted preference list always becomes the society’s
preference list.

To make the axiomatic model realistic, assume that there are a finite number of
individual preference lists. To make it interesting, assume that there are at least three dif-
ferent alternatives to be ranked. (The reader is asked to show that simple majority voting
satisfies Axioms 1 5 if there are exactly two candidates or proposals being considered.)

These five axioms describe conditions all of which seem natural and desirable to
demand of a voting mechanism. You may, in fact, believe that the axioms demand too little
for the mechanism to deserve the adjective “democratic.” The axioms do not demand, for
example, that each voter’s preference list be treated equally; some individuals might be
given more “votes” than others. The axioms do not require that society prefer x to y if a
simple majority prefers x to y. The axioms also do not insist that the same procedures be
used on all pairs of alternatives. Conceivably, a mechanism that used a dictator to decide
between Proctor and Swenton while using simple majority voting on Emerson vs. Peterson
might be allowed.

The surprising fact is that even this “reasonable” set of axioms is inconsistent. The
five demands are incompatible with each other. It is impossible to devise any voting
mechanism that will simultaneously satisfy all of them.

This result is known as the General Impossibility Theorem. It was first stated by
Kenneth J. Arrow in 1951 in a pioneering essay that sought to place voting theory on an
axiomatic basis. Arrow’s original proof contained a technical error and a correct proof was
first supplied by Julian Blau in 1957. Arrow’s Theorem has provoked a considerable
amount of discussion by social scientists, philosophers, political theorists, and economists.

IV. Arrow’s Impossibility Theorem
We state the theorem in a manner that is both provocative and that indicates the direction of
its proof:

THEOREM (ARROW’S GENERAL IMPOSSIBILITY THEOREM) Axioms
1 4 imply the existence of a dictator.

The remainder of this section presents a proof of the theorem. Assume, then, that
there is a voting mechanism satisfying Axioms 1 4. We need one additional definition.

IV. Arrow’s Impossibility Theorem 187



DEFINITION A set V of individual voters is decisive for alternative x against
alternative y if x is socially chosen by the voting mechanism whenever every individual
in V prefers x to y and every individual not in V prefers y to x.

This concept is somewhat subtle and requires some explanatory remarks:

a. If the mechanism is a dictatorial one, then the dictator is a one-person set who is
decisive for every pair of alternatives.

b. Axiom 3 on Unanimity asserts that the set of all voters is decisive for every pair of
alternatives. Should every voter prefer x to y, then so would society. Of course, not
every voter might share this preference between x and y.

If some of the voters prefer x to y and others prefer y to x, we need to know more
about the details of the voting mechanism to determine the societal ranking.

c. Decisiveness is really a potential power. If V is a set that is decisive for x against y,
then one of the conditions that must be present in order to predict that society
prefers x to y is that everyone in the set V prefers x to y. If a particular individual
belongs to V and he prefers y to x, then the fact that V is decisive for x against y
does not really give V much influence on the outcome.

d. The other condition that must be met if decisiveness is to be used to predict a
societal ranking is that all the individuals not in V must prefer y to x. If V is decisive
for x against y, if everyone in V prefers x to y, and if someone not in V also prefers x
to y, then we can make no accurate prediction about the societal ranking of x against
y unless we have more detailed knowledge about the voting mechanism.

To clarify this point, suppose we have a society with seven members: Mike,
Judy, Eli, Sherry, Abby, John, Sasha, and Anne. The voting mechanism is simple,
but rather peculiar. The societal ranking is always exactly the opposite of Mike’s
preference ranking. Let x and y be any two alternatives. Then the set whose
members are Eli, Abby, and Sasha is decisive for x against y. If these three prefer x
to y and the other four members prefer y to x, then, in particular, Mike prefers y to x.
Since Mike prefers y to x, the society prefers x to y. Consider, however, what
happens if Eli, Abby, Sasha, and Mike all prefer x to y. Then society will prefer y to
x, even though Mike has voted the same way as all the members of a decisive set.

e. A set V may be decisive for x against y but not necessarily decisive for y against x or
decisive for any other pair of alternatives. This is due to the fact that Axioms 1 4
do not require the voting mechanism to operate the same way for all pairs of
alternatives.

With these warnings about the notion of a decisive set in mind, we proceed to the
main part of the proof of the theorem. The proof proceeds by verifying two claims:

Claim I There is some pair of alternatives and some individual who is decisive for that
pair.

Claim II If an individual is decisive for some pair of alternatives, then he or she is
decisive for every pair of alternatives—that is, the individual is a dictator.
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Proof of Claim I For any pair of alternatives x and y, there is at least one nonempty
decisive set—namely, the set of all individuals. Among all sets of individuals that
are decisive for some pair of alternatives, pick a minimal set. This is a set V of
voters and a pair of alternatives x, y so that V is decisive for x against y and no
proper subset of V is decisive for any pair of alternatives. Axiom III on unanimity
means that no empty set can be decisive of any pair of alternatives; thus, V contains
at least one voter.

If such a minimal decisive set contains exactly one voter, then we are done with
Claim 1. Hence, assume that V contains at least two voters. Let V be the set consisting
of exactly one voter from V , V# the subset of V consisting of all voters in V not in V ,
and let V ′ be the set of all voters in the society not in V . Now V is a proper subset of V .
We shall show that V is decisive for some pair of alternatives, thus contradicting the
minimality of V .

Suppose that V is decisive for x against y, and let z be any other alternative.
Suppose that the voter in V ranks the alternatives x y z , all the voters in V# rank them
z x y , and all the voters in V ′ rank them y z x .

Note first that all voters in V =V ∪V# prefer x to y and that all voters not in V
prefer y to x. Since V is decisive for x against y, society prefers x to y.

Next note that V# is smaller in size than V , so it is not decisive for any pair. In
particular, V# is not decisive for z against y. This implies that society prefers y to z, for
otherwise we would have society preferring z to y when everyone in V# does and no one
outside V# does.

Finally, use the transitivity of the societal preference. Society prefers x to y and y
to z. Thus, society prefers x to z.

We then have one election in which V prefers x to z, everyone outside V prefers
z to x, and the society prefers x to z. By Axiom 4 on Independence of Irrelevant
Alternatives, society will prefer x to z whenever all individuals maintain these pre-
ferences between x and z. Hence, V is decisive for x against z. This contradicts the
assumption that V is a minimal decisive set. The conclusion, then, is that minimal
decisive sets contain precisely one voter. Claim I is verified.

Proof of Claim II Let J be some individual member of the society and write:

1. “aDb” to mean that a is socially preferred to b whenever J prefers a to b regardless
of the orderings of other individuals

2. “aDb” to mean that a is socially preferred to b if J prefers a to b and all other voters
prefer b to a

These notations are useful since the condition of dictatorship is that aDb for all
pairs of alternatives a and b, while aDb is true if and only if J is a decisive set for a
against b.

To complete the proof of Claim II, the following lemma is useful.
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LEMMA Suppose there are three alternatives a, b, c. Then

1. aDb implies aDc, and

2. aDb implies cDb.

Proof of Lemma Let J rank the alternatives a b c and suppose everyone else ranks b
higher than a and c. Since aDb, we conclude that society prefers a to b. Since all
individuals prefer b to c, so does society. By transitivity, society prefers a to c. The
axiom on Independence of Irrelevant Alternatives asserts that whenever J prefers a to c,
so does society, regardless of how the other voters rank c and a. In other terms, aDc.

To prove that aDb implies cDb, suppose first that J ranks the alternatives in the
order c a b and all other voters rank them c b a or b c a . Since aDb, society prefers
a to b. By unanimity, society prefers c to a. Transitivity then gives a society preference
of c over b. Applying Axiom 4 again, we have cDb.

This completes the proof of the lemma.

We can now finish the proof of Claim II. Suppose xDy for some pair of alternatives
x and y.

Case 1 There are exactly three alternatives: x, y, z.

We must show that aDb for all pairs of alternatives—that is,

(1) xD z (2) zDy

(3) xDy (4) yD z

(5) zD x (6) yDx

The proof of (1) follows directly from the lemma with a= x, b= y, and
c= z. Similarly, (2) follows from a direct application of the lemma. Now that
we know that xD z, we also have xDz. Now apply the lemma with a= x, b= z,
and c= y. The conclusions are that xD y and yD z, giving (3) and (4). The
proofs of (5) and (6) are left to the reader.

Case 2 There are more than three alternatives.

Suppose xDy holds and let a and b be any alternatives.

(i) If x and y are the same as a and b, add a third alternative z to x and y and apply the
result of Case 1 to show that xD y implies xD y and yD x. Hence, both aDb and
bDa hold.

(ii) If exactly one of a and b is distinct from x and y, add it to x and y to form a triple
and apply Case 1.

(iii) If both a and b are distinct from x and y, two steps are needed: First, add a to x and
y; obtain xDa so that xDa. Second, consider the triple x, a, b; obtain aDb.

Thus, xDy for some x and y implies aDb for all alternatives a and b. This com-
pletes the proof of Claim II and hence the proof of the theorem. ⋄
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Since Axioms 1 5 are inconsistent as they stand, any attempt to strengthen them—

such as demanding that all voters be treated equally—will not remove inconsistency. A
voting system that satisfies some of the axioms must violate some of the others. We will not
enter here the heated argument as to which is the “best” axiom to modify or discard. The
interested reader may follow the debate by consulting the References.

V. The Liberal Paradox and the Theorem of the Gloomy
Alternatives

In the years since Kenneth Arrow formulated his Impossibility Theorem, social scientists,
political theorists, economists, philosophers, and mathematicians have examined many
aspects of the approach he pioneered. They have looked, for example, at how the axioms
might be weakened or how they are interrelated to each other or how other fairness criteria
might be formulated. In this section, we state and prove several theorems they have
discovered that indicate that even more minimal requirements of fairness on a voting
mechanism ensure that it is a dictatorial one.

A. The Liberal Paradox

One of the tenets of classical liberalism, extolled for example in John Stuart Mill’s famous
1869 essay On Liberty is that each individual should be “locally decisive” with respect to a
narrowly defined sphere that is that person’s private concern. Society should not be able to
decide, for example, which religion you must practice or which books you cannot read.

In the context of the problems Kenneth Arrow addressed, Amartya Sen formulated an
AxiomofMinimal Liberalism: there are at least two individuals each ofwhom is strongly decisive
for some pair of alternatives. A strongerAxiom of Liberalismwould require that at least one such
pair of alternatives exist for every individual, but Sen does not need such an assumption.

Sen discovered and proved the Liberal Paradox Theorem: There is no social decision
function that satisfies Citizen Sovereignty, Unanimity, and Minimal Liberalism.

We outline a proof. Suppose we have a social decision rule that satisfies Minimal
Liberalism. Then there are individuals, call them John and Amy, and alternatives x, y, z, and
w such that John is strongly decisive for x and y while Amy is strongly decisive for z and w.
We assume, for simplicity, that all four alternatives are distinct.

If our mechanism also satisfies Citizen Sovereignty, then it must deal successfully
with a profile that contains these rankings by John and Amy:

John Amy

. . . . . .

w y

. . . . . .

x z

. . . . . .

y w

. . . . . .

z x

. . . . . .
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Suppose, in addition, that every other individual also ranked w above x and y above z.
Since John is strongly decisive for the pair x and y and John ranked x above y, the

mechanism must rank x above y.
If Unanimity is also assumed, then the mechanism ranks w over x and y over z. Hence,

our result is that society ranks w above x, x above y, and y above z. Transitivity would
require that society rank w above z. But Amy is strongly decisive for the pair w and z, and
she ranked z above w; hence, the mechanism must also rank z above w. Thus, Citizen
Sovereignty, Unanimity, and Minimal Liberalism force the mechanism to fail the
requirement of transitivity that a social choice function must have.

B. Theorem of the Gloomy Alternatives

Recall first Arrow’s fourth axiom on Independence of Irrelevant Alternatives (IIA). Sup-
pose we have two different sets L and L of rankings by the individual voters where every
voter ranks a above b in both L and L . The IIA axiom requires that whenever a finishes
higher than b under L, then a must finish higher than b under L .

We are going to consider a weaker version of IIA that only deals with the case in
which alternative a winds up at the top of the social ranking:

DEFINITION Suppose a and b are two alternatives and we have two different sets L
and L of rankings by the individual voters where every voter ranks a above b in both L
and L . A social choice function is monotonic if whenever a finishes first under L it also
finishes first under L .

We also want to consider another desirable outcome for a voting mechanism: it
should never produce a social preference ranking P such that there is another possible
ranking P′ that every voter prefers to P. This criterion is a variation of the Unanimity
Axiom. A voting mechanism that satisfies this condition is called Pareto-efficient or
Pareto-optimal. Pareto optimality is an important concept with many applications in game
theory, engineering, and the social sciences. The term is named after Vilfredo Pareto, an
Italian economist (1848 1923) who used the concept in his studies of economic efficiency
and income distribution.

In 1977, Eitan Muller and Mark Satterthwaite demonstrated that in situations with
more than two alternatives or candidates, insisting on both monotonicity and Pareto effi-
ciency requires accepting a dictatorial mechanism. Let’s state their result more explicitly
and examine the proof:

The Muller-Satterthwaite Theorem If there are at least three alternatives and a
social choice function is both Pareto-efficient and monotonic, then the social choice
function is dictatorial.

Proof The following proof is an adaptation of Philip Reny’s [2000] argument. Sup-
pose there are N voters numbered 1, 2,…, i,…,N. Let the preference ranking for voter i
be labeled as Pi. Then the collection P= P1,P2,…,PN is called a profile; we’ll also
use the term set of ballots.

There are five steps in the proof of the Muller-Satterthwaite Theorem.
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Step 1. Let a and b represent any pair of distinct alternatives (candidates), and let f be
a social choice function—that is, given any profile P of rankings, f P is a
single element in the set of alternatives. You may think of f P as the winner
of the election as determined by a social choice function that is monotonic and
Pareto-efficient.

Consider a profile P where every single voter placed a at the top of the list
and b at the bottom. Since f is Pareto-efficient, we would have f P = a.

Start with voter 1, and think about what would happen if we begin to
change that voter’s ranking P1 by raising b one position at a time. Since f is
monotonic, the social choice remains a as long as b is below a in Voter 1’s
ranking.

Eventually, we would move b to the top of Voter 1’s list, where a would
now be in second place. Who could be declared the winner with this new
profile? If c is any third alternative, then a was above c for every individual’s
ranking in both the original and the new profile. By the monotonicity property,
f can’t choose c as the winner. Thus, either b is declared the winner or a
remains the chosen alternative.

If a is still thewinner, we repeat the same processwith voters 2, 3, 4, and so on.
Wemust eventually reach some voter k so that when b rises above a in Voter k’s
ranking, the social choice function names b the winner. If, to the contrary, a
remains the winner after we have gone through every single voter, thenwewould
have a profile in which b is ranked in top position by every voter and a sits in the
second position. By Pareto efficiency, a could not be the winner.

Tables 6.5 and 6.6 show the situations immediately before immediately
after we raise b above a in Voter k’s ranking.

Table 6.5 Before switching a and b for Voter k.

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

b . . . b a a . . . a

a a b a

b . . . b

Table 6.6 After switching a and b for Voter k.

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

b . . . b b a . . . a

a a a b

b . . . b
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Step 2. Now let’s move alternative a to the bottom of the lists of voters 1, 2 , . . . , k 1
and to the second from the bottom position for voters k + 1,…,N. Examine the
parallel pictures in Tables 6.7 and 6.8.

Let’s determine the social choice under the profiles represented by Tables
6.7 and 6.8. Start with Table 6.8 and compare it with Table 6.6. No indivi-
dual’s ranking of b versus any other alternative has changed: b is first for
voters 1,2, . . . , k and last for voters k+ 1,…,N. Since f is monotonic and b
was the winner for the profile of Table 6.6, b must also be the winner for the
profile of Table 6.8.

Now compare Table 6.8 with Table 6.7. The social choice for Table 6.8 is b
and f is monotonic, so the social choice in Table 6.7 could only be b or a.
If the social choice for Table 6.7 were b, then monotonicity would also imply
that the social choice for Table 6.5 would also have to be b. Since we’ve
already shown that the social choice for Table 6.5 is a, we would have a
contradiction. Thus, the social choice for Table 6.7 must be a.

Step 3. Consider now the profile of rankings shown in Table 6.9 where c is an
alternative distinct from a and b.

We can obtain the profie of Table 6.9 from the Table 6.7 profile without
altering the ranking of a versus any other alternative in any individual’s
ranking. By monotonicity, the social choice in Table 6.9 must also be a.

Step 4. Now examine the profile of rankings in Table 6.10 that we derived from Table
6.9 by interchanging the ranking of alternatives a and b for voters k+ 1,…,N.
This is the only difference between the two profiles.

The social choice for Table 6.9 was a and f is monotonic. Therefore, the
social choice for Table 6.10 can only be a or b. We claim that the social choice

Table 6.8 After switching a and b for Voter k.

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

b . . . b b . . . . .

. . a b

a a

a a b . . . b

Table 6.7 After switching a and b for Voter k.

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

b . . . b a . . . . .

. b a

a a

a a b . . . b
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for Table 6.10 must also be a. Suppose, to the contrary, that it was b. Since
alternative c is ranked above b in every individual’s Table 6.10 ranking,
monotonicity would imply that the social choice would remain b even if c
were raised to the top of every voter’s list, contradicting Pareto efficiency.

Step 5. Observe that alternative a is at the very top of Voter k’s list and the very
bottom of every other voter’s ranking. That means we can built an arbitrary
profile of rankings with a again at the top of Voter k’s preferences without
lowering the ranking of a versus any other alternative in any individual’s
ranking. Monotonicity would now imply that the social choice must be a
whenever Voter k puts a at the top of his or her list. Thus, Voter k must be a
dictator for alternative a.

Alternative a, however, was chosen arbitrarily, so we can conclude that for
every alternative a there is some Voter k who is dictatorial for a . Clearly
there cannot be distinct dictators for distinct alternatives, for if k≠ k , what is
the social choice if Voter k lists alternative a first and Voter k lists alternative
a first? Since each is a dictator, the social choice must be a and a . But there
is only one social choice, so a= a and thus k = k . There is a single dictator
for all alternatives.

This completes the proof of the Muller-Satterthwaite Theorem. ⋄

Table 6.9

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

. . . . . a . . . . .

. . c . .

. . b . .

. . a

c . . . c . c . . . c

b . . . b . a . . . a

a . . . a . b . . . b

Table 6.10

P1 . . . Pk−1 Pk Pk+1 . . . PN Social Choice

. . . . . a . . . . .

. . c . .

. . b . .

. . a

c . . . c . c . . . c

b . . . b . b . . . b

a . . . a . a . . . a
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We now turn to the question of whether there exist perhaps some more basic prin-
ciples of fairness in a voting mechanism that might themselves imply both monotonicity
and Pareto efficiency.

In our examination of Weighted Voting, we saw this method was subject to
manipulation: an individual voter might, by falsifying his true preferences, help obtain
a social choice he preferred rather than the one that would have resulted had he submitted a
ranking that truly reflected his preferences.

Social choice theorists have developed the idea of strategy-proof choice mechanisms
to characterize systems not subject to such manipulation. We need one bit of notation to
state the definition of strategy-proof clearly and concisely.

Suppose that P= P1, . . . , Pi, . . . , PN is a profile of rankings and that P′

i is a ranking
of Voter i different from Pi. Then P′

i,P i denotes the profile obtained by replacing Pi in P
with P′

i, and f P′

i, P i is the social choice under this new profile.
The idea of strategy-proof is that if a voter submits a ranking Pi different from the one

Pi he prefers and that false submission changes the social choice, then he likes the new
choice less than the original choice. Here is the formal definition:

DEFINITION A social choice function f is strategy-proof if for every individual voter i
and every possible profile P and every possible ranking Pi, f P′

i, P i ≠ f P implies that
individual i ranks f P above f P′

i, P i under Pi.

Recall also that the Unanimity axiom implies that each possible candidate could win
the election (that is, finish at the top of the social ranking) if all voters ranked that candidate
at the top of their individual preference lists. A condition apparently weaker than Unanimity
is that for each candidate, there must be some set of individual preferences under which that
candidate wins. This condition is called the onto property.

DEFINITION A social choice function is onto if for each alternative a there is at least
one profile under which the social choice is a.

Our next theorem demonstrates that any onto, strategy-proof voting mechanism will
automatically be monotonic and Pareto-optimal.

Reny’s Theorem If a social choice function is strategy-proof and onto, then it is
Pareto-efficient and monotonic.

Proof We follow closely here the proof by Philip Reny [2001]. We break the argu-
ment down to three steps.

Step 1. Suppose that the social choice for some profile P is alternative a, and that for
every alternative b, the ordering P′

i ranks a above b whenever Pi does for
some fixed voter i.

We want to show that f P′

i,P i is also a. We will proceed using proof by
contradiction.

Assume that f P′

i,P i = b for alternative b≠ a. Since f is strategy-proof, it
must be true that Pi ranks a above b. On the other hand, alternative a’s ranking
does not fall in replacing Pi with P′

i. Hence, a, which was the choice under P,
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must also be ranked above b= f P′

i,P−i in P′

i. But this result contradicts
strategy-proofness. Thus, f P′

i,P−i = f P = a.
Step 2. In this step, we’ll demonstrate that the social choice procedure is monotonic.

Suppose now that the social choice for some profile P is alternative a, and that
for every alternative b, the ordering Pj ranks a above b whenever Pi does
for every voter i. Now we can move from P= P1,P2, . . . ,PN to
P′= P′

1,P
′

2,…,P′

N by changing the ranking of each voter i from Pi to P′

i one
at a time, and because we have shown that the social choice must remain
unchanged for every such change, we must have f P′ = f P . Thus, f is
monotonic.

Step 3. In the final step, we’ll show that the social choice procedure is Pareto-efficient.
Let a be any alternative. Since f is onto, there is some profile P such that
f P = a. Since f is monotonic, the social choice remains alternative a when a is
raised to the top of every individual’s ranking. But f being monotonic also
implies that the social choice remains a regardless of how the alternatives
below a are ranked by each individual. Consequently, the social choice is a
whenever every individual ranks a at the top—that is, f is Pareto-efficient.
Hence, Reny’s Theorem is true.

We complete this section with what I call the Theorem of the Gloomy Alternatives: if
we demand even the simplest conditions on a voting mechanism, then we must settle for a
dictator or a manipulable system. Allen Gibbard and Mark Satterthwaite independently
discovered and proved this theorem in the mid-1970s.

The Gibbard-Satterthwaite Theorem If there are at least three alternatives and the
social choice function is strategy-proof and onto, then the social choice function is
dictatorial.

Proof With the given hypotheses, the Reny Theorem tells us that the social choice
function is Pareto-efficient and monotonic. The Muller-Satterthwaite Theorem then
implies that it is dictatorial. ⋄

VI. Instant Runoff Voting
In the light of Arrow’s Impossibility Theorem and the results of Gibbard and Satterthwaite,
how should we proceed to derive a group decision out of individual preference rankings
when we’re faced with more than two alternatives?

In this section, we will investigate one alternative, Instant Runoff Voting, or IRV for
short, that is gaining in popularity. Instant Runoff Voting is a variation of what wemight call
Classic Runoff Voting. Classic Runoff Voting deals with a two-stage process wherein all
voters at each stage indicate a single candidate as their top choice. If none of the candidates
achieves a majority of the votes, there is a runoff election between the two top candidates.

The 2008 U.S. Senate race in Georgia provides a recent example. In the general
November election, the incumbent Republican Senator Saxby Chambliss was the leading
candidate with 49.8% of the votes. His Democratic opponent Jim Martin garnered 46.8%.

VI. Instant Runoff Voting 197



Allen Buckley of the Libertarian party won 3.4%; two other write-in candidates received a
handful votes. The total vote was 3,752,577. A month later, a runoff election between
Chambliss and Martin took place. Chambliss won with 57.4% of the 2,137,956 votes cast.
Note that voter turnout for the runoff contest in December was substantially smaller than the
original numbers for the November election.

In Section I, we saw that runoffs between the top two alternatives may result in
situations in which a majority of the voters actually prefer the eliminated third candidate to
the winner of the runoff. This sort of result will occur because modified simple majority
voting does not always guarantee transitive results. In addition to the theoretical short-
comings, classical runoff voting also poses a number of practical difficulties. Runoff
elections are expensive for a city or state to conduct. At the local level a municipal election
may cost several hundred thousand dollars; for a state, the outlay may be in the millions of
dollars. The candidates must also raise additional money to campaign for an additional
month or 6 weeks after the first balloting. Voters must wait that additional period before
knowing who will represent them as the winner. Finally, runoff elections typically attract
far fewer voters than the first run. In the Georgia example, almost half of those who voted in
the initial contest failed to cast a ballot in the runoff.

Instant runoff voting solves many of these problems. Under IRV, each voter submits
an individual preference list ranking all the candidates rather than simply indicating a first
choice. Then first-place choices are tabulated. If a candidate receives a majority of first
choices, that candidate is elected. If no candidate receives a majority of first choices, the
candidate receiving the fewest first choices is eliminated. Ballots cast for the eliminated
candidate are now counted toward those voters’ second choices.

This process continues until one candidate receives a majority and is elected. Once all
the preference lists have been submitted, a computer can easily carry out the successive
rounds of transferring of votes until a majority winner is found. The election result can be
determined shortly after the polls close, with no need of additional campaigning or for
additional trips by voters to the ballot box. Thus, Instant Runoff Voting does solve the
practical problems that plague classic runoff election processes.

To see in more detail how Instant Runoff Voting works, consider the following
example. Suppose we have six different groups of voters of different sizes and four can-
didates Marc, Rhonda, Julie, and Brian. There are a total of 1,150 voters; a candidate must
tally more than 575 votes to win. Table 6.11 displays the voter groups, their sizes, and their
shared preferences.

Thus, Marc has 400 first-place votes, Rhonda has 300, Julie has 250, and Brian has
200. Under plurality voting, Marc would win the election. Under classic runoff voting,
there would be a second-round election between Marc and Rhonda. In that contest, the 450

Table 6.11 Initial Preference Rankings for IRV Example

Group I II III IV V VI

Size 400 150 150 250 150 50

1st Marc Rhonda Rhonda Julie Brian Brian

2nd Rhonda Julie Marc Brian Julie Julie

3rd Julie Brian Julie Rhonda Rhonda Marc

4th Brian Marc Brian Marc Marc Rhonda
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voters in Groups I and VI would vote for Marc while the 700 voters in Groups II, III, IV,
and V would opt for Rhonda, making Rhonda the winner.

Instant runoff voting produces a different result. There is no majority winner in
Round One, so candidate Brian is eliminated, as he got the lowest number of first-place
voters. The 200 people who listed Brian at the top of their preference lists now have their
votes transferred to their second-place candidate. Table 6.12 displays the redistributed
ballots at the start of Round Two. In this case, Julie gets all 200 votes.

NowMarc still has 400 votes and Rhonda retains her 300, but Julie now has 450. Julie
has the lead, but still lacks of majority. We thus end Round Twowith no winner. Rhonda has
the fewest votes and we eliminate her, moving her votes with the next highest candidate as
we enter Round Three. Julie will get 150 votes from Group II, and Marc gets an equal
number of votes from Group III. Table 6.13 shows the redistributed ballots for Round Three.

At this point, candidate Julie has 600 votes and candidate Marc has 550. Julie now
has a majority and is declared the winner.

In addition to solving the practical difficulties classic runoff elections pose, Instant
Runoff Voting has other appealing features. Some voting theorists argue that IRV satis-
factorily address the issue of the “third-party spoiler” or “wasted vote” scenario. This is the
problem that frequently occurs in many states that don’t have runoffs, but that declare as
victor the plurality winner. Here is a typical situation: suppose there are three candidates for
governor: a Republican, a Democrat, and a Progressive who is to the left of the Democrat on
the political spectrum. None of these three is the favorite of a majority of the voters. Each
voter can cast only one ballot for a single candidate.

To be specific, suppose the electorate falls into three categories as shown in Table 6.14:

Table 6.13 Redistributed Ballots for Round Three

Group I II III IV V VI

Size 400 150 150 250 150 50

Marc Julie Marc Julie Julie Julie

Julie Marc Julie Marc Marc Marc

Table 6.12 Redistributed Ballots for Round Two

Group I II III IV V VI

Size 400 150 150 250 150 50

Marc Rhonda Rhonda Julie Julie Julie

Rhonda Julie Marc Rhonda Rhonda Marc

Julie Marc Julie Marc Marc Rhonda

Table 6.14

Group I II III

Size 44% 36% 20%

Republican Democrat Progressive

Democrat Progressive Democrat

Progressive Republican Republican
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Some of the Group III voters simply prefer the Progressive candidate to the Demo-
crat, while others are also seeking to build the Progressive Party by demonstrating it
represents a significant part of the electorate. Early public opinion polls show 44% support
for the Republican, 36% for the Democrat, and 20% for the Progressive. In response to the
polls, many Group III members fear they would be “wasting” their votes by putting the
Progressive at the top of their lists. Their anxiety is that doing so would give the victory to
the Republican, their last choice. Similarly, pressure begins to build on the Progressive
candidate to drop out of the race. The Democrats say the Progressive is a “spoiler”: he can’t
win and by staying in the race prevents the Democrat, who is the first or second choice of
every voter, from winning. History shows that in such situations, most of the Group III
voters will cast their ballots for the Democrat in the hope perhaps of electing “the lesser of
two evils.” The Progressive winds up with only one or two percent of the vote. Political
pundits then conclude that there is only very minimal support for a Progressive agenda
when, in fact, about one in five people favor it.

Adherents of the Instant Runoff Voting system contend that under their system, the
Group III voters can submit their true preferences without fear of hurting their second
choice’s chances of ultimately winning if their first choice is eliminated. If their third party
favorite, the Progressive, does tally 20% of the first-place votes in the initial round, then the
party will be taken more seriously by the public, Progressives will be included in future
candidate debates, the media will pay more attention to them, and the party might attract
more supporters. In a similar fashion, any small third party might benefit from IRV.

In a short 1871 paper “Application of Mr. Hare’s System of Voting to the Nomination
of Overseers of Harvard College” in the Journal of Social Science, the American architect
William Robert Ware first introduced Instant Runoff Voting in the form we have described.
He was building on an idea of the Australian Thomas Hare, who proposed a related method,
called the single transferable vote, for electing multiple members to a governing board in a
manner that reflected proportional representation among many different constituencies.

Since its first use in Australia at the turn of the 20th century, Instant Runoff Voting
has spread to a number of other countries. IRV is used to elect members of the Australian
House of Representatives, the President of Ireland, the national parliament of Papua New
Guinea, and the Fijian House of Representatives. The Labour and Liberal Democrat parties
in the United Kingdom use IRV to select their leaders.

In recent years, IRV has gained much attention in the United States and has been
adopted for various elections in many states, including Arkansas, California, Colorado,
Florida, Illinois, Louisiana, Maryland, Massachusetts, Michigan, Minnesota, New Mexico,
North Carolina, South Carolina, Vermont, and Washington. Instant runoff voting is
sometimes called alternative voting in the United Kingdom, preferential voting in Canada
and Australia, and ranked choice voting in the United States.

Californians for Electoral Reform summarizes the major arguments in favor of IRV,
claiming that it

a. Results in majority rule

b. Eliminates the “spoiler” dilemma, wherein voting for a weak favorite candidate
causes one’s least favorite candidate to win

c. Allows for a diverse candidate field while also ensuring that the winner has the
support of a majority coalition
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d. Encourages positive campaigns, because candidates depend on the second choices of
voters for other candidates

e. Works cheaply and conveniently, because it collects all the information necessary to
determine a majority winner on one ballot

TheCalifornia group also argues that by ranking candidates, “voters are able to express
their true preferences without worrying about wasting their votes or spoiling the election and
helping elect their least favorite candidate. For this reason alone, IRV often leads to higher
turnout and stronger democracy. Candidates need to build a base of first choice support, but
also reach out to the broader voting population in order to be acceptable to the majority.”

With so many arguments in favor of IRV, are there good arguments against it? Arrow’s
Impossibility Theorem implies that IRV cannot satisfy Axioms 1 5. As an illustration of what
can gowrongwith IRV, let’s examine an examplewith 21 voteswhose preferences among four
candidates split into four groups whose sizes and numbers are shown in Table 6.15.

The winner needs a majority of 11 or more votes to win. At the conclusion of Round
1, we that Karzi has 7, Barak has 6, Chavez has 5, and Patel has 3. Karzi has the plurality,
but falls short of a majority, so Patel is eliminated, and the first choice votes of Group IV
members are transferred to Chavez to start Round 2. Table 6.16 shows the resulting situ-
ation: Karzi has 7 votes, Barak has 6, and Chavez has 8.

There’s still no candidate with a majority. The IRV rules require that we eliminate
Barak, redistribute the votes of Groups III and IV, to their next choice and go on to Round
3. Table 6.17 displays the result.

At this point, Karzi has 13 and Chavez has 8. Karzi commands the majority and is
declared the winner.

Note that Karzi won, despite the fact that all the voters in Group IV originally ranked
Karzi at the very bottom of their lists. To see what difficulties are associated with IRV,
examine what should happen if these voters had a change of heart just before the election
and moved candidate Karzi to the very top of their preference lists. We expect that Karzi

Table 6.15

Group I II III IV

Size 7 6 5 3

1st Karzi Barak Chavez Patel

2nd Barak Karzi Barak Chavez

3rd Chavez Chavez Karzi Barak

4th Patel Patel Patel Karzi

Table 6.16

Group I II III IV

Size 7 6 5 3

Karzi Barak Chavez Chavez

Barak Karzi Barak Barak

Chavez Chavez Karzi Karzi
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should still win, since Karzi is at least as highly rated on everyone’s ballot as she was
originally. Table 6.18 shows the revised preference lists.

In Round 1, Karzi now has 10 votes, which is not quite a majority, so IRV dictates
that we must eliminate Patel, who didn’t get any first-place votes, and then Chavez.

After transferring the appropriate votes, we see (Table 6.19) that Karzi retains the 10
votes, but candidate Barak now has 11, which is a majority. Barak wins. This outcome
seems perverse: how could Karzi lose an election if more people rank her first? This
problem with IRV is often described as the More-Is-Less Paradox: If the winner were
ranked higher by some voters, all else unchanged, then another candidate might have won.

Note also that with the original preference rankings, a majority of voters prefer Barak
to Karzi, a majority prefer Barak to Chavez, and a majority prefer Barak to Patel, yet Karzi
won under IRV. Thus, IRV can lead to what sometimes called the Thwarted Majorities
Paradox: a candidate who can defeat every other candidate in a direct-comparison majority
vote may not win the election!

We’ll illustrate one more problem of IRV, illustrated by an example that comes from
Peter Fishburn and Steven Brams. Imagine a municipal election with three candidates: Bitt,
Huff, and Wogg. Two of the voters, Mr. and Mrs. Smith, are on the way to the polls when
their car breaks down; they are thus unable to register their preferences. Both of them
favored Bitt to Huff to Wogg and would have turned in that ranking. “Although they liked
Mrs. Bitt best,” write Fishburn and Brams, “they were almost as fond of Mr. Huff, but
disliked and mistrusted Dr. Wogg.”

When the votes were tabulated the next day, it was discovered that 1,608 people had
turned in preference lists. Table 6.20 shows the number received for each of the six possible
orderings.

Table 6.17

Group I II III IV

Size 7 6 5 3

Karzi Karzi Chavez Chavez

Chavez Chavez Karzi Karzi

Table 6.18

Group I II III IV

Size 7 6 5 3

1st Karzi Barak Chavez Karzi

2nd Barak Karzi Barak Patel

3rd Chavez Chavez Karzi Chavez

4th Patel Patel Patel Barak

Table 6.19

Group I II III IV

Size 7 6 5 3

1st Karzi Barak Barak Karzi

2nd Barak Karzi Karzi Barak
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A candidate needs 805 votes to win. The preference lists submitted show 499 votes
for Bitt, 500 votes for Huff, and 609 for Wogg. IRV then requires that we eliminate Bitt and
transfer her votes to the other candidates. The 417 votes of Group I go to Huff, making his
total 917, and Group II’s 82 votes go to Wogg, increasing his total to 691. Huff is the
winner. When the Smiths read the result in their newspaper, “they were delighted that
Dr. Wogg had not won. They did feel a twinge of regret that their friend, Mrs. Bitt, was
beaten. Perhaps their votes would have made a difference.”

They certainly would have made a difference, but not the way the Smiths hope. Had
they made it to the polls in time, Mrs. Bitt would have had 501 votes at the end of the first
round. IRV would have eliminated Mr. Huff, who only had 500. When Huff’s votes are
transferred, Group III’s 143 go to Bitt, giving her a new total of 644, but all of Group IV’s
357 votes would go to Wogg, raising his total to 966, well above that required for a
majority. The Smiths’ well-intentioned votes to help Bitt or Huff would have backfired and
made Wogg the winner!

Fishburn and Brams dub this particular problem of IRV the No-Show Paradox: The
addition of identical ballots with a particular candidate ranked last may change the winner
from some other person to that particular candidate.

VII. Approval Voting
While Instant Runoff Voting has its strong adherents and a number of cities and states have
adopted this mechanism, it also has strong critics who are eager to point out some of its
potential pitfalls. Peter Fishburn and Steven Brams created the examples we have just seen,
associated with the fictional town of Bramburn, that demonstrate some of these problems.

What method of social choice do Fishburn and Brams advocate? They propose an
entirely different option for voters. In traditional voting, each individual can only indicate
her single top choice. For the Borda count, Instant Runoff Voting, or the more general
schemes envisioned by Arrow, each voter submits a ranked ordering of all candidates.
Fishburn and Brams suggest giving each voter the option of voting for any number of
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FIGURE 6.1 The
logos for two advo-
cacy groups.

Table 6.20

Group I II III IV V VI

Size 417 82 143 357 285 324

1st Bitt Bitt Huff Huff Wogg Wogg

2nd Huff Wogg Bitt Wogg Bitt Huff

3rd Wogg Huff Wogg Bitt Huff Bitt
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candidates for a given office. The candidate who collects the most votes wins. This system
is called Approval Voting. In plurality voting, the direction “Vote for one candidate” would
appear above the list of contenders. In Approval Voting, the direction would be “Vote for as
many candidates as you like.”

To illustrate how Approval Voting works and how it may result in outcomes different
from Instant Runoff Voting or Plurality Voting, consider the rankings displayed in
Table 6.21 for an election among three candidates (Ford, Olds, and Saab) where there are
167 votes, falling into six different groups.

Under traditional plurality voting, Olds wins 60 first-place votes, followed by Ford
with 57 and Saab with 50. With Instant Runoff Voting, we would eliminate Saab and
transfer 46 votes to Ford and 4 votes to Olds. After the transfer, Ford has 103 votes and Olds
has 64, making Ford the winner.

To determine the outcome under Approval Voting, we need to know some additional
information. Suppose that all voters check off the names of their top two candidates. Then
Ford wins 57 votes from Groups I and II, while picking up an additional 66 votes from
Groups IV and V; Ford’s total is 123. Now Olds has 17+ 40+ 20+ 4= 81 votes. In this
case, Saab gets 40 votes from Group II, 40 from Group III, 46 from Group V, and 4 from
Group 4. Here 130 voters listed Saab, so Saab is the winner.

For a different scenario, suppose 25 members of Group II list both Ford and Saab,
while 15 just list Ford, everyone in Group VI only lists Saab, and everyone in Group I lists
both Ford and Olds. In addition, suppose that each of the remaining groups splits in two,
half listing their top choice only and half listing their top two choices.

Table 6.22 then shows the number of votes each candidate receives from members of
each of the groups. Saab remains the winner with 95 votes.

Another way to tabulate votes under approval voting is to list all the possible subsets
of candidates and the number of ballots for each of these. For the example we have just been
looking at, we have

Ford 15

Olds 20+ 10= 30

Saab 4+ 23= 27

Ford, Olds 17+ 10= 27

Ford, Saab 25+ 23= 48

Olds, Saab 20

Ford, Olds, Saab 0

Table 6.21

Group I II III IV V VI

Size 17 40 40 20 46 4

1st Ford Ford Olds Olds Saab Saab

2nd Olds Saab Saab Ford Ford Olds

3rd Saab Olds Ford Saab Olds Ford
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From this table, we calculate the total for each candidate:

Ford 15+ 27+ 48= 90

Olds 30+ 27+ 20= 77

Saab 27+ 48+ 20= 95

Advocates for Approval Voting claim that it:

• Is simple

• Is easy to understand

• Is practical to implement

• Increases voter turnout

• Helps elect the strongest candidate

• Gives voters more flexibility

• Gives minority candidates their proper due

Table 6.23 shows another example with four candidates. The data represent actual
votes cast under Approval Voting in the 1988 president election of the Institute of Electrical
and Electronic Engineers (IEEE). The IEEE is an international organization with more than
200,000 members. In the 1988 poll, 55,310 members returned ballots. We’ve changed the
names of the candidates to Ford, Olds, Saab, and Dodge.

Table 6.23

Subset Ballots Subset Ballots

None 1, 100 Olds, Saab 1425

Ford 10, 738 Olds, Dodge 1824

Olds 6561 Saab, Dodge 608

Saab 7626 Ford, Olds, Saab 148

Dodge 8521 Ford, Olds, Dodge 5605

Ford, Olds 3578 Ford, Saab, Dodge 143

Ford, Saab 659 Olds, Saab, Dodge 89

Ford, Dodge 6679 All 523

Source: From Steven J. Brams and Jack H. Nagel, “Approval Voting in Practice,” Public Choice 71 (1991): 1 17.

Table 6.22

Group I II III IV V VI Total

Ford 17 40 0 10 23 0 90

Olds 17 0 40 20 0 0 77

Saab 0 25 20 0 46 4 95

VII. Approval Voting 205



To determine a candidate’s total, we need to add the votes for all subsets to which that
candidate belongs. For example, to find Ford’s total:

10,738 Ford + 3,578 Ford, Olds + 659 Ford, Saab + 6,679 Ford, Dodge

+ 147 Ford, Olds, Saab + 5,605 Ford, Olds, Dodge + 143 Ford, Saab, Dodge

+ 523 All = 28,073

Similar calculations for the remaining three candidates gives these totals:

Olds: 19,753

Saab: 11,221

Dodge: 23,992

One disadvantage of Approval Voting over Instant Runoff Voting is that voters have
no way of indicating a strong preference for one candidate and a weaker one for another
candidate if they are willing to accept either of them as an eventual winner. Real voters
almost always will have different degrees of support for different candidates. Approval
Voting forces individuals to cast equally weighted votes for candidates whose names they
check off on the ballot.

Consider, for example, a set of 100 ballots submitted in an Approval Voting situation.
Table 6.24 displays the results that the election officers would see at the end of the day.
Eighty voters approve of Ford and Saab, 15 approve of Olds and Saab, and 5 approve of
Olds and Saab. Thus, Ford gets a total of 80 votes, Olds gets 20, and Saab gets 100.
Approval Voting makes Saab the winner.

Of the 80 voters who checked off the names Ford and Saab, we have no idea how
many preferred Ford to Saab, how many had the opposite ranking, or how many might have
been indifferent between the two. Suppose it were possible to see the preference rankings of
our voters? Table 6.25 shows a possible set of rankings; each voter opted to check off the
names of his top two choices.

Table 6.25

Group I II III

Size 80 15 5

1st Ford Olds Saab

2nd Saab Saab Olds

3rd Olds Ford Ford

Table 6.24

Group Ford Olds Saab

80 X X

15 X X

5 X X

80 20 100
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We see from Table 6.25 that candidate Ford was the top choice of an overwhelming
majority (80%) of the voters. Surely, any reasonable voting process should give the victory
to candidate Ford. Note that candidate Ford wins under Plurality Voting, under Instant
Runoff Voting, and wins in a sequence of two candidate Simple Majority contests.
Approval Voting has a serious deficiency: a candidate who is the first choice of a staggering
majority of voters might not win the election!

The Center for Voting and Democracy finds this flaw in Approval Voting to be a
serious one. The Center also notes that Approval Voting does not solve the spoiler problem.
Voting for your second choice candidate can in some cases lead to the defeat of your
favorite candidate. In the example shown in Tables 6.24 and 6.25, if 55 of the 80 voters in
Group I had checked only Candidate Ford and not displayed approval for Saab, then Ford
would have won.

As a practical consequence, each candidate might benefit by encouraging her sup-
porters to “bullet” vote—that is, only check her name as acceptable. If everyone did this and
all voters complied, then Approval Voting reverts back to Plurality Voting.

Despite some of its theoretical shortcomings, Approval Voting is gaining acceptance
as a new societal decision making method especially as an alternative to Plurality Voting.
Approval Voting was used as early as the 13th century to select the doge (chief magistrate)
of the Venetian Republic. It began to be studied seriously by voting theorists, economists,
political scientists, and operations researchers in the middle 1970s when five scholars
rediscovered it independently. Robert J. Weber of Northwestern University coined the term
“Approval Voting.” The selection of the Secretary General of the United Nations
uses Approval Voting, and variations of it have occurred in elections in the Soviet Union,
19th-century England, and the American colonies in the 17th century. Some presidential
straw polls and statewide referenda in the United States have also employed Approval
Voting. Several major professional mathematical societies (Mathematical Association of
America, American Mathematical Society, Institute for Operations Research and Man-
agement Sciences, American Statistical Association) use Approval Voting to choose
officers, as do the Public Choice Society, the Society for Judgment and Decision Making,
the International Joint Conference on Artificial Intelligence, the Econometric Society, and
the National Academy of Sciences.

Instant Runoff Voting and Approval Voting are both seen as superior to Plurality
Voting and appear to be the leading candidates to replace it. There is no agreement concerning
which is superior. IRV supporters are quick to point out the shortcomings ofApproval Voting,
whose adherents are equally swift in noting that IRV fails some fairness criteria. You can
follow some of the debate along with the successes and failures having one of these
methods adopted by governments by checking their respective websites: www.FairVote.org
and www.ApprovalVoting.org. The arguments can become quite heated at times: the math-
ematician Donald Saari, who has studied voting procedures extensively, once described
Approval Voting as an “unmitigated disaster.”

VIII. Topological Social Choice
A. Topological Social Choice

In previous chapters, we have often presented discrete and continuous models of the same
situation. Our view of the social choice problem so far has been a discrete one: a finite
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collection of voters examining a finite set of candidates. In this section, we will briefly
discuss continuous analogs. In particular, we’ll look at situations with a finite number of
voters but a continuum of alternatives. The techniques and results in this field, topological
social choice, were pioneered by the mathematician and economist Graciela Chilchilinksy.
In this section, we will present a brief nontechnical discussion of topological social choice
theory and some of its major findings so far. The field is in active development with new
results unveiling connections previously hidden. Proofs of the principal theorems generally
require tools and techniques of algebraic topology and thus lie beyond the mathematical
prerequisites of this volume.

The fundamental problem of social choice theory is how to aggregate a collection of
individual preferences among a set of alternatives into a single collective choice by a
procedure that satisfies a number of prescribed fairness conditions. In our discussions so far,
we have only examined situations involving a finite group of individuals (the voters) and a
finite field of alternatives (the candidates). Our main result, Kenneth Arrow’s Impossibility
Theorem, deals with this discrete framework.

As an example, consider Dave and Judy’s selection for a site to build their dream
home. They have just purchased a large piece of property that contains a circular lake of
radius 1 mile. The couple agree that they want their new house to be located on the
lakeshore but disagree as to where the location should be. Four possible sites A, B, C, and D
have been identified; they are shown in Fig. 6.2.

We want to identify some choice rule that will take Dave and Judy’s preferences and
select one of the four sites. For simplicity, let’s assume that Dave and Judy are only asked to
submit their top choice, the site each likes the best. What are some conditions we might want
to impose on choice rules? We certainly want the rule to handle any combination of top
choices submitted by our two voters and to output one of the four possible sites. We might
also want to restrict our choice rule by insisting that it satisfy three additional constraints:

Unanimity: If all the voters choose the same site, then the choice rule also picks this site.

Anonymity: The choice rule treats all voters impartially. The same collection of profiles—
whether they have the voters’ names on them or not, whether we change the names of the
voters on the ballots or not—always produces the same outcome. The choice rule pays
attention only to the profiles submitted, not to which voter turned in which profile.

Stability: If one voter changes her opinion and now claims that her favorite site is next to her
previous choice, then the output of the choice rule changes atmost to a site next to the previous
output—that is, choice rule selects the same site it did before or to one adjacent to it.

FIGURE 6.2 B
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Thus, stability implies that if the choice rule originally chose B when Judy submitted
D and David submitted A, then the choice rule will choose A, B, or C if Judy submits A or C
and David still submits A. The stability condition is meant to ensure that the social choice
doesn’t move much under small “errors” of the voters. Table 6.26 shows the assignments of
choice rule that has stability.

Note that the ways we have formulated these conditions of unanimity, anonymity,
and stability do not restrict the number of voters or the number of alternatives. They could
equally well apply to a social rule that picks the best of n possible home sites taking into
account the preferences of k family members.

It is an interesting exercise to show that in the case of Dave and Judy, it is not possible
to construct a social choice rule that satisfies stability, anonymity, and unanimity if there are
five sites available. In fact, Yuliy Baryshnikov (1993) proved a more general theorem that if
n> 2k, there is no stable, anonymous, unanimous social choice rule.

To move to a continuous model of social choice, suppose Dave and Judy are free to
choose any spot along the shore to locate their dream home. Each of their first-place choices is
then a point on a unit circle; the social choice rule must look at their choices and assign some
point on that circle. Set up a standard coordinate systemwith the origin at the center of the lake.
Note that we can identify each point P on the circle with the directed line segment from the
origin toP. This vector has length 1 and defines an angle θ between the positive-horizontal axis
and the vector, measured in a counterclockwise fashion.We can thus describe the location of a
point on the unit circle by giving its pair of Cartesian coordinates or simply by stating the angle
θ. Dave and Judy each have infinitely many choices for θ. See Fig. 6.3.

Table 6.26

DAVE’S TOP CHOICE

A B C D

JUDY’S A A A B A

TOP B A B C D

CHOICE C B C C C

D A D C D

B

C

D

A
P

θ

FIGURE 6.3
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There are many situations in which the society needs to make choices among
infinitely many possibilities. Consider for example a city council allocating a budget
among different departments. For a very simple case, suppose the council has decided it
can spend up to $20 million and wishes to split the budget between education E and
municipal services M . The council may then choose any pair of nonnegative numbers
E and M whose sum does not exceed $20 million. The set of possible choices is
equivalent to the set of points x, y in the first quadrant whose sum is less than or equal
to 20,000,000—that is, P= x, y x≥ 0, y≥ 0, x+ y≤ 20, 000, 000 . Fig. 6.4 illustrates
this set.

In reality, the city council must distribute its budget over many departments. If there are
n departments, then the set of all possible choices is equivalent to the set of points
in Euclidean n-dimensional space all of whose coordinates are nonnegative and that sum
to no more than 20,000,000—that is, P= x1, x2, x3,…, xn each xi ≥ 0, x1 + x2 +⋯+ xn ≤
20,000,000 .

In a series of papers beginning in the 1980s, Graciela Chichilnisky introduced a
topological approach to social choice theory—that is, an approach anchored in the concept
of continuity. Informally speaking, we assume first that if an individual prefers alternative x
to alternative y, then that person prefers alternatives that are sufficiently close to x to
alternatives close to y. We also want to consider social choice rules that follow a similar
rule: if two profiles of preferences are sufficiently close together, then the social choices
from the two profiles should also be close. Note that we will need some precise way to talk
about “close” and “sufficiently close.”

In beginning calculus, we study continuous functions between sets of real numbers.
In more advanced classes, we investigate continuous functions between subsets of
Euclidean spaces; we may, for example, examine a function that assigns a point in
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Euclidean three-dimensional space E3 to each point of the plane or perhaps a function that
assigns an n-dimensional vector to each m-dimensional vector. A function f that assigns an
element of a set B to every element of a set A is called a continuous function from A to B if,
roughly speaking, every pair of sufficiently close points in A are sent to a pair of very close
points in B. More exactly, suppose we have distance measures dA and dB for the sets A and
B, respectively. The function f is continuous at a point x in A if for every ε > 0, there is a
δ > 0 such that dB f x , f y < εwhenever dA x, y < δ. We say that f is continuous on A if
it is continuous at each point of A.

A neighborhood of an element p is the set of elements whose distance from p is less
than r for some positive number r, called the radius of the neighborhood. An equivalent
definition of continuity is that for every neighborhood V of f p , there is a neighborhood U
of p such that every element of U is sent by f to some element of V . The mathematical
discipline topology studies continuity in Euclidean spaces of all dimensions and in more
abstract spaces

We can view the idea of continuity in the infinite space of candidates as an extension
of stability in the discrete case. With stability, a small change in a preference profile results
in at most a relatively small choice in the output of the social choice rule.

In the Chichilnisky model, the possible alternatives (candidates) form a subset A of
Euclidean n-dimensional space. She assumes each member of society has preferences over
the set A, which vary smoothly as we move from one spot in A to another. She also assumed
that preferences are unsatiated—that is, given any neighborhoodU of a point x in A, there is
some point y in U that you will prefer to x. We could then form a vector starting at x that
points in the direction of greatest increase in our preference. For consistency purposes, we
normalize the vector to have length 1.

Graciela Chichilnisky and Geoffrey Heal found a geometric description of when it is
possible to solve problems like Dave and Judy’s where we have k citizens instead of just
two. They proved in 1983 that when each voter specifies an element from a space B of
preferences, then a social choice rule that outputs an element of B for every k-tuple of
elements of B can be constructed that is continuous, anonymous, and unanimous if and
only if B is contractible. Although contractible is a technical term with a very precise
meaning, you can think of it as meaning that there are no holes in B or that B does not
surround a hole. Alternatively, a contractible space is one that can be continuously shrunk
to a point inside itself.

In the Dave and Judy example with all points on the lakeshore under consideration,
the social choice function assigns to each pair of angles θJudy, θDave another angle, the
output of the social choice rule. The set of all possible pairs of angles can be represented
geometrically by a torus, the surface of a hollow doughnut. Since the preference space B
in this case is a circle and the circle surrounds a hole, the circle is not contractible. Hence,
there is no social choice rule in this situation that is unanimous, anonymous, and
continuous.

Luc Lauwers (2000) calls the Chichilnisky-Heal result “The Resolution of the Social
Choice Paradox” and observes that Chichilnisky’s introduction of a topological approach to
social theory “caused a major breakthrough in the disentanglement of the possibilities and
limitations of preference aggregation. . . . Necessary and sufficient conditions to resolve
the social choice paradox were established and new insights in the relationships between
different aggregation axioms were obtained.”
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Are there reasonable situations in which the space of preferences would be con-
tractible? One result suggests that if there is at least some “limited agreement” among the
voters, then it is possible to have a continuous, unanimous, anonymous social choice rule.
For example, if there is some fixed preference v on the circle no individual has, then
the space of preferences is contractible.

Chichilnisky was successful in translating many of the important axioms of
discrete social choice procedures into the continuous setting and discovering their
geometric nature and how they related to certain classic results in topology. Her
breakthroughs paved the way for many others to explore topological choice theory.
Recently, Yuliy Baryshnikov (1993, 1997) discovered new, deeper connections
between the discrete and continuous approaches to collective decision making. In his
words, this work

demonstrates a remarkable interplay between two theories of social choice: a topological one,
initiated and developed mainly by Chichilnisky, and the classical, combinatorial one, stemming
from the work of Arrow. Both theories deal with the aggregation of preferences with apparently
cardinally different notions of preferences. Recall that in the classical theory, the preferences
are assumed to be given on discrete sets of alternatives and constitute a discrete set by
themselves. This bounds the technique of the theory to be combinatorial. In the topological
theory of social choice, the set of alternatives is assumed from the beginning to have the
structure of a topological space . . .

Until recently it has been implicitly assumed that the theories coexist but do not have much
in common. The combinatorial setting was considered as primary and more natural and simple,
while the topological one was usually seen as hi-tech fortresses with no life nearby. . . . Both
theories are in fact much closer to each other than was commonly thought. Actually, I believe that
they are in fact two different guises of the same theory which uniformly covers both discrete and
continuous phenomena of the social choice theory.

We don’t yet have a complete unifying theory that satisfies everyone, but progress is
being made. You can follow new developments in such journals as Social Choice and
Welfare, Theory and Decision, Economic Theory, and Voting Matters. Perhaps you can
make some discoveries yourself.

IX. Historical and Biographical Notes
A. Pliny the Younger

The question of what procedure to follow when a group of individuals must choose among
more than two alternatives goes back in history at least as far as ancient Rome. In A.D. 105,
Pliny the Younger recounts a decision facing the Roman Senate. The issue concerned the
fate of the freedmen of the consul Afranius Dexter, who had recently died. The freedmen
were former slaves whom Afranius had liberated and who were working as his paid ser-
vants. The senators considered three options: let these servants go free, banish them to a
remote island, or execute them. (Roman practice was to execute the slaves immediately on
the death of the master.)
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Pliny the Younger (61 113 A.D.), was a Roman lawyer, author, and natural phi-
losopher. He witnessed and wrote about the eruption of Mount Vesuvius in August 79
during which his uncle and mentor Pliny the Elder died. His letters about Vesuvius were so
keenly detailed that modern vulcanologists describe that type of eruption as Plinian.

Pliny was the presiding officer of the Senate. He favored leniency for the freedman,
but he knew that those who supported his position, although they were the largest group
numerically, did not command a majority. Thus, he called for a plurality vote, asking each
of those who favored a particular outcome to go to a separate corner of the room. The head
of the faction favoring execution quickly realized that the freedman would then be released
to live as citizens of Rome. He persuaded his followers to drop their first choice and vote for
banishment, which then commanded a majority.

B. Jean-Charles Borda

Jean-Charles, chevalier, de Borda (May 4, 1733 February 19, 1799), was a French
mathematician, physicist, political scientist, and mariner. Born into a French aristocratic
family, he spent much of his life as a naval officer and military engineer. At age 23, Borda
wrote an important paper on projectile motion that led to his election as a member of the
French Academy in 1764.
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In 1770, he proposed the ranked preferential voting system now known as the Borda
count. The French Academy used Borda’s method for many years until Napoleon abolished
it when he came to power in 1801.
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Jean-Charles de Borda

Borda fought with the French in the American Revolution, eventually commanding a
fleet of six ships until the British captured him in 1782. Later in his career, he did con-
siderable work on hydraulics and also helped define the meter as one ten-millionth of the
distance from the North Pole to the Equator.

C. Marquis de Condorcet

Borda proposed his weighted voting as an alternative to the method advocated by the
Marquis de Condorcet. Condorcet’s most important work was an 1785 treatise Essai Sur
L’application de L’analyse À La Probabilité Des Décisions Rendues À La Pluralité Des
Voix (Essay on the Application of Analysis to the Probability of Majority Decisions). This
500-page work furthered the development of probability theory and laid out more
completely a mathematical basis for social choice procedures. Condorcet proposed that the
winning candidate should be the one who beats all other candidates in head-to-head
elections. Such a candidate, as we have noted before, is called a Condorcet Winner. If, for
example, there are four candidates A, B, C, and D and A defeats B in a simple majority
runoff between the two, and similarly A defeats C and A defeats D, then A should be the
winner. Borda agreed that if there was a Condorcet Winner, then it should be the group’s
choice, but thought it was impractical to insist on a Condorcet Winner, since there would be
many ways that no candidate might be qualified.
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Condorcet realized that there could exist situations where no such candidate exists
and that intransitive results could result in such cases; we saw several examples in earlier
sections of this chapter. He argued, however, that we should only consider social choice
mechanisms that guarantee selecting the Condorcet Winner, if one exists. Because
weighted voting does not guarantee the selection of such a candidate (see Exercise 66),
Condorcet strongly opposed Borda’s method.

Although Condorcet was responsible for seeing that Borda’s paper, presented orally
in 1770, was published at the same time his own Essai went to press, he could be quite
contemptuous of his fellow Frenchman. Condorcet said Borda “likes nothing better than to
waste his time drawing up prospectuses, examining machines, etc., and especially because,
realizing he was eclipsed by other mathematicians, he abandoned mathematics for petty
experiments. . . . Some of his papers display some talent, although nothing follows from
them and nobody has ever spoken of them or ever will.”

Condorcet’s criticism of Borda was not an entirely an objective assessment. They had
clashed earlier about what should be done with funds worth about $50,000 in today’s
dollars that the king owed the French Academy. Condorcet felt they should be used to pay
his salary, whereas Borda felt they should be used to support experimental research.
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Marquis de Condorcet

Marie-Jean-Antoine-Nicolas de Caritat took his title Marquis de Condorcet from the
town of Condorcet in Dauphiné, where his family resided. Born September 17, 1743,
Condorcet was educated in Jesuit schools in Reims and then at the Collège de Navarre and
the Collège Mazarin in Paris.

Condorcet displayed early talent in mathematics and was elected to the French
Academy of Sciences at age 26. A 1772 volume on calculus he wrote was described by the
eminent mathematician Lagrange as “filled with sublime and fruitful ideas.”
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Although he served in the administration of Louis XVI, Condorcet strongly sup-
ported the French Revolution. He advocated economic, religious toleration, abolition of
slavery, free and equal public education, constitutionalism, and equal rights for women.
After the Revolution, he served in the Legislative Assembly as a representative from Paris.
Condorcet aligned himself with the moderate Girondists, who were ousted by the more
radical Jacobins led by Robespierre.

Condorcet argued strongly against the new, hurriedly written, constitution that was
drawn up by the Jacobins to replace the one that he himself had been chiefly responsible for
drawing up. “Condorcet was no politician,” wrote one of his biographers. “His uncompro-
mising directness of manner and inability to suffer illogical windbags in silence made him
many enemies and few friends.” When a warrant for his arrest was issued, Condorcet went
into hiding for half a year and eventually tried to flee from Paris but was caught and
imprisoned onMarch 27, 1974. Two days later he was found dead in his prison cell.Whether
he committed suicide, died from natural causes, or was murdered is still not known.

While hewas in hiding, Condorcet wroteEsquisse d’un tableau historique des progrès
de l’esprit humain (Sketch for a Historical Picture of the Progress of the HumanMind), now
considered one of the major Enlightenment texts. Condorcet held a strong belief that human
progress was linked to scientific discoveries and to mathematical and logical reasoning. He
argued that there was an intimate connection between scientific advances and the spread of
justice and human rights. His vision was that we could, through rational thought and the
accumulation and sharing of knowledge, continually progress toward a utopian society.

D. Charles Dodgson (Lewis Carroll)

Most of the world knows him as Lewis Carroll, the author of the children’s classic Alice’s
Adventures in Wonderland, its sequel Through the Looking-Glass, and the nonsense poems
“The Hunting of the Snark” and “Jabberwocky.” But Charles Lutwidge Dodgson (January
27, 1832 January 14, 1898) has an independent reputation as an Oxford University
mathematician who made some serious contributions to social choice theory.
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Charles Lutwidge Dodgson (Lewis Carroll)
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In the mid-1870s, Dodgson wrote three short pamphlets about voting procedures to
deal with multiple-candidate elections: A Discussion of the Various Methods of Procedure
in Conducting Elections (1873), Suggestions as to the Best Method of Taking Votes,
Where More Than Two Issues Are to Be Voted On (1874), and AMethod of Taking Votes on
More Than Two Issues (1876). Dodgson’s practice as a mathematician was to develop his
own solution to problems without considering previous work on the subject. Thus, it was
unlikely that he had read the papers of Borda and Condorcet; he essentially came up with
some of their approaches entirely on his own.

Dodgson suggested first looking for a candidate who was the first choice of a majority
of voters. If such a candidate exists, then that person is declared the winner. If no one
commands a majority, then Dodgson proposes examining all the two-candidate elections
and seeing whether a Condorcet Winner emerges. If there is no Condorcet Winner, then
Dodgson discusses various ways to proceed. These include versions of Instant Runoff
Voting and the Borda count. He also proposed that the individual preference lists of the
voters be examined to determine the smallest number of switches of consecutive candidates
required to produce a Condorcet Winner. He envisioned a sequence of rounds of voting
wherein the electors would be made aware of this information and offered the opportunity
to submit new preference rankings.

Today, social choice theorists call an alternative a Dodgson Winner if it can be made
a Condorcet Winner by interchanging as few adjacent alternatives in the individual rank-
ings as possible. Consider, for example, the preference rankings of 12 voters among four
candidates summarized in Table 6.27.

Candidate D has a plurality of five first-place votes, but no candidate commands a
majority. Nor is there even a Condorcet Winner. If any three of the voters in Groups I IV
interchange their consecutive rankings of C and A, then A would become a Condorcet
Winner. No other interchange by three or fewer voters of adjacent candidates in their
rankings produces a Condorcet Winner. Hence, candidate Awould be the Dodgson Winner.

E. Kenneth Joseph Arrow

The most prestigious and coveted international honors are the annual Nobel Memorial
Prizes. These awards are given for outstanding achievements in medicine, literature, peace,
chemistry, physics, and—since 1969—economics. The announcements of these awards
each autumn are front-page news.

The Swedish Academy of Science selected Kenneth J. Arrow as a co-winner of the
1972 Nobel Memorial Prize in Economics. The academy cited Arrow’s pioneering

Table 6.27

Group I II III IV V VI VIII

Size 2 2 2 2 2 1 1

1st choice D B C D A A D

2nd choice C C A B B D A

3rd choice A A B C C B B

4th choice B D D A D C C
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contributions to general economic equilibrium theory and welfare theory. Although Arrow
has made several key breakthroughs in economic theory, many of his colleagues rate the
Impossibility Theorem of this chapter as his major achievement. According to the well-
known economist Paul Samuelson, himself a Nobel Laureate in 1970, this theorem “is not
only a stellar contribution to economics, it is as well a breakthrough for political science,
and I would dare assert, for philosophy itself.”
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Kenneth J. Arrow

Arrow was born in New York City to Jewish immigrants raised on the Lower East
Side. He graduated from the City College of New York in 1940 at the age of 18 with as he
put it “a degree of Bachelor of Science in Social Science but a major in Mathematics, a
paradoxical combination that was prognostic of my future interests.” Arrow’s advanced
degrees were taken at another Manhattan institution, Columbia University. After a 4-year
stint in the U.S. Army Air Force during World War II, Arrow was a research associate with
the Cowles Commission at the University of Chicago from 1947 to 1949. The Impossibility
Theorem was part of his Ph.D. thesis and in finished form was published as a book, Social
Choice and Individual Values, in 1951.

Arrow began his work on the social welfare problem by trying to develop a rea-
sonably fair function that took a collection of individual preference rankings and produced a
group ranking. “I just started playing around,” he told one interviewer. “It took me about
two days to decide I was on the wrong track because I was looking for some solution. It
didn’t occur to me that there was no solution.”

In 1949, Arrow joined the faculty of Stanford University where he taught for almost
20 years and was a major force in developing at Stanford an outstanding group of economic
theorists and mathematical model builders. He also worked briefly with the Council of
Economic Advisers during the administration of President John F. Kennedy. In 1968 Arrow
moved to Harvard University where he became the James Bryant Conant University
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Professor in 1974. In 1979, he returned to Stanford University with the position of Joan
Kenney Professor of Economics and Professor of Operations Research. Arrow formally
retired in 1991 but continues to be an active participant in economics conferences and was a
vigorous bicyclist well into his mid-eighties.

Arrow has written or edited many books and dozens of papers whose topics include
the mathematical theory of inventory and production, time series analysis of interindustry
demands, linear and nonlinear programming, public investment and optimal fiscal policy,
the theory of risk bearing, and general competitive analysis.

“Despite the deep abstraction of his econometric theories, friends consider Professor
Arrow basically a humanist, a scholar who has always tried to apply fundamental theory to
such social problems as medical care, education, race discrimination and water resources”
wrote Robert Reinhold [1972] in a New York Times profile.

In appraising the work for which Arrow received a Nobel Prize, Samuelson [1972]
wrote, “Men have always sought ideal democracy—the perfect voting system. . . . What
Kenneth Arrow proved once and for all is that there cannot possibly be found such an ideal
voting scheme. The search of the great minds of recorded history for the perfect democracy, it
turns out, is the search for a chimera, for a logical self-contradiction. . . . Aristotle must be
turning over in his grave. The theory of democracy can never be the same . . . since Arrow.”

Despite his many honors and the demands of his research, Arrow has been
remarkably available to undergraduate students and younger colleagues. He was the only
senior faculty member at Harvard, for example, who volunteered to take on an assignment
to lead discussion sections of an introductory economics course, a task usually delegated to
graduate student teaching assistants. Four of Arrow’s graduate students have themselves
been awarded the Nobel Prize in Economics.

President George W. Bush presented the National Medal of Science, the nation’s
highest scientific honor, to Kenneth Arrow in November 2005 for “groundbreaking con-
tributions to the pure theory of economics but [he] also holds a broad understanding of the
social science arena in which theories are confronted and practical lessons worked out. His
fundamental research on risk perception and behavior under uncertainty, and on equilib-
rium in markets with imperfect information, began a revolution in the design and analysis of
market allocation mechanisms.”
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President George W. Bush about to present the National Medal of Science to Kenneth
Arrow
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F. Amartya Sen

Amartya Kumar Sen, discoverer of the Liberal Paradox, is a Bengali economist and phi-
losopher born on November 3, 1933. He won the Nobel Memorial Prize in Economic
Sciences in 1998 “for his contributions to welfare economics” for his work on famine,
human development theory, welfare economics, the underlying mechanisms of poverty,
and political liberalism.

From 1998 to 2004, Sen was Master of Trinity College at Cambridge University,
becoming the first Asian academic to head an Oxbridge college.
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Amartya Sen

Among his many contributions to development economics, Sen has produced work
on gender inequality. He is currently the Lamont University Professor at Harvard Uni-
versity. Sen’s books have been translated into more than thirty languages.

G. Graciela Chichilnisky

One of the world’s preeminent mathematical economists, Graciela Chichilnisky has achieved
great success despite numerous obstacles. She is currently UNESCO professor of economics
andmathematics and professor of statistics at Columbia University, where she also directs the
Program on Information and Resources and the Center for Risk Management.

Chichilnisky was born March 27, 1946, in Buenos Aires, Argentina. Her parents
Salomon Chichilnisky and Raquel Gavensky came from families fleeing Russian anti-
Semitic pogroms at the turn of the 20th century. Her father battled his way from being a
dock worker to becoming a medical doctor, then a professor of neurology, and later the
national Secretary of Health, in which role he built many hospitals and a large part of
Argentinean National Health system.

Chichilnisky excelled at school despite several anti-Semitic incidents. As a high
school junior, she informally took courses at the University of Buenos Aires, where she
gravitated to mathematics from an initial focus on philosophy and sociology.

“I wanted to do mathematics that would be applied to resolve social problems,” she recalls. “I
thought that studying Mathematics first would give me a control of the ‘technology’ that
economists use to validate their theories and their policies. I felt it was important to ‘control the
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technology’—rather than ‘be controlled by it’—since many economists appear to fear the
mathematical foundations of economics and adopt theories or policies based on what they
learn from others mathematical models. I always liked the idea of creating my own mathe-
matical models, rather than adopting somebody else’s. Mathematics was a pleasure to learn. I
think of it as the natural language that the brain uses to communicate with itself.”

Just as Chichilnisky was about to start college, a military junta took over Argentina
and closed down the universities. Fortunately she was invited to begin graduate level
studies in mathematics at the Massachusetts Institute of Technology. She arrived in
Cambridge, a single mother with infant child, without much knowledge of English, com-
peting with doctoral students at a leading university without benefit of an undergraduate
degree. Soon, however, she was at the top of her class with scholarship support from the
Ford Foundation. She transferred to the University of California at Berkeley when she
completed her Ph.D. in mathematics with her thesis “Group Actions on Spin Manifolds,” a
topic at the intersection of algebraic topology and physics.

Chichilnisky’s first major job was as Director of Modeling at Fundacion Bariloche
in Argentina, where she created a mathematical model of the world economy with an
interdisciplinary team of prominent Latin American scientists, including geologists,
sociologists, population experts, computer scientists, political scientists, and econo-
mists. In this model, she created the concept of “development based on the satisfaction
of basic needs” rather than a more traditional approach of development through maxi-
mizing Gross Domestic Product. A radical idea at the time, Basic Needs was adopted as
the cornerstone of efforts to define sustainable development by 166 nations at the Earth
Summit in 1987.

Seeking a better understanding of international markets, Chichilnisky decided to
return to Berkeley to work on a second doctoral degree, this time in economics. Her
primary advisor was another Nobel Laureate, Gerard Debreu. While completing her dis-
sertation, she also worked as a research associate at Harvard with Kenneth Arrow, who
became an important mentor for her. After a period teaching mathematics and economics
at Harvard while beginning her breakthrough research on topological choice theory,
Chichilnisky moved to New York in 1977. There she served as director of research for the
United Nations Institute for Training and Research while teaching at Columbia and
Harvard.

Chichilnisky has published more than 16 books and 300 research papers covering a
broad range of concerns, including oil in the international economy, development and
global finance, information and uncertainty in markets, equity and efficiency in environ-
mental markets, the gender gap, sustainability, dynamics, and uncertainty. She has received
many honors and awards during her career. The Greek government named her Global
Citizen of the Year in 2007, the University of Oslo conferred the Leif Johansen award on
her in 1995, and Hispanic Business listed her as one of the most influential Latinos in the
United States in 2006. She has frequently been mentioned as a possible future winner of the
Economics Nobel Prize.

Chichilnisky has worked extensively on the Kyoto Protocol process, creating and
designing the concept of the carbon market that has become international law in 2005.
Working closely for several years with negotiators of the United Nations Framework
Convention on Climate Change, the organization in charge of deciding world policy with
respect to global warming, Professor Chichilnisky acted as a lead author of the
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Intergovernmental Panel on Climate Change. The IPCC received the 2007 Nobel Prize for
their work in this area.
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Graciela Chichilnisky

The road to such achievements has often been a very bumpy one for Chichilnisky.
“Somewhere along this path,” she writes, “I met uncontrollable forces, full of sound and
fury, that thrust me up close into the stormy transition of women’s roles at the turn of the
21st century.” Her mentor at MIT suggested that she would not be able to compete suc-
cessfully with students in the program there and suggested she transfer to a less demanding
discipline at a weaker university. Later there were false malicious rumors that each of her
doctoral theses were not original works, but had been written by her adviser or other senior
colleagues. “As a foreign woman and a single mother, I started to face bewildering cir-
cumstances,” Chichilnisky writes:

I learned a great deal during this process, about how women’s intellectual property is treated
in the masculine world of academia. . . . All this made me aware in the years that followed of
the plights of other women in Ivy League universities whose intellectual work had been stolen
or duplicated with impunity, or attributed to others. . . . While it is hard enough to compete
with men in academic research, obtaining credit for what one has accomplished proved to be
much more difficult . . . academic citations are consistently biased against women. Men resist
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giving women the basis for measuring academic achievement. They successfully deny them
credit for their work in the form of academic citations. This problem is true today and in my
case it has only become worse as my work has become better known.

Hostility escalated . . . as I grew professionally, it became relentless. Some of my col-
leagues recommended to my students not to work with me, others wrote threatening letters to
my sources of funding and published numerous articles against my work; others acting as
editors limited the ability of authors to write extending my work in this area. The campaign
against my work extended to the Columbia administration, and created a hostile climate in
which it was very difficult to work. . . .

At Columbia I have excellent colleagues who tried to stop this trend, but the forces of
darkness succeeded. . . . Eventually my assistants’ offices at the Economics Department
were destroyed and my own office made unusable, my courses were removed, I was mar-
ginalized and treated with hostility, and my salary became so low that years later it had to
be almost doubled and still remained below the average of male full professors.

When Chichilnisky discovered that her salary was substantially lower than her
colleagues, she sought to remedy the discrepancy in what became “a David and Goliath
epic.” She describes the administration’s response as one of “indifference and scorn.”
After failing to resolve the issue internally, Chichilnisky filed a lawsuit against
Columbia in 1990. A settlement was reached in 1995 awarding her $500,000 and
commitments from the university to provide the Program on Information and Resources,
which Chichilnisky directed, with space and other support. By 2000, she came to believe
that Columbia was not honoring its promises, was harassing her in retaliation for
challenging the university, and was continuing to pay her unfairly. She filed suit again.
Columbia filed counterclaims alleging she was delinquent in her duties and had secretly
operated a private consulting company. After nearly 8 years of legal wrangling, the
parties reached anew settlement in June 2008 awarding Chichilnisky $200,000. “The
exact number isn’t as important as the principle that it was a substantial amount of
money that the university had to pay,” she said. “And that has to do with who is right
and who is wrong.”

Despite the obstacles and hostility Chichilnisky has had to face, she remains
positive:

For a woman to survive and to thrive she must learn to turn negative responses into positive
resources. This is a perverse reversal to the Pavlovian response. I call this, for short,
“turning dung into fertilizer.” I believe it is one of the most important elements for women’s
success and happiness. It is a wonderful recipe for dealing with the “glass ceiling”, a well-
known and somewhat cruel situation where the more you succeed, the more you get pun-
ished. Think of it this way—energy is energy—and simply changing the sign of the response
one receives from negative to positive allows one to use all the energy received construc-
tively, and turn it into a survival tool. In mathematical terms, this is “life modulo two.” It is
the absolute value of the response that counts, not the sign . . . the only genuine source of
happiness in life is the feeling of being useful to others. Nothing else does the job. This is
true for anybody. It is not achievement or success, it is not money. It is this feeling of being
useful that counts.
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EXERC I S E S

I. Three Voting Situations

1. Show that a voting mechanism that gives a satisfactory
resolution of situations in which a single best alterna-
tive must be chosen (as in Example 1) can be modified
to handle situations when a full ranking of various
alternatives is required (as in Example 2).

2. Are there any voting situations essentially different
from those described in Examples 1 3? How are the
outcomes determined in such situations?

II. Two Voting Mechanisms

3. What safeguards protect minority rights in systems
using simple majority voting?

4. Suppose the senators are split in the following manner:
(A B C) 49 votes

(B C A) 49 votes

(C A B) 2 votes
If modified simple majority voting is used here,

will the judgments of the Senate be transitive?

5. If the senators are split in the following manner:
(A B C ) 32 votes

(B C A ) 33 votes

(C A B ) 35 votes,
show that there is a Condorcet Winner.

6. If 51 senators share the preference ranking (A B C),
show that the Senate will have transitive preferences.
Is there a Condorcet Winner?

7. Is it necessary for a majority of senators to share a
common preference ranking to guarantee that the
Senate judgments will be transitive? Why?

8. Consider a legislative body that only passes resolutions
if they are supported by more than two-thirds of the
members. How would such a body settle questions like
those proposed by Examples 2 and 3? What inequities
does such a system possess?

9. In order to correct past discrimination, it has been
proposed that for a limited period, the votes of women
be given twice the consideration of the votes of men—
that is, each woman receives two votes on every pro-
posal while each man receives one. Proposals are
adopted or rejected on a simple majority count. Can
intransitive results emerge? What other injustices are
associated with such a system?

10. There are 1,000,000 shares of stock in the Emerson
Construction Company. Two shares are owned by
Mrs. Emerson, and the remaining shares are split
evenly between her two sons. In deciding company
policies, each shareholder has a number of votes equal
to the number of shares he controls. How much rela-
tive power does Mrs. Emerson have?

11. The outcome of a weighted voting mechanism depends
not only on the rankings of the individual judges, but
also on the points assigned to each place in the rank-
ings. For the beauty contest example described in the
text, determine the rankings of the contestants if a
second place is worth only 3 points.

12. In some gymnastics competitions, four judges indi-
vidually assign a number between 1 and 10 to each
contestant. The highest and lowest scores are discarded
and the contestant receives the average of the two
intermediate scores. What injustices would be associ-
ated with such a voting mechanism?

13. In many voting situations, the individual voter is per-
mitted to designate more than one contestant as his
preference, but is not allowed to rank-order his pre-
ferences. For example, 10 candidates may be running
for three positions on a local school board. Each voter
may place X’s besides the names of three candidates.
The candidates who receive the largest number of X’s
are the winners. How fair is such a voting mechanism?

14. Under plurality voting, the candidate with the largest
number of voters, even if it is not a majority, is
declared the winner. Show that with the hypothetical
distribution of senators’ preferences on tax policy we
studied, alternative C would be the plurality winner.
Are there legitimate objections to that outcome?
Imagine, for example, the 65% of the senators who
agreed that B was a better choice than C.

15. Instant Runoff Voting (IRV) is a procedure that has
been gaining substantial support in recent years. If no
candidate receives a majority of first-place votes, then
the candidate with the fewest first-place votes is
eliminated and that candidate’s voters are then
assigned to the person ranked second on the ballots
that named that candidate as first choice. Show that
under IRV and hypothetical distribution of senators’
preferences on tax policy, alternative A would
be eliminated and the 31 votes it received would all be
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transferred to alternative B. What inequities does IRV
suffer from?

16. Under Traditional Runoff Voting (TRV), the two can-
didates with the highest numbers of first-place votes
advance to a second election between the pair.

(a) Show that TRV and IRV produce the same result if
there are exactly three candidates.

(b) Construct, if possible, a set of rankings among
four candidates that yields different winners under
TRV and IRV.

III. An Axiomatic Approach

17. Show that simple majority voting satisfies Axioms
1 5 if there are exactly two alternatives.

18. Which of the axioms are satisfied by weighted voting
mechanisms?

19. Construct voting mechanisms that satisfy all the
axioms except
(a) Axiom 1, (b) Axiom 2, (c) Axiom 3, (d) Axiom 4,
(e) Axiom 5

20. Weaken Axiom 2 by eliminating transitivity of societal
preferences, and construct various mechanisms that
satisfy the new set of axioms.

21. Weaken Axiom 2 by eliminating the demand for a
unique societal preference, and construct a mechanism
that satisfies the new set of axioms.

22. In what way does Axiom 4 eliminate the possibility of
voters manipulating the system by disguising their true
preferences?

IV. Arrow’s Theorem

23. Construct a voting mechanism for which there is a set
V of voters and a pair of alternatives x and y so that V
is decisive for x against y, but V is not decisive for y
against x. Can you construct such a mechanism that
satisfies all but one of Arrow’s axioms?

24. The eight-person society discussed under remark (d)
has a mechanism that does not satisfy the Unanimity
Axiom. Why? Suppose the mechanism is modified so
that for every pair x, y of alternatives, x is socially
preferred to y whenever everyone prefers x to y; oth-
erwise, the societal preference is the opposite of
Mike’s. What axioms does this system satisfy?

25. (a) Prove that a minimal decisive set will always exist
if there is a finite number of voters provided
Axiom 2 is satisfied.

(b) Construct a voting mechanism for a society with an
infinite number of voters in which minimal decisive
sets do not exist—that is, show that if V is any set of
voters decisive for some pair of alternatives, then
there is a proper subset of V that is also decisive for
some pair of alternatives. Can you construct such a
mechanism that satisfies all of Arrow’s axioms?

26. What happens in the proof of Claim I if the minimal
decisive set is the set of all voters? Can this happen in a
system satisfying Axioms 1 4?

27. In the proof of Claim I, it is tacitly assumed that V ′ is
non-empty. Can you prove that V ′ always contains at
least one voter?

28. (a) Prove that aDb implies aDb.

(b) Find an example in which aDb is true, but aDb is
not.

29. Prove that xDy implies zDx and yD x if there are
exactly three alternatives x, y, and z—that is, verify (5)
and (6) of Case 1.

30. Verify the details of the argument of Case 2.

V. Theorem of Gloomy Alternatives

31. Our proof of the Liberal Paradox Theorem assumed that
all four of the alternatives w, x, y, and z were distinct
from one another. Prove the theorem if this is not true.

32. Some authors reserve the term Social Decision Func-
tion (SDF) for mechanisms that assign to each possible
profile of preferences a single top choice or winner
rather than a full societal ranking. Suppose we have
precisely two voters and two candidates and each voter
rank-orders the candidates.

(a) Show that there are four possible profiles and,
since there are two possible winners for each
profile, show that there are 24 = 16 possible SDFs.

(b) How many possible SDFs are there if there are
three voters and two candidates?

33. If there are two voters and three candidates, show there
are 36 possible profiles and hence 336 different possi-
ble SDFs.

If there are n voters and k candidates, how many
different possible SDFs are there?
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34. A social decision function is nondegenerate or non-
trivial if for each possible candidate there exists at least
one profile of voter preferences under which that
candidate is chosen as the winner.

(a) Which of the 16 possible SDFs of Exercise 32 are
nondegenerate?

(b) For a situation with exactly two voters and three
candidates, exhibit an SDF that is trivial and an
SDF that is nondegenerate.

35. Prove the following proposition: Suppose we have a
society with two voters and we need to choose a
winner among exactly three alternatives using an SDF
that is nondegenerate and strategy-proof. If both voters
prefer candidate A to candidate B, then B cannot be the
winner using this SDF.

36. Use the proposition of Exercise 35 to prove the Gib-
bard-Satterthwaite Theorem in the case of a two-voter,
three-candidate situation. In particular, show that any
nondegenerate strategy-proof SDF that returns a win-
ner for every profile of rankings must be dictatorial.

VI. Instant Runoff Voting

37. Table 6.28 below shows some results for the 1990
presidential election in Ireland. The three candidates
were Mary Robinson (MR) of the Labour Party, Brian
Lenihan (BL) of the traditionally dominant Fianna Fail
Party, and Austin Currie (AC ) of the Fine Gael Party.
A total of 1,584,095 people voted in the election; of
these, 9,444 indicated no preference for president.
Note that the voters in Group I only listed Robinson as
first choice; they did not indicate a second. The voters
in Group II listed Robinson first and Currie second, but
showed no third choice explicitly.

TABLE 6.28

GROUP I II III IV V VI VII VIII IX

SIZE 306133 183679 122453 208345 347242 138897 205565 46789 25548

1st MR MR MR BL BL BL AC AC AC

2nd AC AC AC AC MR BL

3rd BL MR

(a) Who was the plurality winner?

(b) Who is the winner under Instant Runoff Voting?

38. In what sense is the winner of an IRV procedure
dependent on which candidate is eliminated first?

39. There are at least two ways that IRV can be modified to
produce a societal preference ranking among all the
candidates after determining the first-place finisher: (I)
Give second place to the last candidate eliminated, third
place to the next to last eliminated, and so forth, or (II)
Go back to the original individual rankings, cross out the
winner, and apply IRV to the result; the winner of this
election is the second-place finisher. Continue similarly
to find third place, fourth place, and so on.

(a) Apply (I) and (II) to the example shown in
Table 6.11.

(b) Apply (I) and (II) to the example in Exercise 37.

(c) Do (I) and (II) always produce the same societal
ranking?

(d) Suppose you use method I. Which of Arrow’s
Axioms are satisfied, and which are violated?

(e) Suppose you use method II. Which of Arrow’s
Axioms are satisfied, and which are violated?

40. Verify that in the Fishburn-Brams example with can-
didates Bitt, Huff, and Wogg (Table 6.21), Mr. Huff
wins each possible two-person race.

41. For the Fishburn-Brams example with the Smiths
voting, show that if two or more of the 82 voters in
Group II had switched the order of Bitt and Wogg so
that Wogg became their top choice, then Huff would
become the winner, again demonstrating that increas-
ing support for a candidate can lead to his defeat!

42. Show that if the Smiths had voted in any order that did
not have Mrs. Bitt in first place, then Mr. Huff would
have won.

43. Suppose the Smiths not only voted, but also recruited
300 other additional people who shared the Smiths’
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preferences but were not intending on voting to show
up at the polls and submit their rankings. Who wins the
election under IRV?

44. Here is another interesting problem that Fishburn and
Brams found can arise with IRV. Suppose the town of
Branburn is divided into two districts, East and West,
with the numbers of voters in each district with the
possible preference rankings summarized in this table:

Group I II III IV V VI

Total 417 82 143 357 285 324

East 160 0 143 0 0 285

West 257 82 0 357 285 39

1st Bitt Bitt Huff Huff Wogg Wogg

2nd Huff Wogg Bitt Wogg Bitt Huff

3rd Wogg Huff Wogg Bitt Huff Bitt

Show that we apply the IRV process to each
district separately, then Bitt wins in the East and she
wins in the West, but she does not win if the entire
town is considered as one district. Fishburn and Brams
call this an example of the Multiple Districts Paradox:
A candidate can win in each district separately, yet lose
the general election in the combined districts.

45. Suppose there are nine voters with the following
preference rankings for candidates A, B, and C:

Group I II III

Size 4 3 2

1st choice A B C

2nd choice C C A

3rd choice B A B

Show that under plurality or instant runoff
voting, A wins the election even though C is a Con-
dorcet candidate—that is, a majority prefers C over A
and a majority prefers C over B.

46. Prove that under plurality or instant runoff voting with
precisely 3 candidates, a Condorcet candidate will
always lose if that candidate is not one of the top two
candidates listed in first place. Is it true that a Con-
dorcet candidate will always win if that person is one
of the top two? Construct an example, if possible, of a
4 candidate contest with candidates A, B, C, and D
where C is a Condorcet candidate, C wins under

instant runoff voting, but A and B each receive more
first-place votes than C.

VII. Approval Voting

47. Suppose we have a population of 120 people ranking
three alternatives A, B, and C. We can divide the
population into five groups whose numbers and
orderings of the alternatives are shown in the table
below:

Group I II III IV V

Size 36 12 26 20 26

1st choice A B B C C

2nd choice B C A B A

3rd choice C A C A B

(a) Show that C is the plurality winner.

(b) Show that A is the Condorcet Winner.

(c) Show that if first-place votes earn 3 points, second-
place votes 2 points, and third-place votes 1 point,
then the Borda count winner is B.

(d) If we use Approval Voting and each person votes
for her top two choices, who wins?

(e) Suppose we use Approval Voting and half of each
group votes for their top two choices and the other
half only votes for their top choice, who wins?

(f) Who is the winner under Instant Runoff Voting?

48. One argument for Instant Runoff Voting (IRV) over
Approval Voting (AV) goes as follows:

Approval voting has another important real-world
flaw. Political behavior has much to do with what is
rewarded by the election system, and AV would exac-
erbate one of the worst aspects of U.S. campaigns:
avoidance of substantive policy debate. Because a
candidate could lose despite being the first choice of an
absolute majority of the electorate, smart candidates
would avoid controversial issues that alienate any
significant number of voters. Smiling more and using
policy-empty themes like ‘I care’ will not clarify the
important choices leaders must make. Those rewarded
by AV could be characterized as ‘inoffensive’ more
than ‘centrist.’ IRV strikes a better balance. It rewards
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candidates who stand out on policy enough to gain
first-choice support, yet encourages coalition-building
and fewer personal attacks as candidates seek to be the
second choice of other candidates’ supporters. [http://
archive.fairvote.org/op_eds/science2001.htm]

Discuss the merits of this argument. Could a
“smart” candidate in an IRV situation also do well by
being “likable” by being “inoffensive” and garner a lot
of second choice?

49. Those who favor Approval Voting over Instant Runoff
Voting sometimes claim that while it may be “rational”
under IRV for a voter to list her second choice as her
top choice in the submitted preference ranking, it is
never the case under AV that you should vote only for
your second choice; you should vote for only your first
choice or for your top two choices. Is this claim valid?

50. For our original Senate example with 31 voters having
the preference ABC , 34 having BCA , and 35
having CAB , find the winner under Approval Voting
if all voters list their top two choices as approved.

51. A voting system is determinate if each profile of voters’
preference rankings uniquely determines a group pref-
erence ranking. One deficiency of Approval Voting is
that it is not determinate: given a complete list of
everyone’s preference rankings, there may be many
possible outcomes depending on exactly how many
voters approve ofmore candidates than their first choice.
As an example, suppose we have 15 voters whose
rankings among candidates A, B, andC divide into three
groups with different numbers as shown in this table:

Group I II III

Size 6 5 4

1st choice A B C

2nd choice C C B

3rd choice B A A

(a) Show that if all voters only check their top choice,
then candidate A wins.

(b) Show that if exactly two voters of Group III check
their top two choices and everyone else only
checks their first choice, then candidate B wins.

(c) Show that if exactly three members of Group I
check their top two choices and everyone else only
checks their first choice, then candidate C wins.

(d) What is the result if four members of Group I and
three members of Group III check their top two
choices?

(e) What is the result if two members of Group I and
one member of Group III check their top two
choices?

VIII. Topological Choice Theory

52. Dave and Judy are deciding between two possible
locations A and B. They agree on a decision rule that
will select location A unless both of them name B as
their top choice, in which case B is declared the win-
ner. Does this rule satisfy the properties of anonymity,
unanimity, and stability?

53. Suppose Dave and Judy are trying to decide among
three possible locations A, B, C along the lakeshore. A
proposed decision rule is to choose the common site if
they both agree, but to pick the unnamed site if they
disagree. Thus, if Dave submits A and Judy submits C,
the decision rule outputs B. Show that this rule satisfies
the properties of anonymity, unanimity, and stability.

54. Show that the assignment shown in the matrix below
violates the stability criterion.

DAVE’S TOP CHOICE
A B C D

JUDY’S A A A B D

TOP B A B C D

CHOICE C B C C C

D D D C D

55. For the David and Judy problem with five possible
home sites, find social choices that are:
(i) Unanimous and anonymous but not stable

(ii) Unanimous and stable but not anonymous

(iii) Stable and anonymous, but not unanimous

56. A metric on a set S is a real-valued function d that
assigns a nonnegative number d x, y to every pair of
elements x and y of S in such a manner that for all x, y,
and z in S, the following are true:
(i) d x, y = 0 if and only if x= y

(ii) d x, y = d y, x

(iii) d x, z ≤ d x, y + d y, z (triangle inequality)

(a) If S is the set of real numbers, show that the
function d x, y = x y is a metric.
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(b) If S is the set of points in the plane, show that the
function d x, y = length of line segment between
x and y is a metric. Note that if x= x1, x2 and

y= y1, y2 , then d x,y = x1−y1
2 + x2−y2

2

is a metric.

(c) If S is the set of all n-dimensional vectors x= x1,
x2,…, xn where each xi is a real number, show that

d x,y = x1−y1
2 + x2−y2

2 +⋯+ xn−yn
2 =

n

i= 1
xi−yi

2 is a metric. This metric is called the

Euclidean metric or Euclidean distance function.

(d) If n= 1, how do the metrics in parts (c) and (a)
compare?

57. Let x= x1, x2 and y= y1, y2 be any two points in
the plane. Show that the function d defined by
d x, y = x1 y1 + x2 y2 is a metric. Can you say
why this function d is called the taxicab metric?

58. Show that the ε−δ definition of continuity is equivalent
to the neighborhood definition.

59. (a) The norm of a vector v= v1,v2,…,vn is the real
number v = v21 + v22 +…+ v2n. Show that the
norm of a vector is the Euclidean distance between
the origin 0= 0, 0,…, 0 and the vector.

(b) If v is a nonzero vector, then show that u= v
v is a

vector of length 1 pointing in the same direction as v.

60. Show that there is no social choice rule for the David
and Judy problem with five possible home sites that is
unanimous, anonymous, and stable.

61. Let X be the set of points on the unit circle except for
the point ( 1, 0). Show that each point P on X can be
described uniquely by an angle θ where − π < θ< π.
Then consider the function F that sends the pair θ, t
to the point 1 t q for 0≤ t≤ 1 Show that F sends
each point of the form θ, 0 to itself and each point of
the form θ, 1 to the point with Cartesian coordinates
(1, 0). Finally, show that F is a continuous function of
θ and t. Thus the effect of F is to continuously shrink X
to a point in X, always staying inside X. Such a

function is called a retraction. A space is contractible
if there is a retraction of X onto a single point in X.
Thus, the circle minus a point is contractible.

62. Suppose our city council initially wishes to divide its
expenditures into two categories: Municipal Services
M and Education E . The council will spend at least
$10 million, but no more than $20 million.

(a) Sketch the set of all possible choices.

(b) Sketch the set of all possible choices if each of M
and E must be at least $5 million.

63. Are the regions in Exercise 62 (a) and (b) contractible?

64. The city council needs to pick a site for a new water
treatment plant. It decides that the plant must be at
least 2 miles from the center of the city, but no more
than 3 miles from the center. Sketch the set of all
possible locations. Is this set contractible?

65. Suppose the preference rankings among nine voters are
distributed as in Exercise 45.

(a) Show that if 10 points are awarded for each first-
place ranking, 5 points for second, and 2 points for
third, then A wins a Borda count even though C is
the Condorcet Winner.

(b) If N is any positive integer and N points are given
for first-place rankings, N 1 for second and
N 2 for third, then C wins under a Borda count.

66. Construct an example of preference rankings where a
Borda count with N points for first place, N 1 for
second, N 2 for third, and so forth yields a winner
who is not the Condorcet Winner.

67. Consider the preference rankings given in Table 6.27.

(a) Show that if any three voters belonging to Groups
I IV interchange their consecutive rankings of C
and A, then A becomes a Condorcet Winner.

(b) What is the smallest number of interchanges of
consecutive candidates needed to make C the
Condorcet Winner? Answer the same question for
candidates B and D.

SUGGES T ED PRO J ECTS

1. Instead of discarding some axioms or weakening them
to obtain a consistent set, you might think about
strengthening the first axiom. Axiom 1 allows voters to

list the alternatives in order of preference, but does not
allow for expression of intensity of differences
between alternatives. Two voters may both list x and y
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at the top of their lists, although the first voter’s feel-
ings are almost indifferent toward the two, while the
second voter much prefers x to y. Investigate methods
of incorporating intensities into individual preference
lists. Discuss the consistency of sets of axioms
allowing for such measures.

One such approach is Range Voting, a system
whereby each voter assigns a measure on a scale of 0 to
100 to each candidate where the score reflects the
strengths of the voter’s preference for that candidate or
voter’s rating of the candidate’s worth or appeal to
the voter. The scores are added; the candidate with the
highest total score is the winner. Range Voting can be
interpreted as a generalization of approval voting that
uses a scale of 0 (disapprove) to 1 (approve). Show that
we can derive each voter’s preference ranking of the
candidates from the scores given out. What are the
strengths and weaknesses of Range Voting?

2. Peter Fishburn has shown that the Axioms 1 5 are
consistent if there are an infinite number of voters.
Investigate his proof. What is the real-world relevance
of this result?

3. Some voting theorists have argued that the modified
simple majority vote system is satisfactory because
intransitivity rarely occurs. Is there some way of mea-
suring the likelihood of intransitivity? Can you find
instances in Senate voting where proponents have used
intransitivity to their advantage by adjusting the agenda?

4. Can the standard voting systems (simple majority,
weighted voting, and so on) be characterized axiom-
atically? H. P. Young isolated three characteristics of
voting systems, which he termed “consistency,” “the
cancellation property,” and “faithfulness.” He was able
to prove that any mechanism that is consistent, faithful,
and has the cancellation property must be a weighted
voting system. Are these three properties reasonable
ones? Check the details of Young’s proof. Derive, if
possible, an axiomatic characterization of simple
majority voting.

5. Develop a proof of Arrow’s Theorem showing that
Axioms 1, 2, 4, and 5 imply that Unanimity is violated.

6. Show how the proof for the Muller-Satterthwaite
Theorem can be easily modified to prove Arrow’s
Theorem.

7. A Condorcet method is any election method that
always selects the Condorcet Winner, the candidate
who would beat each of the other candidates in a run-
off election, if such a candidate exists. Which of the

social choice rules we have studied are Condorcet
methods? Arthur Copeland suggested one of the sim-
plest Condorcet methods in 1951: pick the candidate
who beats the largest number of other candidates in
run-off elections. Investigate the properties of the
Copeland method.

8. Perhaps the most current widely used Condorcet
method is a process suggested by Markus Schulze in
1997. Although the Schulze method (also known as
Path Voting) fails to satisfy the Independence of
Irrelevant Alternatives Axiom, it does satisfy a number
of other desirable criteria for a fair voting mechanism.
Determine how the Schulze method works, what
societal rankings it outputs for the examples of profiles
we have see in this chapter, and proofs that it satisfies
some of the fairness criteria and fails others. Begin
with Schulze’s paper “A New Monotonic and Clone-
Independent Single-Winner Election Method,” Voting
Matters 17 (2003): 9 19. Schulze expands on this
work in a number of papers available on his website
http://m-schulze.webhop.net

9. Computational Social Choice is a new field that
explores questions at the interface of social choice
theory and computer science. One of its main concerns
is the efficiency of algorithms to implement the vari-
ously suggested voting mechanisms. How rapidly, for
example, does the number of computational steps
increase for a particular mechanism as the number of
individual voters or individual candidates increase?
Which mechanisms that appear attractive in theory
may be infeasible to implement in practice because it
would take the fastest computers hundreds of years to
determine the winner? Are there social decision pro-
cedures that in theory are not strategy-proof but that in
practice pose a computationally intractable problem to
determine how to manipulate them by insincere rank-
ings? Investigate what is known about the efficiency of
particular social choice procedures. See Chevaleyre
et al. (2005) for a good introduction to this interdis-
ciplinary field.

10. Manipulable voting processes pose a serious problem
for many social choice theorists as they may encourage
voters to disguise their true preferences when submit-
ting their rankings of the candidates. Others see that
manipulation can take different forms and some may
be a healthy aspect of democracy. Keith Dowding
and Martin Van Hees distinguish between sincere and
insincere manipulation and examine a class of social
choice functions that are immune to one or the other
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form. Investigate the claims they make in their pro-
vocatively titled paper “In Praise of Manipulation,”
British Journal of Political Science 38 (2007): 1 15
and examine what they imply about the main voting
processes we have discussed.

11. Although Instant Runoff Voting and Approval Voting
appear now to be the leading candidates to replace cur-
rent methods of collective decisionmaking, there are also
strong arguments for using the Borda count. Examine
Donald Saari’s (2001) arguments on this option.

12. The Coombs Rule is an interesting variant of Instant
Runoff Voting. This rule, suggested by mathematical
psychologist Clyde Coombs, eliminates the candidate
with the most last-place votes rather than the one with
the fewest first-place votes. Investigate the properties of
the Coombs Rule. In what ways is it superior to IRV? A
good starting reference is Bernard Grofman and Scott L.
Feld, “If You Like the Alternative Vote (a.k.a the
Instant Runoff), Then You Ought to Know about the
Coombs Rule,” Electoral Studies 23 (2004): 641 659.

13. Many of the issues, definitions and techniques that
arise in social choice theory are related to issues of
Fair Division and Apportionment. Fair Division, also
known as the cake-cutting problem, is the problem of
dividing a resource in such a way that all recipients
believe that they have received a fair amount. An
important apportionment problem is allocating the 435
seats in the U.S. House of Representatives among the
states in proportion to their populations with the con-
straints that each state gets a whole number of repre-
sentatives. Examine the various methods proposed to
solve such problems. A good starting reference is

H. Peyton Young, Equity in Theory and Practice,
Princeton: University Press, 1994.

14. Students with a background in algebraic topology
would enjoy preparing an exposition of some of the
results of Chichilnisky, Heal, and Baryshnikov listed
below in the References.

15. Investigate social decision procedures that combine
preference rankings and approval voting. In such sys-
tems, a voter either (a) submits a ranking of all the
candidates, drawing a line between those approved by
the voter and those not approved, or (b) submits a
ranking only of those candidates approved by the
voter. Various rules for determining a winner can be
implemented, giving rise to different fairness criteria
being satisfied. See Steven J. Brams and M. Remzi
Sanver, “Voting Systems That Combine Approval and
Preference,” in Steven Brams, William Gehrlein and
Fred Roberts, eds., The Mathematics of Preference,
Choice and Order: Essays in Honor of Peter C.
Fishburn, Berlin: Springer-Verlag, 2009, 215 237.

16. The Scottish economist Duncan Black (1908 1991)
argued that modified simple majority voting is a fair
social decision procedure if certain conditions on indi-
vidual preferences prevented intransitive results from
occurring. Examine Black’s notions of single peaked
preferences and median voter and his formulation and
proofs of some possibility theorems. See Duncan Black,
“On the Rationale of Group Decision Making,” Journal
of Political Economy 56 (1948): 23 34; and A. K. Sen
and P. K. Pattanaik, “Necessary and Sufficient Condi-
tions for Rational Choice under Majority Decision,”
Journal of Economic Theory 1 (1969): 178 202.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
7

Foundations of Measurement
Theory

It is a scientific platitude that there can be neither precise control nor

prediction of phenomena without measurement. Disciplines as diverse

as cosmology and social psychology provide evidence that it is nearly

useless to have an exactly formulated quantitative theory if empirically

feasible methods of measurement cannot be developed for substantial

portions of the quantitative concepts of the theory.

—Dana Scott and Patrick Suppes

I. The Registrar’s Problem
Middlebury College divides its academic year into three major components: two 12-week
semesters sandwiching a 4-week “winter term.” During the winter term each faculty
member offers, and each student enrolls in, one course. Because of the experimental nature
of many of the courses offered, enrollment is often restricted to 20 or 25 students in each
class. Since a typical Winter Term will find 1,800 students on campus and only 70 courses,
it is clear that not every student will be able to take the course she most desires.

When a student registers for winter term, then, she lists five courses in descending
order of preference. The registrar assigns each student to a course, using these preferences
as a guide. At the present time, the registrar uses a procedure based on the desire to
maximize the number of students who receive their first choice. There has been consid-
erable discussion lately about the fairness and desirability of this particular priority scheme.
An alternative method of assigning students to courses has been devised, which has gained
some support. The philosophy behind this scheme is not to maximize the number of first
choices, but to maximize the total amount of happiness among the students towards the
courses they are assigned. This assignment procedure can be given a rather tidy mathe-
matical formulation.

Denote the students by i= 1, 2, . . . , n and the courses by j= 1, 2, . . . , m. Let rij
denote how happy student iwould be if she is assigned course j. Define the variable xij to be
equal to 1 if student i is placed in course j and 0 otherwise. The total amount of happiness
would then be represented by

r11x11 + r21x21 +⋯+ rn1xn1 + r12x12 +⋯+ rnmxnm
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or, in more compact form,

m

j= 1

n

i= 1

rijxij.

There are several restrictions on the registrar that must be taken into account. First of
all, every student must be assigned to some course and only to one course. Second, no course
should be assigned more students than the instructor is willing to admit. Denoting the
enrollment limit on the jth course by Cj, the Registrar’s Problem is formulated as follows:

Maximize
m

j= 1

n

i= 1

rijxij.

subject to the following restrictions:

1. Each xij ≥ 0.

2.
m

j= 1

xij = 1 for all i.

3.
n

i= 1

xij ≤Cj for all j.

The Registrar’s Problem is an example of what mathematicians call a “linear pro-
gramming” problem: optimizing a linear function subject to a set of linear constraints.
Algorithms exist for the solution of such linear-programming problems although when n and
m are as large as 1,800 and 70, respectively, digital computers must be used to execute them.

In this chapter and the succeeding one, we want to focus more sharply on the aspect
of the Registrar’s Problem, which remains somewhat vague in this presentation: what
precisely is rij and how is it determined?

II. What Is Measurement?
A. A Physical Analogy

We let rij denote “how happy student i would be if she is assigned course j.” In the
mathematical formulation of the Registrar’s Problem, it is clear that we are presuming that
each rij is a real number that measures this happiness. Is it clear, however, that it is always
possible to measure such psychological attributes by numbers? What is meant by “mea-
suring” an attribute? Is there more than one way to do it? What inferences, if any, can be
made from a measurement scale? How can you construct such a scale?

These questions form the basic problems of measurement theory. In the mid-1960s
four distinguished social scientists [David Krantz, R. Duncan Luce, Patrick Suppes, and
Amos Tversky, 1972] began a collaborative study of the foundations of measurement
theory that resulted in three large volumes. Early in their first book, the authors discuss the
roles of theories of measurement in science:

The measurability of the variables of interest in physics is taken for granted and the actual
measurements are reduced, via the elaborate superstructure of physical theory, to comparatively
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indirect observations. Other sciences, especially those having to do with human beings, approach
measurement with considerably less confidence. In the behavioral and social sciences we are not
entirely certain which variables can be measured nor which theories really apply to those we
believe to be measurable; and we do not have a superstructure of well-established theory that can
be used to devise practical schemes of measurement . . . . A recurrent temptation when we need to
measure an attribute of interest is to try to avoid the difficult theoretical and empirical issues
posed by fundamental measurement by substituting some easily measured physical quantity that
is believed to be strongly correlated with the attribute in question: hours of deprivation in lieu of
hunger; skin resistance in lieu of anxiety; milliamperes of current in lieu of aversiveness, etc.

It should not be surprising then that our first insights into measurement will come
from considerations of measurement in the physical sciences. The question of what is meant
by “measuring an attribute” may perhaps best be answered by examining first a physical
attribute, weight. A provisional definition ofmeasuring an object’s weightmight be “assign
some number to that object.” This is a very poor definition, since the same number might be
assigned to every object.

A careful analysis of a physical attribute is not possible unless there is some means of
deciding which of two objects possesses more of the attribute than the other. A refinement
of the first definition might be the following: to measure an object’s weight means to assign
a number to that object in such a way that one object is at least as heavy as a second object if
and only if it is assigned a number at least as large as the second.

This added restriction rules out the possibility of assigning all objects the same
number. It relies on the fact that the concept of the “weight” of an object is intimately
connected with a relation between objects, the relation “at least as heavy as.” This relation
can be established empirically by placing any pair of objects on the separate pans of a
balance and observing which pan descends.

Write A B if object A is at least as heavy as object B. To measure weight is to find a
function w from the set of objects to the set of real numbers such that w A ≥w B if and
only if A B.

It is natural to define “A has the sameweight asB” to mean thatA B andB A. As an easy
exercise, the reader should show that w A =w B if and only if A has the same weight as B.

It is now easy to describe a procedure for assigning weights to a finite set of objects
A1, A2, . . . , An. By testing A1 against each of the other objects on the pan balance, then A2

against all the other objects, and so on, find a lightest element Aj. This is an object Aj such
that Ai Aj for all i. Assign weight 0 to object Aj. If there is any Ai such that Aj Ai then Aj and
Ai have the same weight, so also assign weight 0 to Ai.

Next consider the set of remaining objects that have yet to be assigned a weight. Find
a lightest element in this set. Assign weight 1 to this object and to any object of the same
weight. Repeat the process on the set of remaining objects (assigning weight 2 to its lightest
element) and continue in this manner until all objects have been assigned a weight.

B. Relations

With this relatively simple example as background, we can discuss the general problem of
defining what it means to measure attributes. The formulation of the problem uses the
concept of a “relation” from elementary set theory. See Appendix I for the necessary
background on sets.
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DEFINITION A relation on a set S is a subset R of the Cartesian product S× S. If x and
y are elements of S, we say that x is R-related to y or xRy whenever x, y is an element of R.

We will present a number of examples to illustrate this idea.

Example 2

Let S be the set of all positive integers and consider the relation R defined by xRy if and only
if the difference x y is even. Thus, (2, 4) is an element of R, while (3, 2) is not. The relation
R consists of all pairs x, y such that either both x and y are even or both x and y are odd.

Example 1

Let S be a set with four elements, S= a, b, c, d . The Cartesian product S×S consists of
16 ordered pairs:

S×S= a, a , . . . , a, d , b, a , . . . , d, a , . . . , d, d

A relation on S consists of some subset of these sixteen ordered pairs. One such
example is a relation with three elements, R= a, c , a, d , b, d . We have aRc, aRd, and
bRd, and for no other pair i and j is it true that iRj.

Example 3

Let S be the set of all real numbers and let R be the set of all ordered pairs x, y such that
x≥ y. Note that 5, 3 is an element of R, but 3, 5 is not. Since the Cartesian product S×S
consists of all ordered pairs of real numbers, it can be represented geometrically by the
points in the plane. Any relation on S then corresponds to some subset of the plane.
Fig. 7.1 is a graphical representation of this relation R.

y

x

R

FIGURE 7.1 The shaded region R consists of
all pairs x, y of real numbers such that x≥ y.
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Example 9

Let S be the set of all ordered pairs of real numbers. Define a relation x, y R x′, y′ if and
only if x< x′ or (x= x′ and y< y′). For example, we have 3, 20 R 5, 11 and 3, 20 R 3, 21 .
This relation is called the lexicographic or dictionary order.

Example 4

Let S be the set of all people in Georgia, and let R be the relation defined by xRy if and only
if x knows y.

Example 5

Let S be the set of all people in the U.S. Navy, and let R be the relation defined by xRy if and
only if y must obey an order given by x.

Example 6

Let S be the set of all automobiles in Honest Harry’s Used Car Lot. Define a relation xRy if
and only if x costs more than y.

Example 7

Let S be the set of all objects in your attic, and let R be the relation defined by xRy if and
only if x is at least as old as y.

Example 8

Let S be the set of all words in the English language, and let R be the relation defined by xRy
if and only if x precedes y in the dictionary.

Example 10

Let S be the set of all courses offered by your college, and let R be the relation xRy if and
only if you like course x at least as much as course y.
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Scientists classify relations by the presence or absence of certain properties. We will
consider here a few of the more important properties.

DEFINITION If S is a set and R is a relation on S, then

1. R is reflexive if xRx for all x in S

2. R is symmetric if xRy always implies yRx

3. R is transitive if xRy and yRz always implies xRz

4. R is connected or total if for every pair of elements x and y in S, either xRy or yRx
or both

Example 3 is reflexive and transitive, but not symmetric. Example 2 is symmetric.
Example 6 is transitive, but neither reflexive or symmetric. Example 4 is probably not
transitive. Examples 3 and 7 are connected, while Examples 1 and 2 are not.

C. Definition of Measurement

This section provides a careful definition of measurement and explores some of its ele-
mentary consequences. By a relational system, we mean a pair α= < S, R> where S is a set
and R is a relation on S. A measure for a relational system α is a function m from S to the
real numbers such that for all x and y in S, xRy if and only if m x ≥m y .

To measure an attribute possessed by a set of objects, people, or events means to find
a measure m that preserves the relation determined by the attribute. The “Basic Repre-
sentation Problem” then is: Which relational systems have measures?

Note first that it is not always possible to find a measure for a given relational system.

The relational system described in Example 12 failed to have a measure essentially
because the relation was not transitive. The reasoning given in the discussion of this example
extends to a more general situation, stated in Theorem 1. We leave the proof as an exercise.

Example 11

Let S be the set of all courses offered by your college, and let R be the relation xRy if and
only if course x is a prerequisite for course y.

Example 12

Let S be the set of three elements x, y, z and let R be the relation x, y , y, z , z, x .
The relational system <S, R> has no measure. Suppose, to the contrary, that there is a
measure m. Since xRy and yRz, we must have m x ≥m y and m y ≥m z . But m x ,
m y , and m z are real numbers so it follows that m x ≥m z . Since m is a measure, the
definition implies that xRz or x, z is an element of R. The ordered pair x, z , however, does
not belong to R. The assumption that <S, R> has a measure that leads to a contradiction.
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THEOREM 1 If a relational system α= < S, R> has a measure, then R is a tran-
sitive relation.

Theorem 1 says that one necessary condition for a relational system to have a measure
is that the relation be transitive. It is easy to establish a second necessary condition—
namely, the relation must be connected.

THEOREM 2 If the relational system α= < S, R> has a measure, then R is a
connected relation.

Proof If x and y are any two elements of S, then m x and m y are defined and are
real numbers. It must be true that either m x ≥m y or m y ≥m x . In the former case,
xRy and in the latter, yRx. Thus, either x, y εR or y, x εR. ⋄

Theorems 1 and 2 indicate that the relational systems of Examples 1 and 2 have no
measures associated with them.

III. Simple Measures on Finite Sets
One of the major goals of measurement theory is to establish necessary and sufficient
conditions on relational systems under which various numerical representations can be
constructed. The relation must be connected and transitive if there is to be any hope
of constructing a measure. If the set S is finite, then these two conditions are also sufficient.

THEOREM 3 (FIRST REPRESENTATION THEOREM) Let R be a relation on
a finite set S. There exists a measure on the relational system < S, R> if and only if R is
connected and transitive.

Proof Theorems 1 and 2 establish the “only if ” part of the conclusion. It remains to
show that if R is connected and transitive, then it is always possible to find a measure.
The idea behind the proof is essentially the same as the one used in describing how to
assign numerical weights to a set of objects.

Denote the elements of the set S by xl, x2, . . . , xn. Since the relation R is con-
nected and transitive, we can find, by checking all possible pairs of elements, an ele-
ment xj such that xiRxj for all i≠ j. Define m x to be 0. If there is any element xi so that
xjRxi as well as xiRxj, then define m xj to be 0 also.

At this point, at least one and possibly more elements of S have been assigned
measure 0. Consider the subset S′ of remaining elements. Find an element xk of S′ so
that xmRxk for all xm ≠ xk in S′. Define m xk = 1. If there is any other element xm of S′
with xkRxm as well as xmRxk, then also define m xm = 1.

Repeat the entire process on the set S″ of elements that have not yet been assigned
measures, using a measure of 2 to distinguish one or more special members of S″.
Continue in the indicated manner until each element of S has been assigned a measure.
This will take at most n steps.

It should be clear from the method of construction that m satisfies the definition of
a measure—that is, xRy if and only if m x ≥m y . This completes an outline of a proof
of Theorem 3. ⋄
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We used the finiteness of the set S at several crucial steps in the proof of Theorem 3.
The theorem remains true if S is a countably infinite set, but may fail if S is uncountable; see
the Exercises for the relevant definitions and examples.

Note that the proof of Theorem 3 not only establishes the existence of a measure, but
provides an effective method of constructing one.

The numerical values of a measure function m are sometimes called scale values. In
the proof of Theorem 3, the numbers 0, 1, 2, and so on were suggested for scale values.
There is nothing sacred about this set. We could have used any increasing sequence of real
numbers. The next example amplifies this point.

Such scales are called ordinal scales. Any transformation of the scale numbers that
preserves their original order yields another admissible scale. A transformation that changes
the order in any way would give a set of scale values that is not admissible. The resulting
numbers, m x , would define a function that is not a measure.

If α= < S, R> is a relational system where S is finite and R is connected and
transitive, then the elements of S can be labeled x1, x2, . . . , xn in such a way that if m
is any measure, then m x1 ≤m x2 ≤⋯≤m xn . This is called the standard ordering
on S.

The mathematical model just developed gives a partial solution to the question posed
by the Registrar’s Problem. It is possible to assign numbers to a given student that measure
her happiness about being enrolled in the available courses exactly when the student can
state her relative preference for each pair of courses, provided these preference judgments
are transitive.

By asking the student a series of questions requiring her always to indicate which one
of two courses she prefers to the other, we can construct her preference ordering among all
70 courses.

The reason this model gives only a partial solution to the question originally asked
will become apparent in the next section of this chapter.

Example 13

Let S be the set of three elements x, y, z and R the relation x, y , y, z , x, z . Since
this relation is connected and transitive, the elements can be represented numerically by a
measure, according to Theorem 3. If the procedure outlined in the proof of that theorem is
followed, the result is

m z = 0, m y =1, and m x = 2.

These values are not determined by the measurement model. We could set

m z = − 17, m y = 23, and m x = 10

and still satisfy the definition of a measure. In fact, any three numbers m x , m y , m z
satisfying the inequalities m z <m y <m x would be an admissible set of scale values.
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IV. Perception of Differences
Suppose the measure guaranteed by Theorem 3 is used to determine numerical values rij
measuring the relative happiness of students toward courses. We soon encounter a student
who complains, “I would be almost equally happy with my first as with my second-choice
course, but quite a bit less happy with the third choice. If you assign measures of 3, 2, and 1
to these choices, you are not really representing my feelings in a completely accurate way.”

This type of objection forces us to ask if it is possible to choose a scale of numbers
that will accurately reflect the differences perceived by the student between different pairs
of courses. Let’s consider a mathematical formulation of this question.

Write x, y R z, w to denote the student’s judgment that the difference in happi-
ness between courses z and w does not exceed the difference in happiness between courses x
and y. Note that R defines a relation on the set S× S. This type of relation, which is a subset
of the set S× S × S× S , is called a quaternary relation on S as opposed to a binary
relation, which is a subset of S× S.

The problem is to find a measure that preserves both R and R . More precisely, does
there exist a real-valued function u defined on the set S such that for all x, y, z, w in S,

1. u x ≥ u y if and only if xRy, and

2. u x u y ≥ u z u w if and only if x, y R z, w ?

If u is any real-valued function defined on S, then u induces a connected, transitive
relation on S. Simply define a relation R′ by xR′y if and only if u x ≥ u y . The question can
then be posed this way: Is there a real valued function u on S that preserves R such that the
induced relation R′ is identical to the relation R?

Consider first the simpler question: Is there a real-valued function on S that preserves
the relation R ? Using reasoning similar to that in the proofs of Theorems 1 and 2, one
concludes that an affirmative answer can be expected only when R is connected and
transitive. The exact result is stated in the next theorem.

THEOREM 4 Suppose S is a set and R is a quaternary relation on S. If there is a
real-valued function u defined on S such that

u x − u y ≥ u z − u w if and only if x, y R z, w

then the relation R satisfies four properties:

1. R is connected

2. R is transitive

3. If x, y R z, w , then x, z R y, w

4. If x, y R z, w , then w, z R y, x

Proof If x, y, z, andw are any elements of S, then the real numbers u x u y =A
and u z u w =B must satisfy the inequality A≥B or the inequality B≥A. In the
former case, x, y R z, w , and in the latter, z, w R x, y . Thus, R is connected.
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Next, suppose x, y R z, w and z, w R a, b , where x, y, z, w, a, b are arbi-
trary elements of S. We have the inequalities

u x − u y ≥ u z − u w

and

u z − u w ≥ u a − u b

which imply by transitivity

u x − u y ≥ u a − u b

so that x, y R a, b . This shows that R is transitive.
Condition (3) is satisfied, since if x, y R z, w , then

u x − u y ≥ u z − u w

which implies (by adding like terms to each side of the inequality)

u x − u y − u z + u y ≥ u z − u w − u z + u y

or

u x − u z ≥ u y − u w .

This inequality, in turn, gives x, z R y, w by the hypothesis on u.
The proof that condition (4) holds is left to the reader. ⋄

The four conditions of Theorem 4 are necessary for the existence of the required
measure u, but unlike the case for binary relations, they turn out not to be sufficient. There
exists a finite set and a quaternary relation R on it that satisfies the four conditions but for
which it is not possible to construct a numerical scale preserving R .

In a 1958 paper in the Journal of Symbolic Logic, Dana Scott and Patrick Suppes
prove an even stronger result: if S is a finite set and R is a quaternary relation on S, then
there is no finite list of axioms that provides necessary and sufficient conditions for the
existence of a real-valued function u preserving R .

Scott and Suppes cite an example, essentially drawn from Herman Rubin, that
indicates the kind of difficulty that arises in trying to construct a set of necessary and
sufficient conditions.

Example 14

A student is presented a list of 10 possible courses. By comparing each of the courses with
every other one, her order of preference is determined to be x1, x2, . . . , x10. Eleven pairs of
courses are given special designations: Denote
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V. An Alternative Approach
Since it is not possible to discover or prove a Representation Theorem for arbitrary finite
sets and quaternary relations, we need to try some alternative approaches to the problem of
measurement that will satisfy our complaining student of Section IV. We will present one
alternative in this section and another, called Utility Theory, in Chapter 8.

We obtain the relation R by asking a subject to compare each pair of elements in a set
and to give her judgment on which possesses more of the relevant attribute than the other.
We then obtain the relation R by asking the subject to compare each pair of elements with
every other pair. We can derive a measure u if we restrict ourselves to asking for com-
parisons only between pairs when the pairs represent elements that the subject perceives
as being consecutive elements in the ordering. If the student has ranked the courses in
the order x1, x2, x3, . . . , xn, then we ask for comparisons when the pairs are
x1, x2 , x2, x3 , x3, x4 , . . . , xn 1, xn . Theorem 5 states more carefully the alternative
approach based on this idea.

THEOREM 5 (SECOND REPRESENTATION THEOREM) Let α= < S, R> be
an ordered relational system where S= x1, x2, x3, . . . , xn is the standard ordering on
S. Let T be the set of all ordered pairs xi, xj where j= i+ 1 and let R§ be a relation on
T . Then there is a measure u on α satisfying the following two conditions:

1. u xi ≥ u xj if and only if xi, Rxj.

2. u xi + 1 u xi, ≥ u xj + 1 u xj if and only if xi, xi + 1 R§ xj, xj + 1 exactly when
R§ is connected and transitive.

Proof of Theorem 5 We outline the proof of sufficiency. Since T is finite and R§ is
connected and transitive, there is a positive-valued measurem§ for the system <T , R§ > .
More precisely, m§ is a function from T to the positive real numbers such that

m§ xi, xi 1 ≥m§ xj, xj 1 if and only xi, xi 1 R§ xj, xj 1

x1, x2 by A x7, x8 by E x5, x6 by I

x2, x3 by B x9, x10 by F x1x5 by J

x3, x4 by C x6, x7 by G x6, x10 by K

x4, x5 by D x8, x9 by H

In each pair, the first course is preferred to the second. Suppose the student per-
ceives A, B, C, D as equal in difference to E, F, G, H, respectively, that the difference
between courses in K is greater than the difference in courses in J, and that the difference
in I is greater than the difference in K. Then the relations between the remaining pairs may
be chosen so that any subset of nine courses can be represented by a measure u that
preserves R , but the full set of 10 courses cannot! The interested reader may wish to work
out the details of this example.
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We can then define a measure u as follows:

Let u x1 = 0

u x2 = u x1 +m§ x1, x2 =m§ x1, x2
u x3 = u x2 +m§ x2, x3 =m§ x1, x2 +m§ x2, x3
u x4 = u x3 +m§ x3, x4 =m§ x1, x2 +m§ x2, x3 +m§ x3, x4

u xk = u xk 1 +m§ xk 1, xk =
k− 1

j= 1

m§ xj, xj+ 1

u xn = u xn 1 +m§ xn 1, xn =
n− 1

j= 1

m§ xj, xj+ 1

Since m§ xj, xj + 1 is nonnegative, it follows that

u x1 ≤ u x2 ≤ u x3 ≤ . . . ≤ u xn

so that u preserves the order on S—that is, u preserves the relation R. Furthermore, we have

u xk − u xk− 1 =m§ xk− 1, xk

Thus,

x1, xx+ 1 R§ xj, xj+ 1

if and only if

m§ x1, xi+ 1 ≥m§ xj, xj+ 1

if and only if

u xi+ 1 − u xi ≥ u xj+ 1 − u xj

Hence, the measure u also preserves R§. This completes the proof of sufficiency.
For necessity, see Exercise 29. ⋄

To illustrate the procedure outlined in the proof, suppose we have a set of five ele-
ments with standard order x1, x2, x3, x4, x5. Then the set T consists of four pairs,

T = x1, x2 , x2, x3 , x3, x4 , x4, x5

(see Fig. 7.2).
Suppose that examination of the relation R§ indicates that the standard ordering on T is

x3, x4 , x2, x3 , x4, x5 , x1, x2
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so that m§ x3, x4 ≤m§ x2, x3 ≤m§ x4, x5 ≤m§ x1, x2 for every measure m§ on the sys-
tem <T , R§ > . If scale values of 3, 5, 6, 7 are chosen for m§, then the proof of Theorem 5
defines a measure u by

u x1 = 0, u x2 = 7, u x3 = 12, u x4 = 15, u x5 = 21.

Now the measure u can be used to define a relation Ru on the full set S× S. Define
x, y Ru z, w if and only if u y u x ≥ u w u z . Note that R§ is a subset of Ru, so we
might say that Ru extends R§. As an example, note that since

u x4 − u x2 = 15− 17= 8

while

u x5 − u x4 = 21− 5= 6

we have

x2, x4 Ru x4, x5

The choice of scale values for m§ is, as we have seen earlier, unique only up to an
order-preserving transformation. We might have chosen, with equal validity, scale values of
1, 2, 4, 8. With these values for m§, we obtain a measure v on S with

v x1 = 0, v x2 = 8, v x3 = 10, v x4 = 11, v x5 = 15.

As in the previous paragraph, we may use v to define a relation Rv on S× S. Again, R§

will be a subset of Rv so that Rv also extends R§. Now, however, we will have
v x4 v x2 = 11 8= 3, while v x5 v x4 = 15 11= 4 so that in this extension
x4, x5 Rv x2, x4 .

One set of scale values for m§ is consistent with the student’s judgment that there is a
greater difference between x2 and x4 than between x4 and x5, while a different set of scale
values is not. In this alternative approach, we have agreed not to ask the subject to make
comparisons between pairs x2, x4 and x4, x5 . This example shows that we cannot
determine what judgment the student would make on these pairs solely on the information
we have concerning the pairs in the set T . The Second Representation Theorem (Theo-
rem 5) then gives a measure u that is a better reflection of the student’s attitude toward the
courses in the Winter Term than the ordinal measure m, but it does not completely answer
the objections raised by the student complaint of Section IV.

FIGURE 7.2 The heavy
dots indicate the elements
of S× S. The members of
T are circled.
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VI. Some Historical Notes
Although it has been recognized since ancient times that measurement is essential to any
scientific theory attempting to explain real-world phenomena, no attempt to study the
foundations of measurement theory was made until the 20th century. The German math-
ematician Otto Ludwig Hölder (1859 1937) published an axiomatization for the mea-
surement of mass in 1901. The general theory of measurement in physics was studied quite
extensively by the British physicist Norman Robert Campbell (1880 1949). Campbell
noted that the basic quantities measured by physicists all shared two common properties:

1. Given any two objects, it is always possible to decide which one “possesses” more of
the quantity than the other.

2. There is an operation of combining any two objects that corresponds to the arith-
metical operation of addition.

To cite one example, think of the process of determining lengths of a set of straight,
rigid rods. If we place two rods side by side so that they coincide at one end, we determine
which one is longer by examining the other end and observing which one extends farther.
Thus, Property (1) is satisfied. For Property (2), note that two or more rods can be combined
or concatenated by placing them end-to-end in a straight line. The concept of length dictates
that the length of such a concatenated rod be the sum of the lengths of the component rods.

In the discussion of ordinal scales in this chapter, we saw how to axiomatize Property
(1). Property (2) demands the extra condition that the measure of the concatenation of any
two objects be equal to the sum of the measures of the subjects.

Campbell distinguished between two kinds of measurement, which he called
“intensive” and “extensive.” A measurement is extensive if the underlying quantity satisfies
Properties (1) and (2) and intensive if it satisfies only Property (1). Most psychological and
sociological attributes are intensive while most physical properties are extensive in nature.

Measurement theory is now an active branch of all the mathematical social sciences.
Much of the current work in this area was stimulated by axiomatic studies undertaken by
R. Duncan Luce and Patrick Suppes, beginning in the 1950s.

EXERC I S E S

II. What is Measurement?

Exercises 1 4 refer to the example of Section II.A.

1. Prove that w A =w B if and only if A B and B A.

2. How would you describe, using the “*” notation, the
fact that A is heavier than B?

3. Let A, B, and C be any three objects. Show that the
following statements are all true:
(a) A A.

(b) If A B and B C, then A C.

(c) Either A B or B A, or both.

4. If w A = 1 and two copies of object A exactly balance
one copy of B in a pan balance, does it follow from
the procedure outlined in II.A that w B = 2w A ?
Why? How would you modify the procedure to
ensure this?

5. Determine which of the Examples 1 12 are reflexive,
symmetric, transitive, and connected.

6. Let C be the set of all ordered pairs a, b of real
numbers, Define a, b R c, d if and only if a> c and
b> d. Is this relation transitive? Is it connected?
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7. Find an example of a relation that is symmetric and
transitive, but not reflexive. (Consider the relation “x is
a sibling of y.”)

8. Write xPy if x, y is an element of the relation P and
xPy if x, y is not an element. A connected, transitive
relation is sometimes referred to as a weak order. A
strong order is a relation P that is transitive and
satisfies an “asymmetry” condition: xPy implies yPx.
Show that any weak order is the union of two disjoint
sets, one of which is a strong order and the other is an
equivalence relation. An equivalence relation is a
relation that is reflexive, symmetric, and transitive.

9. Is a strong order always connected? Can it be reflexive?

10. Consider the relations on the set of real numbers
determined by the concepts of > , ≥ , < , ≤ , and ≠ .
Which are weak orders? strong orders? equivalence
relations?

11. Let S be the set of integers. Define a relation R by xRy
if and only if x y is a multiple of 5. Show that R is an
equivalence relation.

12. Let S be the set of all adults in New England. Define a
relation R by xRy if and only if x lives with y. Is R an
equivalence relation?

13. Let R be an equivalence relation on a set S. Split S into
subsets by agreeing to put x and y into the same set
exactly when xRy. Show that this procedure partitions
S into a collection of pairwise disjoint subsets. These
subsets are called equivalence classes. Carry out this
process with the relation of Exercise 11; how many
equivalence classes are there?

14. Can you carry out the process of creating equivalence
classes defined in Exercise 13 if R is not an equiva-
lence relation? Why?

15. A semi-order is a relation P on a set S satisfying the
following three axioms for all x, y, z, w in S:
(i) xPx.

(ii) If xPy and zPw, then either xPw or zPy.

(iii) If xPy and zPw, then either xPw or wPz.
Prove that every semi-order is transitive.

16. Write out a proof for Theorem 1.

III. Simple Measures on Finite Sets

17. At what steps in the proof of Theorem 3 is the finite-
ness of the set S used?

18. Show that procedure of the proof of Theorem 3 leads
to m z = 0, m y = 1, m x = 2 for the relation of
Example 13.

19. For Example 13, show that the function with scale
values m z = 17, m y = 23, m x = 10 also
satisfies the definition of a measure.

20. Let S be the set w, x, y, z and R the relation
w, x , x, y , w, y , w, z , z, y , x, z .

(a) Show that R is connected and transitive.

(b) Find a measure for this relational system.

21. Suppose that m and u are measures on the relational
system < S, R> where S is finite. Show that there is
an order-preserving function f : M→M where
M = m xi such that u xi = f m xi for all i.

22. How many different questions of the type “Do you
prefer course i to course j?” must you ask a student
to construct a preference ordering for a set of 70
courses?

23. Show that the relation of Example 9 is connected and
transitive, but the system < S, R> has no measure in
the sense of Theorem 3.

24. A set S is said to be countably infinite if there is a one-
to-one correspondence between the elements of S and
the set of all positive integers. Show that Theorem 3 is
true if S is a countably infinite set.

25. (a) Let S be the set of all ordered pairs a, b of real
numbers such that a= 0 or 1 and 0≤ b≤ 1. Let R
be the lexicographic order on S. Does the system
< S, R> have a measure?

(b) Let T be the set of all ordered pairs a, b of real
numbers such that a= 0 and b is either between 0
and 1 or between 2 and 3. Let R be the lexico-
graphic order on T . Does the system < T , R>
have a measure?

IV. Perception of Differences

26. Let u be a real-valued function defined on a set S.
Define a relation R′ on S by xR′y if and only if
u x ≥ u y . Show that R′ is necessarily reflexive,
transitive, and connected. Will R′ be symmetric?

27. Prove that condition (4) of Theorem 4 holds.

28. Verify the claims made about Example 14.
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V. An Alternative Approach

29. Prove that the conditions in the statement of Theorem
5 are necessary.

30. Show that scale values of 3, 5, 6, 7 for m§ x3, x4 ,
m§ x3, x4 , m§ x2, x3 , m§ x4, x5 , m§ x1, x2 yield the
measure u x1 = 0, u x2 = 7, u x3 = 12, u x4 = 15,
u x5 = 21.

31. Show that R§ is a subset of both Ru and Rv.

32. List the members of Ru and Rv explicitly.

33. Use scale values of 2, 3, 5, 10 instead of 3, 5, 6, 7 for
the function m§ to determine a measure w. Show that in
the extension Rw you have x2, x4 Rw x4, x5 and
x4, x5 Rw x2, x4 .

34. Concatenation on a set S may be defined formally as a
function f from S× S to S. We denote f x, y by xΔy.

(a) Give an example of a concatenation such that
xΔy≠ yΔx.

(b) A concatenation is said to be associative if
xΔ yΔw = xΔy Δw for all x, y, w in S. If Δ is an
associative concatenation, show that the following
definition is unambiguous: “If n is a positive
integer, then nx is defined to be x concatenated
with itself n times—e.g., 2x= xΔ x.”

35. An extensive measurement system is axiomatically
defined as a triple < S, R, Δ> where S is a set, R is a
connected and transitive relation on S, and Δ is an
associative concatenation on S satisfying the following
four properties:
(i) If xRy, then xΔ z R yΔ z .

(ii) If x R y, then there exists a w in S such that
xR yΔw and yΔw Rx.

(iii) xΔ y R x.

(iv) If xRy, then there is a positive integer n such that
yRnx for all x, y, z in S.
Prove the following Representation Theorem: If

< S, R, Δ> is an extensive measurement system, then
there is a real-valued function m defined on S such that

m x ≤m y if and only if xRy

and

m xΔy =m x +m y for all x and y in S

36. Show that the function m guaranteed by the theorem in
Exercise 35 is unique up to multiplication by a positive
constant.

37. Show that the ordinary conceptions of length and
weight satisfy the axioms of an extensive measurement
system.

SUGGES T ED PRO J ECTS

1. A quasi-measure on a relational system < S, R> is a
real-valued function m defined on S such that
m x ≥m y if xRy. We do not require that xRy
whenever m x ≥m y . What are necessary and suffi-
cient conditions for the existence of quasi-measures?
What are the analogues of the Representation Theo-
rems presented in this chapter for quasi-measures?
Identify some real-world quasi-measures.

2. Find necessary and sufficient conditions on a relation
defined on an infinite set that will guarantee the exis-
tence of a measure in the sense of Theorem 3. Keep in
mind Exercises 23 25.

3. It has been argued that in many situations, observed
equality relations may not be transitive. A person may
judge rod x to be as long as rod y, which in turn is
judged as long as rod z; yet x may be judged longer
than z. Such judgments arise whenever the differences
between x and y and between y and z are too small to

be noticed. The combined difference, however, may be
sufficiently large to make a difference between x and z
noticeable. The classic example is a sequence of cups
of coffee each containing one more grain of sugar than
the previous cup. An observer could probably detect
no difference in sweetness between two adjacent cups.
If “equally sweet” is a transitive relation, then we
would have to conclude that a cup with no sugar in it is
as sweet as one in which 10 teaspoons of sugar have
been dissolved!

To handle such situations, R. Duncan Luce
introduced the idea of a semi-order as the type of
relation to capture the notion of strict preference (see
Exercise 15). If P is a semi-order, then an indifference
relation I can be defined by xIy if and only if neither
xPy nor yPx. Show that I is reflexive and symmetric,
but not necessarily transitive. Prove the following
Representation Theorem: If P is a semi-order on a
finite set S, then there is a real-valued function f
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defined on S and a positive number δ such that for all x
and y in S,

f x > g y + δ if and only if xPy.

The constant δ may be interpreted as a single
“just noticeable difference” unit. Is this Representation
Theorem true for infinite sets?

4. Some mathematical psychologists have investigated
attributes that appear to have a property somewhat
analogous to a physical concatenation operation. This
is the property that for each pair of objects x and y,
there is a third object that lies “halfway” between x and
y in terms of possession of the attribute under study.
For example, a subject may be presented with two

tones of different loudness and asked to adjust a var-
iable tone until its subjective intensity “bisects” the
loudness of the given pair.

A bisection system is a triple < S, R, B> where
R is a connected, transitive relation on a set S, and B,
the bisection operation, is a function from S× S to S.
The element B x, y is interpreted as the subject
“midpoint” between x and y.

Find a reasonable set of axioms on the function
B that guarantees the existence of a real-valued scale f
defined on S that preserves the relation R and such that
the scale value assigned to the “midpoint” is a
weighted average of the scale values of the
“endpoints.”

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
8

Introduction to Utility Theory

Some reckon time by stars,
And some by hours;

Some measure days by Dreams,
And some by flowers;
My heart alone records
My days and hours.

—Madison Cawein

I. Introduction
This chapter continues the axiomatic discussion, begun in Chapter 7, of certain aspects of
measurement theory. We consider again the problem that motivated the development of the
material in the preceding chapter from a new point of view. The problem is to construct a
numerical measurement of “happiness”; in particular, to assign numbers that measure how
happy a particular student would be if she were assigned various different courses by the
college’s registrar.

The point of view of this chapter is called utility theory. The theory dates back at least
200 years to a time when nobles of the French court asked mathematicians for advice on
how to gamble. Quite a rich theory has been developed, and various aspects of it have been
tested experimentally in situations requiring decision making with incomplete knowledge.

Consider the set S of possible choices of courses to which the student might be
assigned. Using the mechanisms of Chapter 7, or some other scheme, it is determined that
the student prefers course x over course y and course y over course z. Utility theory aims to
assign numerical weights to these preferences.

Suppose we offer the student a choice: she may have course y, her intermediate
choice, or she may flip a coin. If the coin comes up heads, she gets course x, while if it
comes up tails, she gets course z. Which option does she prefer: the certainty of y or the
gamble between x and z?

If the coin is weighted so that it always comes up heads, then she will certainly always
prefer the gamble: there is a certainty that she will receive her first choice. If the coin is
weighted so that it always lands with tails showing, then she will forego the gamble and take
course y.

Suppose the coin is an honest one, so that the likelihood of winning x on the flip is the
same as winning z. What can we say if the student prefers course y to a gamble with an
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honest coin? We should be able to deduce that she perceives the difference in happiness
between x and y to be less than the difference between y and z. (Why?)

The theory of utility is based on the assumption that there is a way of weighting the
coin so that the student has no preference between the gamble and the certainty. This ideal
weight can then be translated into a measure of happiness about the course y.

The remainder of this chapter develops a mathematical model reflecting the ideas of
this previous paragraph.

II. Gambles
In developing utility theory, it is convenient to introduce two binary relations on the set S,
one based on strict preference P and one on indifference I .

DEFINITION If S is a set and P is a binary relation on S, define the indifference
relation xIy for any pair of elements x and y of S if and only if neither xPy nor yPx.

The first theorem indicates why this is an important relation.

THEOREM 1 Suppose u is a real-valued function defined on S such that u x > u y
if and only if xPy. Then the following conditions hold:

1. Given any two elements x and y of S, exactly one of three possibilities is true: xPy yPx, or xIy.

2. P is transitive.

3. I is reflexive, symmetric, and transitive.

4. If xPy and yIz, then xPz.

5. If xIy and yPz, then xPz.

Proof of Theorem 1 The proof depends upon the elementary-order properties of the
real numbers and is similar in spirit to the proofs studied in Chapter 7. We prove
condition (4) here; we leave the other properties as an exercise for the reader.

Suppose then that xPy and yIz. Consider the numbers u y and u z . If
u y > u z , then we would have yPz, while if u z > u y , we must have zPy. Since
neither yPz nor zPy, we must have u y = u z . But xPy gives u x > u y and hence
u x > u z . Thus, xPz. ⋄

We come now to the crucial definition for utility theory.

DEFINITION Let x and y be any two elements of a set S and let p be a number,
0≤ p≤ 1. Then the symbol px+ 1 p y represents the gamble, or lottery, that has two
possible outcomes, x and y, with probabilities p and 1 p, respectively.

The phrase “probability” p may be interpreted as meaning roughly that if the gamble
is repeated a very large number of times, we may expect outcome x to occur about 100p
percent of the time. For example, think of the symbol .25x+ .75y as representing the gamble
of flipping a coin that has been weighted so that it turns up heads (outcome x), on the
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average, 25% of the time. Alternatively, imagine a coin that comes up tails three times as
often as heads, but has no predictable pattern.

The gamble 1x+ 0y is simply denoted as x. Gambles with three or more possible
outcomes may also be defined. The symbol px+ qy+ 1 p q z would represent a
gamble with three possible outcomes, x, y, and z, having probabilities p, q, 1 p q,
respectively, where p and q are nonnegative numbers whose sum is at most 1.

It is also possible to consider gambles in which one of the possible outcomes is itself a
gamble. Suppose, for example, you are offered the following proposition.

Flip a coin. If it comes up heads, you receive a new automobile (outcome x). If it
comes up tails, then you roll a die. If the die shows a “3,” you win a radio (outcome y);
otherwise you lose $10,000 (outcome z).

Assuming that the coin and the die are “honest,” this compound gamble can be
represented as

1
2
x+

1
2

1
6
y+

5
6
z

If this particular gamble were repeated a large number of times, say 12,000, what
should happen? The coin should turn up heads about 6,000 times and tails 6,000 times. For
the 6,000 rolls of the die, we should see a “3” about 1,000 times and one of the other five
numbers about 5,000 times. Thus, we should expect x to be the outcome about 12 of the time,
y about 1

12 of the time, and z about 5
12 of the time. This means that the gamble should be

equivalent to a gamble with three outcomes x, y, z, having respective probabilities of 1
2,

1
12,

and 5
12 —that is, the gamble

1
2
x+

1
2

1
6
y+

5
6
z

is equivalent to the gamble

1
2
x+

1
12

y+
5
12

z

Since the two gambles are equivalent, any reasonable person should be indifferent if offered
a choice between them. There is no reason to prefer one of the gambles to the other.

III. Axioms of Utility Theory
A utility measure on a set S is determined by establishing preferences among the elements of
the set of all gambles with outcomes in S. Some of these preferences will necessarily
be dictated by the preference and indifference relations, P and I, which hold among
the elements of S. For example, if the student prefers course x to y, then she should prefer the
gamble .7x+ .3y to the gamble .7y+ .3x, since the preferred outcome is more likely in
the first gamble than in the second.

Utility theory assumes that there are binary relations P and I on the set of gambles
with outcomes in S that are consistent with the already established preference and
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indifference relations on S, satisfy the conditions (1) (5) of Theorem 1, and also satisfy
some additional reasonable axioms.

The first three axioms simply assert that the student should be indifferent if offered a
choice between essentially equivalent gambles. Formally, these axioms look like the
following.

For all x, y, z in S and all real numbers p, 0≤ p≤ 1,

AXIOM 1 px+ 1− p y I 1− p y+ px .

AXIOM 2 px+ 1− p qy+ 1− q z I px+ 1− p qy+ 1− p 1− q z where q is any number
0≤ q≤ 1.

AXIOM 3 px+ 1− p x Ix.

Consider now two gambles: .3x+ .7z and .3y+ .7z. In both gambles, outcome z has
probability 7

10 and the other outcome has probability 3
10. Which gamble would the student

prefer? Clearly it should depend on her preference between outcomes x and y. If she prefers
x to y, then she should prefer the first gamble to the second and if she is indifferent between
x and y, then there is no reason for her to prefer one gamble over the other. This example
indicates that two additional axioms are reasonable.

AXIOM 4 If xPy, then for any p> 0, px+ 1− p z P py+ 1− p z .

AXIOM 5 If xIy, then for any p, px+ 1− p z I py+ 1− p z .

To see how these axioms fit together, suppose that the student prefers course x to
course z. Then if she is offered two different gambles with x and z as the outcomes, she
should prefer the gamble in which there is a greater likelihood of outcome x. Axioms 1 5
enable us to prove this result.

THEOREM 2 If xPy and p and q are numbers with 0< q< p< 1, then
px+ 1− p y P qx+ 1− q y .

Proof of Theorem 2 Since 0< q< p< 1, we have 0< p− q< 1− q, and by Axiom 3,

yI
p− q

1− q
y+

1− p

1− q
y

Axiom 4 gives

p− q

1− q
x+

1− p

1− q
y P

p− q

1− q
y+

1− p

1− q
y

Let z denote the gamble

z=
p− q

1− q
x+

1− p

1− q
y
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so that we have, using condition (4) of Theorem 1, zPy. The gamble px+ 1 p y
is equivalent to the gamble qx+ 1 q z so that

px+ 1 p y I qx+ 1 q z

Using Axiom 4 again, we have qx+ 1 q z P qx+ 1 q y . Transitivity of P
completes the proof. ⋄

We will define a utility measure on the set of all gambles with outcomes in S in such a
way that the measure of one gamble will be greater than the measure of another exactly
when the first gamble is preferred to the second. The measures will be identical if there is
indifference between the gambles.

To establish the existence of such a measure, we require one additional axiom. Con-
sider the gamble px+ 1 p z. If p= 0, then this gamble is equivalent to the certainty of
outcome z, while if p= 1, then the gamble is identified with the outcome x. It seems rea-
sonable that a slight change in the value of p should result only in a small change in the utility
measure of the gamble. Thus, as p varies continuously from 0 to 1, the utility measure of
px+ 1 p z should vary continuously from the measure of z to the measure of x. If y is
some outcome whose measure lies between the measure of z and the measure of x, then the
intermediate value theorem of elementary calculus would assert that there is at least one value
of p for which the measure of y is equal to the measure of px+ 1 p z. (See Fig. 8.1.)

The final axiom captures this idea in terms of the preference and indifference
relations:

AXIOM 6 If x, y and z are elements of S with xPy and yPz, there is at least one number p,
0≤ p≤ 1, such that px+ 1− p z Iy.

Axiom 6 asserts that there is always some gamble that is indifferent to the certainty of
y and whose prescribed outcomes are two events, one preferred to y and one preferred less
than y. In fact, there is exactly one such gamble.

THEOREM 3 If xPy, yPz and px+ 1 p z Iy, then p is unique. Furthermore, p is
strictly between 0 and 1—that is, 0< p< 1.

1Py
P

X

Y

Z

0

FIGURE 8.1 Graph of the measure of the gamble px+ 1 p z as a function of
p. The letters X, Y , Z indicate the measures of the gambles x, y, z, respectively. If
the measure is a continuous function of p and if Y lies between X and Z, then for
some py between 0 and 1, the measure of pyx+ 1 py z should be Y .
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Proof of Theorem 3 If p= 0, then the gamble px+ 1 p z is equivalent to the
outcome z and we would have zIy, which violates the assumption that yPz. A similar
argument shows that p cannot be equal to 1.

Now let q be any number between 0 and 1 that is not equal to p, but such that
qx+ 1 q z Iy. The transitivity of I implies that

qx+ 1 q z I px+ 1 p z

This indifference, however, contradicts Theorem 2. ⋄

IV. Existence and Uniqueness of Utility
A. Existence

The axioms and theorems of Section III provide the ammunition to state and prove a
representation theorem for utility functions. Compare Theorem 4 below with Theorems 3
and 5 of Chapter 7.

THEOREM 4 (THIRD REPRESENTATION THEOREM) There is a real-valued
function u defined on S such that

1. u x > u y if and only if xPy, and

2. u px+ 1 p y = pu x + 1 p u y for every pair of elements x and y of S and every real
number p, 0≤ p≤ 1.

Proof of Theorem 4 Suppose first that xIy for all x and y in S. In this case, let u x = 0
for all elements x of S. It is a triviality that (1) and (2) are satisfied. If there is not
complete indifference, then find some pair of elements x1 and x0 in S with x1 P x0.
Define u x0 = 0 and u x1 = 1. Now let x be any other element in S. There are five
possibilities to consider:

a. xIx0

b. xIx1

c. x1Px and xPx0

d. xPx1

e. x0Px

We show how to define u x in each of these cases. See Fig. 8.2. ⋄
In this manner, we define u x for each element x of S. It must be shown that this

function satisfies conditions (1) and (2) in the statement of the theorem. Toward this end, let
x and y be any two elements in S. There are actually 25 cases to consider, depending on
whether each of the two elements, x and y, lies in cases (a), (b), (c), (d), or (e). In some of the
cases, it is immediate that conditions (1) and (2) must hold. This happens, for example, if
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both elements are indifferent to x0. We will consider in detail a typical nontrivial case: the
one in which both x and y belong to Case (c).

Suppose, then, that u x = p1 and u y = p2. Let A be the gamble p1x1 + 1 p1 x0 and
let B be the gamble p2x1 + 1 p2 x0. By definition of the function u, we have AIx and BIy.

If p1 = p2, A and B are the same gamble, so that AIx and AIy. Since I is a symmetric
and transitive relation, we have xIy.

If p1 > p2, then Theorem 2 (with p= p1, q= p2, x= x1, y= x0) gives APB. Axioms 4
and 5 then imply that xPy.

Similarly, should p1 be less than p2, the application of Theorem 2 and Axioms 4 and 5
yields yPx.

This establishes condition (1).
To prove that condition (2) is true, let p be any real number between 0 and 1. Strictly

speaking, we have not yet defined the utility measure of the gamble px+ 1 p y. On
the other hand, since x1PxPx0 and x1PyPx0, Axiom 4 gives x1P px+ 1 p y P x0.
The same definition of u as above can be used if there is a number p such that
px+ 1 p y I p x1 + 1 p x0 . This is easy to find.

Since AIx and BIy, Axiom 5 yields px+ 1 p y I pA+ 1 p B but

pA+ 1 p B I p p1Ix1 + 1 p x0 + 1 p p2x1 + 1 p2 x0
I pp1 + 1 p p2 x1 + p 1 p1 + 1 p 1 p2 x0
I pp1 + 1 p p2 x1 + I pp1 + 1 p p2 x0

so that p = pp1 + 1 p p2 and u px+ 1 p y = p = pu x + 1 p u y .

x x0 x1

xx0 x1

xx0 x1

x/x1x0

x0Ix x1

Case (e)

Case (d)

Case (c)

Case (b)

Case (a)

FIGURE 8.2 Schematic representation of the five cases in the Third Representation Theorem.

Case (a) If xIx0, let u x = u x0 = 0.
Case (b) If xIx1, let u x = u x1 = 1.
Case (c) If x1Px and xPx0, then there is a unique number p0 < p< 1, such that px1 +

1 p x0 Ix. Define u x = p. Note that u x0 < u x < u x1 .
Case (d) If xPx1, then x1 is intermediate between x0 and x. There is a unique number q, 0< q< 1,

such that qx+ 1 q x0 x1. Define u x = 1 q. Note that u x > 1= u x1 ′.
Case (e) If x0Px, then x0 is intermediate between x and x1 and there is a unique number

r, 0< r< 1, such that rx1 + 1 r x Ix0. Define u x = r r 1 . Note that
u x < 0= u x0 in this case.
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The proofs that conditions (1) and (2) hold in the remaining cases are quite similar
and are left to the reader.

B. Uniqueness of Utility

How much freedom is there in the choice of scale values for the utility function? Recall that
the scale value for a measure on a binary relational system < S, R> was unique up to an
order-preserving transformation. For a utility function, there is less freedom. The scale is
unique up to changes by a positive linear transformation.

DEFINITION A real-valued function L defined on a set T of real numbers is a positive
linear transformation if there are constants α and β where α> 0 such that L t = αt + β for
every element t in T .

As an example, let T be the set of numbers between 0 and 100 and consider the
positive linear transformation L t = 9 5 t+ 32. Then L 0 = 32 and L 100 = 212. This
linear transformation may be familiar to you as the one that converts Celsius temperatures
to Fahrenheit temperatures.

THEOREM 5 If u is a utility function in the sense of Theorem 4 and L is a positive
linear transformation, then the composition u = L° u is also a utility function.

Proof of Theorem 5 Suppose L t = αt+ β so that u x =L u x = αu x + β. Then
the inequality

u x > u y

is the same as

α u x + β> α u y + β

or

α u x > α u y

Since α is positive, we have u x > u y exactly when u x > u y —that is, exactly
when xPy.

Similarly,

pu x + 1 p u y = p αu x + β + 1 p αu y + β

= α pu x + α 1 p u y + p+ 1 p β

= α pu x + 1 p u y + β

= α u px+ 1 p y + β

= u px+ 1 p y

the next to the last equality holding since u satisfies condition (2) of Theorem 4. Thus,
the function u also satisfies condition (2). This completes the proof that u is a utility
function. ⋄
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THEOREM 6 If u and v are utility functions in the sense of Theorem 4, then there is
positive linear transformation L so that v= L° u.

Proof of Theorem 6 Since x1 P x0, we must have v x1 > v x0 so that
v x1 v x0 > 0. Define the positive linear transformation L t = αt+ β by β= v x0
and α= v x1 v x0 .

Now let x be any element of S. There are five cases to be considered, depending
on which of the possibilities (a) (e) of Theorem 4 is true. We give the proof in two
cases:

Case (c) Here x1PxPx0.
If u x = p, then xI px1 + 1 p x0 so that v x = v px1 + 1 p x0 since v

preserves I. Now the right-hand side can be written as

pv x1 + 1 p v x0

since v satisfies condition (2) of Theorem 4. Thus,

v x = pv x1 + 1 p v x0

= p α+ β + 1 p β= pα+ β= αu x + β=L u x

Case (d ) Here xPx1.
If u x = p, set q= 1 p so that x1I qx+ 1 q x0 . Again we have

v x1 = v qx+ 1 q x0 = qv x + 1 q v x0 since v preserves I and satisfies con-
dition (2) of a utility function. Solving for v x , we obtain

v x = 1 q v x1 1 q v x0
= p α+ β 1 q β

= p α+ qβ = pα+ pq β

= pα+ β since pq= 1

= αu x + β=L u x

The remaining three cases are left for the reader to verify. ⋄
The proof of Theorem 6 indicates that once values v x1 and v x0 are chosen for any

two nonindifferent outcomes x1 and x0, the utility function v is completely determined, not
only for the elements of S, but for all gambles with outcomes in S.

V. Classification of Scales
Scales that are invariant under positive linear transformations are called interval scales.
Recall that a scale that is invariant under monotone transformations, such as that given in
the First Representation Theorem of Chapter 7, was called an ordinal scale. The idea
of classifying scales and measurement functions by the types of transformations that
preserve the underlying binary relations is due to the American psychologist Stanley
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Smith Stevens (1906 1973). In his papers, dating from 1946, Stevens isolates five major
types of scales: nominal, ordinal, interval, ratio, and absolute. We list these in order of
increasing restrictions on the type of transformation permitted.

Nominal scales are invariant under all one-to-one transformations and are used when
the basic empirical observation to be measured is the determination of equality; a standard
example is the assignment of numbers to the jerseys of football players on a team: two
different players wear two different numbers. As we have seen, we employ the ordinal
scale when the empirical operation is the determination of “greater or less.”

Interval scales reflect the operation of determining ratios of differences. The mea-
surement of temperature is a good example of an interval scale measurement. The Fahr-
enheit and Celsius scales are positive linear transformations of each other. As we have seen,
the transformation L t = 9 5 t+ 32 converts Celsius to Fahrenheit. Conversely, the
transformation L t = 5 9 t 5 9 32 converts Fahrenheit to Celsius.

Ratio scales are those invariant under similarity transformations—that is, functions of
the form S t = αt where α is a positive constant. The underlying empirical observation here
is the determination of ratios and is exemplified by the measurement of length, weight,
density, loudness, and pitch. Thus, it makes sense to say that one rod is twice as long as
another, while it does not make sense to assert that one body of water is twice as hot as
another.

In the absolute scale, only the trivial identity transformation is permitted. Counting,
interpreted as an act of measurement, is an example of an absolute scale.

Of the three Representation Theorems, the final one, involving the idea of a utility
function and an interval scale, gives the most information about how a subject assesses a set
of objects for the degree to which a certain attribute is present. To find out whether the
student prefers course x to course y, it is only necessary to compare the numbers u x and
u y . Furthermore, the utility function predicts how the student would rate the differences
between pairs of courses.

To see how this is done, suppose the student’s ordering of courses is x, y, z, w so that
u x < u y < u z < u w . Offer the student two gambles:

.5x+ .5w and .5y+ .5z.

If the student prefers the first gamble to the second, then

u .5x+ .5w > u .5y+ .5z

so that

.5u x + .5u w > .5u y + .5u z

or

u x + u w > u y + u z

implying that

u w u z > u y u x
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Thus, the student perceives the difference between z and w to be greater than the
difference between x and y. Should the student prefer the second gamble to the first, we can
make the opposite conclusion.

VI. Interpersonal Comparison of Utility
Suppose the approach of utility theory is used to formulate the Registrar’s Problem of
Chapter 7. Determine for each student numerical scale values measuring that student’s
satisfaction with the courses being offered. One further refinement is necessary before we
try to solve the Registrar’s Problem.

Examine a very simple example. Suppose every student except Bob and Fred has
been assigned to some course. There are two enrollment slots left, one in a course on
Russian Literature and one in a class called Presidential Campaigning. Utility values for
these students and courses are given in Table 8.1.

Which student should be assigned to which course? There are only two possibilities
available. If Bob is assigned to Russian Literature and Fred to Presidential Campaigning,
then adding the corresponding utilities gives 50+ 1.7= 51.7, whereas if Fred is enrolled in
the literature course and Bob in the other one, we have 1.6+ 70= 71.6.

It seems that the second assignment increases the total satisfaction of the student body
more than the first. Recall, however, that the scale values for a utility function are unique
only up to a linear transformation. If each of Fred’s scale values is multiplied by 300, say,
his preferences are still preserved. The resulting scale values are indicated in Table 8.2.

With these values, the first assignment (Bob in Russian Literature, Fred in Presidential
Campaigning) increases satisfaction by 50+ 510= 560, while the alternative assignment
increases total happiness by only 70+ 480= 550. Now the first assignment seems better.

This example shows that the particular choices of scale values affect in a crucial way
the solution of the Registrar’s Problem. There is no clear, unambiguous solution to the
problem, because there is as yet no single absolute scale against which to measure the
utilities of different individuals. Difficulties arise because the given information does not
indicate whether Bob’s rating a course with 70 is a particularly high or particularly low
rating for him. A similar comment holds for Fred’s ratings. It makes a great difference in the
assignment of courses if Bob’s highest rating for a course is a 700 or if it is only a 75. There
are, however, several ways of attempting to avoid the indicated difficulty. One way is to
construct an absolute scale that forces the interpersonal comparison of utilities.

Table 8.1

Bob Fred

Russian Literature 50 1.6

Presidential Campaigning 70 1.7

Table 8.2

Bob Fred

Russian Literature 50 480

Presidential Campaigning 70 510
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Suppose that the lowest rating a student gives to any course is A and the highest rating
is B. Then the linear transformation

L t =
1

B−A
t−

A

B−A

has the property that L A = 0, L B = 1, and 0≤L t ≤ 1 for all t, A≤ t≤B. Thus, if a
student’s utility function is bounded above and below by numbers B and A, respectively, it
is possible to rescale his utility measure so that all the scale values lie between 0 and 1. A
measure of 70 will be rescaled closer to 1 if the highest rating is a 75 than it will be if the
highest rating is a 700.

Continuing with the example, suppose all Bob’s original scale values lie between 0
and 100. Then A= 0, B= 100, and the required positive linear transformation is
LB t = t 100. If Fred’s original choice of scale values ran between − 1 and 2, then the
normalizing transformation is

LF t =
1

2− − 1
t−

− 1
2− − 1

=
t + 1
3

These transformations give LB 50 = .5, LB 70 = .7, LF 1.6 = .866, and
LF 1.7 = .9. The normalized scale values are also indicated in Table 8.3.

With these values, the first assignment results in an increase of satisfaction of
.5+ .9= 1.4 while the second assignment gives .7+ .866= 1.566. The second assignment is
preferred to the first if all scales are normalized to lie between 0 and 1. In formulating the
Registrar’s Problem, we will always choose the numbers rij to be such normalized utility
measurements.

This normalization—whichmakes possible an interpersonal comparison of utilities—is
possible whenever all individuals in the group being studied have original bounded utility
functions. Will utility measures necessarily be bounded? The Third Representation Theorem
makes no restriction on the size of the set S. It may be finite or infinite. If the domain of a
utility function is a finite set S (this occurs quite frequently in applications such as the
Registrar’s Problem), then the scale values will certainly be bounded. Even in the case that S
is finite, however, the set of all gambles with outcomes in S will be infinite. The utility
measure has as its domain the infinite set of gambles. There are also many instances in which
it is necessary or convenient to assume that S is infinite. In such cases, there are no mathe-
matical grounds for concluding that the utility function will necessarily be bounded.
Sometimes there are empirical considerations for concluding that utility must be bounded.

Consider, for example, a game with an infinite number of possible outcomes, some
desirable and others not. A player in the game wants to construct a utility scale that
measures the value to him of each of the outcomes. In his doctoral dissertation at Princeton
University, John R. Isbell developed a theory of cooperative games that is predicated on the
assumption that such a utility scale will always be bounded. “Introspection convinces the

Table 8.3

Bob Fred

Russian Literature .5 .866

Presidential Campaigning .7 .9
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present author firmly,” he wrote, “that there is no prospect so desirable as to be worth an
even bet of his life. He who claims a utility space unbounded above must in principle stand
ready to bet his life at any odds provided the price is right.”

To illustrate Isbell’s argument more precisely, suppose the utility scale is unbounded
above. This means that given any number M, then there exists some possible outcome z
with u z >M. Consider, then, the two events

x: you win $10,000

and

y: your head is chopped off.

Each of these outcomes is assigned a utility, u x and u y . Let M be the number
10u x 9u y and let z be an outcome with u z >M.

Since u z > 10u x 9u y , we have u z + 9u y > 10u x or .1u z + .9u y > u x .
This last inequality implies that the gamble .1z+ .9y is preferred to the outcome x. The
conclusion: there is some outcome so good that you are willing to give up a sure chance of
winning $10,000 to take a gamble of winning that outcome when there is a 90 percent
chance that you will lose the gamble and, with it, your head. Isbell would argue that such an
outcome is inconceivable.

One can construct a similar argument that “proves” that the utility scale is also bounded
below. It should be noted that not all utility theorists accept the validity of such arguments.

VII. Historical and Biographical Notes
A. Utility Theory

Utility theory traces its ancestry back to the efforts of economists and mathematicians to
develop an applicable theory of how a rational person ought to behave in the face of
uncertainty and how, in fact, such a person does act. It was thought for a time that in
economic situations people would act to maximize the expected value of money that would
accrue to them. Thus, the gamble of winning $10 if a fair coin lands heads and winning
nothing if it lands tails shows an expected value of

1
2

$10 +
1
2

$0 = $5.

The rational man, under such a theory, should behave toward this gamble as if it were
worth $5.

It eventually became apparent that there are many instances when this idea is not
applicable. Daniel Bernoulli (1700 1782), a member of the illustrious Swiss family that
produced eight mathematicians in three generations, presents one: “Let us suppose a pauper
happens to acquire a lottery ticket by which he may with equal probability win either
nothing or 20,000 ducats. Will he have to evaluate the worth of the ticket as 10,000 ducats;
and would he be acting foolishly, if he sold it for 9,000 ducats?”

In a paper written in 1790, Bernoulli explored the idea that the utility of money—not
its actual value—is what people attempt to maximize. He argued that the utility of a fixed
amount of money was different for a pauper than for a rich man. A single dollar is more
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precious to the poor man than to the millionaire; the poor man would feel the loss of a dollar
more than the rich man. The difference in the utilities of $10 and $11 is greater, Bernoulli
believed, than the difference in the utilities of $1,000 and $1,001. In general, a fixed
increase in cash results in an ever smaller increase in utility as the basic cash wealth to
which the increase is applied is made larger. In mathematical terms, this says that the graph
of utility as a function of money is concave. See Fig. 8.3.

B. John Von Neumann and Oskar Morgenstern

“In John von Neumann’s death on February 8, 1957, the world of mathematics lost a most
original, penetrating, and versatile mind. Science suffered the loss of a universal intellect and a
unique interpreter of mathematics, who could bring the latest (and develop latent) applications
of its methods to bear on problems of physics, astronomy, biology, and the new technology.”

Money

Utility

FIGURE 8.3 A possible graph of utility of money as a function of amount of money. Each increase in
money increases utility, so the function is monotonically increasing. Fixed increases in money bring
smaller increases in utility as money increases. Thus, the rate of change of utility is negative and the
graph of function must be concave down.

Pu
bl

ic
 d

om
ai

n

John Von Neumann

Pu
bl

ic
 d

om
ai

n

Oskar Morgenstern
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These are the words of the noted mathematician Stanislaw M. Ulam, and they express a
judgment of Von Neumann universally shared by mathematicians and scientists who know
his work. Von Neumann made important contributions to quantum physics, meteorology,
the development of the atomic bomb, the theory and applications of high-speed computing
machines, and to economics through the theory of games of strategy. He also made a
number of outstanding discoveries in pure mathematics in the areas of measure and ergodic
theory, continuous geometry, operator theory, topological groups, logic, and set theory.

Von Neumann was born in Budapest, Hungary, on December 28, 1903, and was the
eldest son of a prosperous banker. His brilliant mind was revealed early. It is said that at the
age of 6 he could divide two eight-digit numbers in his head, by age 8 he had mastered
calculus, and by age 12 he was reading and understanding advanced books on function
theory. His first published paper was written when he was 17, and the definition of ordinal
number he created at age 20 is the one that is now universally used by mathematicians.

During the years 1922 1926, Von Neumann was registered as a student of mathe-
matics at the University of Budapest but spent most of his time at the Eidgenossiche
Technische Hochshule in Zurich, studying chemistry at the urging of his family who were
doubtful of the financial future of a mathematician. Von Neumann was awarded his doc-
torate in mathematics from Budapest at about the same time he received his diploma in
chemical engineering in Zurich.

Von Neumann first came to the United States in 1930 as a visiting lecturer at Princeton
University. He became a professor there the next year and served on the faculty until 1933.
In that year, the famous Institute for Advanced Study was founded. Among the first six
professors given lifetime appointments in the Institute’s School of Mathematics were Albert
Einstein and John Von Neumann.

For most of the rest of the 1930s, Von Neumann’s work was concentrated on pure
mathematics. In 1940, however, there was a sharp break in his scientific work. As Paul
Halmos describes it, “Until then he was a topflight pure mathematician who understood
physics; after that he was an applied mathematician who remembered his pure work.”

From 1940 until his death, Von Neumann served as a consultant to the Los Alamos
Scientific Laboratory, the Naval Ordinance Laboratory, the Oak Ridge National Laboratory,
and other military and civilian agencies. He was appointed to the Scientific Advisory Board
of the Air Force and served as a member of the U.S. Atomic Energy Commission.

The technological development of the last generation that has had the greatest impact
on society has been the high-speed electronic computer. Here, too, John Von Neumann
played a critical role as a pioneer. He formulated the methods of translating a set
of procedures into a language of instructions for a computing machine, made important
contributions to the engineering of the first computers, and analyzed the question of whether
machines could successfully imitate randomness or become self-reproducing automata.

Game theory as a model for the study of cooperation and competition has as its
foundation a paper of Von Neumann written in 1928. His interest in this area was rekindled
when the Austrian economist Oskar Morgenstern came to Princeton. Their intensive col-
laboration in the early years of World War II produced the 600-page Theory of Games and
Economic Behavior. See Chapter 16 for a fuller treat of game theory.

Prior to Von Neumann and Morgenstern, mathematical economics had relied heavily
on the techniques of mathematical physics and a rather shaky analogy between mechanics
and economics. Von Neumann’s innovations were to introduce the mathematical tools of
axiomatization, convexity and combinatorics, and the fresh viewpoint of analyzing
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economic problems as games of strategy. The book also sparked new research into utility
theory by mathematicians, economists, and psychologists. In reviewing the book shortly
after its publication, A. H. Copeland wrote, “Posterity may regard this book as one of the
major scientific achievements of the first half of the twentieth century.”

The May 1958 issue of the Bulletin of the American Mathematical Society is
devoted to a tribute to John Von Neumann and his work. In their essay on his
contributions to the theory of games and mathematical economics, H. W. Kuhn and
A. W. Tucker conclude,

By his example and through his accomplishments he opened a broad new channel of two-way
communication between mathematics and the social sciences. These sciences were fortunate
indeed that one of the most creative mathematicians of the twentieth century concerned himself
with some of their fundamental problems and constructed strikingly imaginative and stimu-
lating models with which to attack their problems quantitatively. At the same time, mathematics
received a vital infusion of fresh ideas and methods that will continue to be highly productive
for many years to come . . . . There is a great challenge for other mathematicians to follow his
lead in grappling with complex systems in many areas of the sciences where mathematics has
not yet penetrated deeply.

During the 1930s hundreds of prominent German and Austrian scholars fled their
native lands to escape the growing oppression of the Nazi movement. Among this group of
exiles—which included Von Neumann, Einstein, and Sigmund Freud—was the economist
Oskar Morgenstern.

Morgenstern was born in Goerlitz in the German state of Silesia on January 24, 1902.
His roots in Germany were well established; one of his ancestors had been a professor of
canon law in Leipzig and published a book of sermons in 1508. Morgenstern’s father was a
poor businessman, and his mother was the illegitimate granddaughter of Emperor Frederick
III of Germany. Morgenstern received his secondary and university education in Vienna,
earning a doctorate from the University of Vienna in 1925. He returned to the university as
a faculty member 4 years later after an extended period of study in London, Paris, and Rome
and at Harvard and Columbia Universities in the United States. For nearly a decade, he
taught economics in Vienna, edited an academic journal, conducted research, and advised
various state agencies. He was the director of the Austrian Institute for Business Cycle
Research and served as a consultant to the Austrian National Bank and the Ministry of
Commerce. In 1936 he was named a member of the Committee of Statistical Experts of the
League of Nations, a position he held until the League was replaced by the United Nations
in 1945, and a position from which he helped author a study on Economic Stability in the
Postwar World.

Morgenstern came to the United States permanently in 1938 when he began a long
association with Princeton University. He served on the faculty for 32 years, directed the
university’s Econometric Research Program and was co-editor of the Princeton Series on
Mathematical Economics. He advised the Atomic Energy Commission, the White House,
NASA, Congress, and the Rand Corporation. Upon retirement from Princeton in 1970, he
accepted a position as professor of economics at New York University. Morgenstern died of
cancer at his home in Princeton on July 26, 1977.

Although best known for his collaboration with Von Neumann on game theory,
Morgenstern also made many contributions to the theory of business cycles, monetary
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policy, international trade, mathematical economics, econometrics, problems of defense
strategy, and statistical decision theory. In addition to numerous technical articles and
books, he wrote many essays and reviews for such general circulation magazines as For-
tune, Scientific American, New York Times Magazine, and Encounter.

In an article published in Fortune, Morgenstern issued a warning about the uncritical
acceptance of imperfect statistics in business, politics, and economics. This essay is highly
recommended reading for mathematical modelers who need to construct and test their
models from real-world data. In it, Morgenstern notes,

Although the natural sciences—sometimes called the “exact” sciences—have been concerned
with the accuracy of measurements and observations from their earliest beginnings, they nev-
ertheless suffered a great crisis when it became clear that absolute precision and certainty of
important kinds of observations were impossible to achieve in principle. At least all sources of
error that occur in the natural sciences also occur in the social sciences: or, in other words, the
statistical problems of the social sciences cannot possibly be less serious than those of the natural
sciences. But the social sciences pay far less attention to errors than the physical. This is
undoubtedly one of the reasons why the social sciences have had a rather uncertain development.1

1Oskar Morgenstern, “Qui numerare incipit errare incipit,” Fortune (October 1963), pp. 142 144, 173 174, 178 180.

EXERC I S E S

I. Introduction

1. Why is it reasonable to conclude that the student sees a
greater difference between x and y than between y and
z if she prefers y to an even gamble between x and z?

II. Gambles

2. Show that Theorem 1 implies that xIy if and only if
u x = u y .

3. Prove condition (1) of Theorem 1.

4. Prove condition (2) of Theorem 1.

5. Prove condition (3) of Theorem 1.

6. Prove condition (5) of Theorem 1.

7. Let p and q be numbers between 0 and 1. Show that the
compound gamble px+ 1 p qy+ 1 q z is
equivalent to the gamble with three outcomes
px+ 1 p qy+ 1 p 1 q z.

III. Axioms of Utility Theory

8. Do Axioms 1 6 seem reasonable to you? If not, which
ones would you modify? How would you test the
validity of these axioms experimentally?

9. Does Axiom 5 follow from Axiom 4 and the other
assumptions about gambles?

10. In the proof of Theorem 2, it is claimed that the gamble
px+ 1 p y is equivalent to the gamble qx+ 1 q z.
Why is this true?

11. Suppose a student prefers x to y and y to z and indicates
that her difference in happiness between x and y is the
same as the difference between y and z. Can you show
that she is indifferent between the outcome y and the
gamble .5x+ .5z?

IV. Existence and Uniqueness of Utility

12. If S is a finite set of outcomes, show that the proof of
Theorem 4 can be considerably simplified.

13. Suppose S is an infinite set where x0 is the least pre-
ferred outcome and x1 the most preferred one. Discuss
how the proof of Theorem 4 can be simplified.

14. Show that the uniqueness of p promised in Theorem 3
is essential to the establishment of a utility function.

15. Show that conditions (1) and (2) of Theorem 4 hold in
each of the following cases:
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(a) x and y are in Case (d).

(b) x and y are in Case (e).

(c) x is in Case (d), y is in Case (c).

(d) x is in Case (c), y is in Case (e).

16. Consider an alternative proof of Theorem 4 that proceeds
as follows: Define a utility function u whose domain is S
in the same manner as the given proof. Then define the
utility of any gamble, px+ 1 p y, with outcomes x
and y in S, as u px+ 1 p y = pu x + 1 p u y .
What remains to be proved? Complete the proof.

17. Let T be the set T = 0, 1, 2 and let L be the function
L 0 = − 17, L 1 = 23, and L 2 = 10. Is L a posi-
tive linear transformation?

18. Suppose L is a positive linear transformation on a set
T . If s and t are distinct elements of T ,

(a) Show that L s ≠ L t .

(b) If L s = a and L t = b, determine α and β.

19. Verify that Theorem 6 is true in Cases (a), (b), and (e).

20. A student prefers x to y and y to z and finds that
yI .3x+ .7z . Construct a utility function consistent
with the given information.

21. Suppose a student prefers x to y, y to z, and z to w.
Furthermore, yI .4x+ .6z , yI .3x+ .7w , and
zI .5y+ .5w . Can you construct a utility function
consistent with these observations?

22. If Alexander’s utility measures for tuna fish, ham-
burger, and peanut butter are 60, 48, and 30, respec-
tively, find the gamble with outcomes of peanut butter
and tuna fish that he finds indifferent to hamburger.

V. Classification of Scales

23. In their textbook on mathematical psychology,
Coombs, Dawes, and Tversky discuss the problem of
measurement on a set when, in addition to stating a
preference order, you are also able to order differences

between alternatives with respect to preferences. They
note that “an admissible transformation in this case
must preserve not only the order of the scale values but
the order of differences between scale values.” They
then claim that only positive linear transformations
preserve the ordering of intervals for any set of objects.
Is this true? Can you prove it?

24. In his work on measurement theory, Campbell (see
Chapter 7) claimed that only extensive properties can
be measured on an interval scale. Since most psycho-
logical and sociological properties are intensive, he
believed that interval measurement is not possible in
these social sciences. Is this argument valid? Is tem-
perature an extensive property?

VI. Interpersonal Comparison of Utility

25. Solve the Registrar’s Problem if there are three stu-
dents (Ann, Joan, and Kathy), three courses (Plate
Tectonics, Computer Methods, and Relativity Theory)
and each course is restricted to one student. The
original utility scales (not normalized) are given in the
following table:

Ann Joan Kathy

Plate Tectonics 3 120 −6

Computer Methods 7 90 1.2

Relativity Theory 2 40 5.6

26. Solve the Registrar’s Problem of Exercise 25 if each
course is open to two students.

27. What would the details of Isbell’s argument look like if
he were trying to convince you that there is a lower
bound to the nonnormalized utility function?

28. Let G be the set of all gambles with outcomes in the
finite set S. Prove that any utility function defined on G
is necessarily bounded.

SUGGESTED PRO J ECTS

1. Is there any explanation, in terms of utility, for why
people buy insurance policies and lottery tickets?

2. The St. Petersburg Paradox is often cited as an argument
that the utility of money is not directly proportional to the
amount of money. The paradox concerns a game in
which you toss a coin until it lands tails. If this happens

for the first time on the nth toss you receive $2n. How
much money are you willing to pay to enter this game?
Show that the expected value of yourwinnings is infinite.
Thus, you should be willing to pay any amount to enter.

The “paradox” arises because most people would
not pay very much to enter. If you pay $100 to enter the
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game and flip “tails” on the first toss, you lose $98! The
reluctance of people to enter the game if it has a high
entrance fee is due, some believe, to the fact that the
value of money is not proportional to the money.

As one way to resolve the paradox, it has been
suggested that the utility of money obeys the relation
u x = x, where x is the number of dollars. Show that
if this is true, then the expected utility of the St.
Petersburg gamble is finite.

Show, however, that the payoffs in the coin toss
can be arranged in such a fashion (say$22n insteadof $2n)
so that even if u x = x, the expected utility is infinite.

Does there exist some function u x , that
increases monotonically with x but for which the St.
Petersburg game always has finite expected utility, no
matter how the payoffs are arranged? Show that the
“paradox” disappears if expected utility is finite and
we assume that the rational person acts to maximize
expected utility. Is this last assumption valid?

3. Not all social scientists have accepted the axioms of
utility theory presented in this chapter. Maurice Allais,
Nobel Economics prize winner in 1988, presents a pair
of decision situations each involving two gambles. In
situation 1, you must choose between

Gamble 1 $500,000with probability 1
and

Gamble 2 $2,500,000with probability .1

$500,000with probability .89

$0with probability .01

In situation II, the choice is between

Gamble 3 $500,000with probability .11

$0with probability .89
and

Gamble 4 $2,500,000with probability .1

$0with probability .9

Allais argues that most people prefer gamble 1
to gamble 2 and gamble 4 to gamble 3. Show that these
preferences, under the axioms of utility theory, lead to
the inconsistent inequalities

(a) .11 u .$500,000 > .lu $2,500,000 + .01u 0

and

(b) .1u $2,500,000 + .01u $0 > .11u $500,000 .

Do you agree with Allais’s preferences? If, after
some reflection, you still do, you may wish to read
how Leonard Savage reacts to them. What other
objections could be raised about the relevance of utility
theory as a model of the real world?

4. Almost all theories of social justice and many impor-
tant societal decisions are based on an implicit com-
parison of interpersonal utilities. The suggested
normalization of Section VI is an explicit way of
constructing such comparisons. What principles of
equality and fairness are consistent with such a nor-
malization? What principles are violated? Investigate
other ways of determining such comparisons.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
9

Equilibrium in an Exchange
Economy

The basis of political economy is non-interference. The only safe rule is

found in the self-adjusting meter of demand and supply. Do not leg-

islate. Meddle, and you snap the sinews with your sumptuary laws.

—Ralph Waldo Emerson

I. Introduction
We continue our exploration of axiomatic models in this chapter by investigating a model
of an exchange economy in which consumers trade goods and services with each other.
Each consumer enters the marketplace with an original endowment of commodities and
personal desires for more or less of the available items that may be traded.

The principal questions we ask are

• Can we satisfy each consumer’s demand with the available supplies?

• What assumptions do we need to make about consumers, goods, and services to
guarantee there is some mechanism for matching supply and demand?

• Are simple natural assumptions about consumers inconsistent with each other so that
no such mechanism is possible?

We begin with the simplest interesting case: an economy with two consumers and
two commodities. We then turn to a more realistic situation with a large but unspecified
number of consumers and commodities. We make some reasonable assumptions about the
consumers and then investigate whether these assumptions are consistent and whether they
necessarily lead to a set of prices for the commodities under which the available supply is
adequate for the total demand of each good or service.

II. A Two-Person Economy with Two Commodities
Zoey and Sydney are sisters who both like chocolate and macaroni, but to different degrees.
Each initially has a certain amount of both products. They are interested in swapping some
of their initial holdings to get a different mixture of chocolate and macaroni.

Suppose that the sisters together have 4 pounds of chocolate and 5 pounds of macaroni.
If at any moment Zoey has c pounds of chocolate and m pounds of macaroni, then 0≤ c≤ 4
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and 0≤m≤ 5. Sydney would have 4− c pounds of chocolate and 5−m pounds of macaroni.
Are there redistributions of the chocolate and macaroni on which they both can agree?

A. The Edgeworth Box

We can represent Zoey’s bundle of goods by a point P in a rectangle of width 4 and height
5. The point would have coordinates c, m in a standard Cartesian coordinate system.
Fig. 9.1 shows such a rectangle.

Assuming that the chocolate andmacaroni can be divided into arbitrarily small amounts,
then any point in this rectangle represents a possible allocation to Zoey. Note that the point
Q c′, m′ in Fig. 9.1 has c′> c andm<m′. PointQ represents an allocation to Zoey where she
gets more chocolate, but less macaroni than she gets at point P. From Zoey’s perspective
horizontalmoves to the right and verticalmoves up represent increases in each of the two goods.

We don’t want to slight Sydney in this treatment. We can use a device called an
Edgeworth box to represent the allocations to both sisters. The Edgeworth box is a rect-
angular diagram with Zoey’s origin in the lower left corner and Sydney’s origin on the
diagonally opposite corner. The width of the box is the total amount of chocolate, and the
height is the total amount of the macaroni. For Sydney, horizontal shifts to the left represent
greater amounts of chocolate and vertical shifts downward mean more macaroni.

The Irish political economist and philosopher Francis Ysidro Edgeworth
(1845 1926) introduced this type of diagram in his 1881 bookMathematical Psychics: An
Essay on the Application of Mathematics to the Moral Sciences. In 1906, Vilfredo Pareto
(1848 1923) developed the idea further inManual of Political Economy. Many economics
text use the term Edgeworth-Bowley box in honor of Arthur Bowley (1869 1957) who
popularized the representation in The Mathematical Groundwork of Economics (1924).

P (c, m)

Q (c’, m’)

Zoey

Chocolate

0 1
0

1

2

3

4

5

2 3 4

Macaroni

FIGURE 9.1 Possible allocations of chocolate and
macaroni to Zoey.
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Examining Fig. 9.2, it seems reasonable to assume that Zoey would prefer the
allocation R to P since she gets more chocolate c″> c and more macaroni m″>m . This
assumption has a formal name: consumer insatiability; informally, it means “more is bet-
ter.” Each consumer prefers any allocation that gives her more of every commodity.
[Sydney, we may guess, has the opposite preference between R and P since she winds up
with less of both foods.]

B. Indifference Curves

What about Zoey’s preference between P andQ? Allocation P gives her more macaroni, but
less chocolate than Q. It’s not obvious which one she would like better. We would have to
ask her. Our second assumption about consumers is that they have preferences. If we ask
them to choose between a pair of allocations, they can each tell us which they prefer to the
other or if they are indifferent between the two.

We will use notation P∼Q to indicate indifference between the allocations P and Q.
For each allocation P, there will be a set of other feasible allocations all of which Zoey likes
equally. The collection of points corresponding to this set is called an indifference curve. In
Fig. 9.3, we indicate several indifference curves for Zoey. Zoey is indifferent among all the
allocations on I1 and indifferent among all the allocations on I3, but she prefers any
allocation on I1 to any on I3 (by the principle of consumer insatiability).

In the context of Chapter 8 on utility, it’s useful to think that Zoey has a utility
function on the set of feasible allocations so that she prefers one allocation to another if it

FIGURE 9.2 An Edge-
worth box showing
possible allocations of
chocolate and macaroni
to Zoey and Sydney.

P (c, m)

R (c”, m”)
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3

4
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Zoey
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0 1
0

1
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3

4

5

2 3 4

Macaroni Macaroni
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has a higher utility value and is indifferent if the utility of one equals the utility of the other.
The indifference curves are then the level curves of her utility function.

If, for example, Zoey’s utility for x pounds of chocolate and y pounds of macaroni is

given by uZoey x, y = x+1 2y3, then her indifference curves would have the form

y= a

x+1 2
3 for different constants a. The utility she would attach to an allocation of 1

pound of chocolate and 4 pounds of macaroni would be uZoey 1, 4 = 256. The corresponding

indifference curve would be y=
256

x+1 2
3 .

Since the total amounts of chocolate and macaroni are fixed, any allocation c, m to
Zoey determines the allocation 4− c, 5−m to Sydney. For convenience, we will usually
write equations for the indifference curves for both sisters in terms of the allocation to Zoey.

Sydney also has preferences among the different possible distributions of chocolate
and macaroni. Fig. 9.4 shows some possible indifference curves for Sydney. For each of
these curves, any point to the southwest (below and to the left of the curve) is a better
distribution for Sydney. Any point to the northeast (above and to the right of the curve) is a
worse allocation, exactly the opposite scenario to the one for Zoey.

C. The Bargaining Space

What advice can we give the two sisters about negotiating a redistribution of their original
amounts that will please both of them? Suppose, for example, that Zoey comes to the
bargaining table with an initial holding (called her endowment) of 1 pound of chocolate and
4 pounds of macaroni. The first step is to construct the indifference curve ZI for Zoey that
runs through this point and the corresponding indifference curve SI for Sydney. Fig. 9.5
shows such a possible pair of such indifference curves intersecting at (1, 4).

0
0

1

2

3

4

5

1 2 3
Chocolate

Macaroni

4

11

12

13

14

FIGURE 9.3 Some indifference curves for Zoey.
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Now Zoey is not going to agree to any redistribution of chocolate and macaroni that
gives her less utility than she gets from her initial endowment. She can simply refuse to
negotiate and still maintain that utility. She might be willing, however, to consider
accepting an allocation at some other point on the indifference curve ZI, and she would
prefer any suggested redistribution that was above this curve.

FIGURE 9.4 Some
indifference curves
for Sydney.
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Sydney is in a similar situation; she won’t take seriously any offer that represents a
point above her indifference curve SI. She could agree on another point along SI and would
be eager to move to a point below that curve. Both would accept a distribution of chocolate
and macaroni represented by a point in the area between the curves ZI and SI—that is, a
point that lies above ZI and below SI. Fig. 9.5 shows a typical situation.

We see in Fig. 9.5 that there is an entire region of points inside our rectangle that lie
about Zoey’s indifference curve and below Sydney’s. We might call this region the bar-
gaining space. Both Zoey and Sydney prefer any point in this bargaining space to the status
quo point (1, 4).

One such point is (2, 3) representing an allocation of 2 pounds of chocolate to each
sister, 3 pounds of macaroni to Zoey and 2 pounds to Sydney. Again, we can graph the
indifference curves for both of them that pass through this point. Fig. 9.6 shows that again
there is some region between the two curves; the bargaining space has shrunk, but there are
still possible distributions that would make each of our consumers even happier than the
(2, 3) mixture.

D. Pareto Solutions

Eventually Zoey and Sydney may hit upon redistribution such as (3, 2.16) where the
indifference curves intersect at a single point S where the curves are tangent to one another as
in Fig. 9.7. At such a point, neither sister can do better without making the distribution worse
for the other. An allocation of resources in which it is impossible to make any one person
better off without making at least one other person worse off is variously called Pareto-
optimal, Pareto-efficient, or a Pareto solution. Pareto solutions, then, have a form of equi-
librium or stability. Zoey knows she cannot get Sydney to agree to any other allocation that
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FIGURE 9.6 The indifference curves for Zoey and Sydney
passing through the (2, 3) allocation to Zoey. The shaded
area represents the bargaining space.
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makes Zoey happier because that would make Sydney less happy. Sydney realizes the
counterpart; she can’t hope that Zoey would accept a distribution of greater utility to Sydney.

There may in fact be more than one such point. In our example, let x and y represent
the number of pounds of chocolate and macaroni Zoey would receive in a proposed division

of the foods. Suppose the indifference curves for Zoey has the form y= f x =
a

1+ x
, while

the indifference curve for Sydney has the equation y= g x = b−
x3

50
(here a and b are

constants). Consider the allocation to Zoey that has x= 3 and y= 2.16. Then we have

2.16=
a

1+ 3
=

a

4
, so a= 8.64. We also have 2.16= b−

33

50
= b−

27
50

= b− .54, and hence

b= 2.7. The derivative of Sydney’s indifference curve is g x =
− 3x2

50
; thus, the slope of

the tangent line to Sydney’s curve at x= 3 is −
27
50

= − .54. Since Zoey’s curve has

f x =
8.64
1+ x

, we have f x = −
8.64

1+x 2. Thus, f 3 = −
8.64

1+3 2 = −
8.64
16

= − .54. We

see that Zoey’s and Sydney’s indifference curves have equal tangents at the intersection
point (3, 2.16). Thus, (3, 2.16) is a Pareto solution for this example.

In this case, any point in the bargaining space along the curve y= h x =
3x2 1+ x

50
is a

possible Pareto solution. To see why this claim is true, suppose k, c is a point in the bar-

gaining space where c= h k =
3k2 1+ k

50
. Since Sydney’s indifference curves have the

form y= g x = b−
x3

50
, we need to choose b= c+

k3

50
=

3k2 1+ k

50
+

k3

50
=

3k2 + 4k3

50
to

FIGURE 9.7 A Pareto
solution for Zoey and
Sydney. The indifference
curves are tangent to each
other at their point of
intersection.
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single out the indifference curve passing through the point k, c . The slope of the tangent line

to Sydney’s indifference curve at this point is g k =
− 3k2

50
. The indifference curve for Zoey

that passes through k, c must have c=
3k2 1+ k

50
= f k =

a

1+ k
. Thus, a=

3k2 1+k 2

50
and

so f x = −
a

1+x 2 = −
3k2 1+k 2

50 1+x 2 . Hence, the slope of the tangent line to Zoey’s indif-

ference curve at the point k, c is f k = −
a

1+k 2 = −
3k2 1+k 2

50 1+k 2 = −
3k2

50
. Thus, the

indifference curves for Zoey and Sydney are tangent to each other at the point of intersection.
The points in the bargaining space along the curve y= h x is called the contract curve.

How did we find a formula for the contract curve in this case? Let h x be our unknown
contract curve function with k, c = k, h k a point in the bargaining space. We need both
indifference curves to pass through this pointwith identical derivatives. ForZoey’s curve to pass

through k, h k , we need h k =
a

1+ k
so a= 1+ k h k , which gives f x =

1+ k h k

1+ x
.

This relationship implies f x = −
1+ k h k

1+x 2 so that f k = −
1+ k h k

1+k 2 =
− h k

1+ k
. The

derivative for Sydney’s curve will be g k =
− 3k2

50
. For the derivatives to be equal, we need

− 3k2

50
=

− h k

1+ k
, and hence, we see that h k =

3k2 1+ k

50
.

Fig. 9.8 shows a pair of indifference curves for Zoey and Sydney, the solution space
and the contract curve. We can expect that the two sisters will eventually agree to accept
some point along the contract curve, but we cannot predict which one.
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for Zoey and Sydney.

II. A Two-Person Economy with Two Commodities 275



In this case, with two consumers and two commodities, we were able to find some
allocations to our pair of economic agents, which have stable equilibrium properties. Our
analysis was based on knowing specific equations for their indifference curves. It is cer-
tainly not clear that given two arbitrary utility functions whether there will always be at least
one point where the curves are tangent to each other.

Rather than pursue here models and theorems about two-person, two-commodity
economies, we will look at the question of equilibrium in an exchange economy where
there are potentially millions of consumers and thousands of commodities.

III. An m-Person Economy
Let’s move on to a more realistic economy with many agents and a larger number of
commodities. We will restrict ourselves, however, to an exchange economy—that is, one in
which there is no production. The basic question we address is whether there is a set of
prices under which total demand equals total supply for all commodities.

Here is a summary view of the model: the total supply is owned by individual
consumers who are willing to exchange some of their initial holdings of commodities
(endowments) for commodities owned by others. Under a particular set of prices, each
consumer has a certain wealth, the value of the consumer’s endowment. That wealth will
determine what the consumer can afford—so each consumer has a budget constraint.
Working with that constraint, we assume that the consumer has, most desired collection of
commodities, called a commodity bundle. Summing all these commodity bundles, we can
determine how the total demand compares with the total supply.

We need to define many of the terms in this summary and discuss how we can
represent them mathematically. These include:

Commodities Total Supply Prices

Consumers Endowment Wealth

Budget Constraint Demand Function Total Demand

A. Commodities

A commodity is a good or service whose characteristics are precisely and completely
described, including the location at which it is available and the time at which it is
available. Goods include such items as food staples, household furnishings, auto-
mobiles, and other tangible items. Services refer to less tangible items that still satisfy
individuals’ wants and needs, such as medical operations, apartment rentals, haircuts,
and the like.

We assume that each commodity has a unit of measurement but is arbitrarily divisible
into smaller quantities. A complete description of a commodity would include its location
and time of availability. Thus, a DVD of a particular film available in Chicago at noon next
Monday would be considered as a different commodity than a DVD of the same film
available at the same spot in Chicago two months from now. There will be a large, but finite
number of commodities that we label 1, 2, 3, . . . , h, . . . , l. The price for one unit of
commodity h is a nonnegative number we will denote as ph.

By a consumption vector or commodity bundle, we mean a vector x=
x1, x2, . . . , xh, . . . , xl where xh is the number of units of commodity h. Note that a com-
modity bundle is a point in l-dimensional space all of whose components are nonnegative.
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We denote the set of all commodity bundles asℝℓ
+ . If p= p1, p2, . . . , ph, . . . , pl is a vector

of unit prices, then the cost of a consumption vector x is the dot product of p and x:

p1x1 + p2x2 +⋯+ pℓxℓ =
ℓ

h=1

phxh = p • x

B. Consumers, Endowments, and Demand Functions

We turn now to a mathematical representation of our economic agents, who we will call
consumers. For our model, a consumer is characterized by an endowment and a demand
function. We assume that each consumer has an initial vector e= e1, e2, . . . , eℓ of
resources (called his endowment), which is what he owns of each commodity before any
exchange. Each component eh of an endowment vector is a nonnegative number. Hence,
each endowment vector e is also a vector in ℝℓ

+ .
For a fixed set of prices p, the consumer’s wealth w is the value of his or her

endowment: w=p • e= e1p1 +⋯+ ehph +⋯+ elpl .
We imagine the consumers trading their initial bundle of goods and services (their

endowments) for other commodity bundles either by a direct swap or, more efficiently,
selling their endowment at the current prices and using the funds to purchase a more desired
consumption vector.

We assume each consumer has a demand function f whose output is that individual’s
most desired consumption bundle. Reality dictates that the consumer’s most wanted con-
sumption vector will depend on his endowment and the prices. The consumer can’t buy a
collection of good and services that costs more than he can afford. His wealth depends in
turn on both prices and endowment.

Mathematically speaking, a consumer’s demand function f is a function whose inputs
are a pair of l-dimensional vectors, p and e, and whose output f p, e is a vector in ℝℓ

+ .
These demand functions may vary from consumer to consumer. Two consumers with
identical wealth, or even identical endowments, may desire very different collections of
goods and services they can afford.

As we have mentioned, each consumer is limited, however, by a budget constraint.
The desired bundle f p, e cannot cost more than the consumer’s wealth under the pre-
vailing prices. In mathematical terms, the consumer can choose any x in ℝℓ

+ such that
p • x≤w= p • e —that is,

p • f p, e ≤ p • e

Example

Suppose l=3 and p= 1, 2, 4 . If three commodity bundles x, y, and z are given as
x= 2, 1, 3 , y= 8, 0, 2 , and z= 5, 1, 1 , then the costs of these vectors are

Cost of x = 1, 2, 4 • 2, 1, 3 = 2+ 2+ 12= 16

Cost of y = 1, 2, 4 • 8, 0, 2 = 8+ 0+ 8= 16

Cost of z = 1, 2, 4 • 5, 1, 1 = 5+ 2+ 4= 11

Observe that while x and y are different bundles, they cost the same amount.

III. An m-Person Economy 277



C. Normalized Prices

So far we have not said anything about what units of currency are used for prices. Suppose that
in the last example, the prices were originally quoted in dollars, but there is an agreement to
switch to nickels. Now every price is inflated by a factor of 20. Something that sold for $2 per
unit suddenly costs 40 nickels. Each consumer’s wealth, however, goes up by the same factor.
Thus, our consumer with endowment e= 10, 20 now has a wealth of 14 10 + 6 20
= 140+ 120= 260 nickels. The budget constraint is all vectors x= x1, x2 such that
14x1 + 6x2 ≤ 260. This inequality, however, is equivalent to 20 .7x1 + .3x2 ≤ 20 13 or
.7x1 + .3x2 ≤ 13. Thus, the budget constraint does not change at all!

The same result holds if we switch from dollars to euros to yens or to any other
currency. Prices and hence wealth are inflated or deflated by the same factor so there is no
change at all in the budget constraint set. We would expect the consumer faced with the
constraint set would make the same choice of a commodity bundle no matter what currency
is used in the marketplace.

We formalize this assumption about consumers as an axiom of homogeneity:

f λp, e = f p, e for all λ> 0

Example

Suppose e= 10, 20 and p= .7, .3 . Then the consumer’s wealth is .7 10 +
.3 20 = 7+6= 13. Then the consumer’s budget constraint set consists of all vectors
x= x1, x2 such that .7x1 + .3x2 ≤ 13.

FIGURE 9.9 A con-
sumer’s budget constraint
in a two-commodity
economy.
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Since we are free to choose the currency unit, we will usually work with normalized
prices—that is, prices that sum to 1. Assuming that at least one unit price is positive, we can
normalize any price vector by dividing each price by the sum of all the prices. As an
example, the price vector q= 1, 4, 3, 2 is normalized by dividing each component by the
sum of the components 1+ 4+ 3+ 2= 10 to obtain p= .1, .4, .3, .2 .

Note that the individual unit prices in the normalized form have the same relative
weights as the original vector; in our example, for instance, the second price in q is 4 times
the first price and twice the fourth price; the same holds true for the normalized vector p.
Thus, we don’t lose any vital information by restricting ourselves to normalized prices.

The set ∏ of all possible normalized price vectors is the set of l-dimensional vectors
whose components are nonnegative numbers summing to 1. More formally,

∏= p p∈ℝℓ
+ and ph = 1

In the simplest case of a two-commodity economy l= 2 , a normalized price vector p
has the form p= p1, p2 where p1 ≥ 0, p2 ≥ 0 and p1 + p2 = 1. Geometrically, the set∏ is the
line segment in the plane joining the points (0, 1) and (1, 0). If l= 3, then∏ is all the points onor
inside equilateral triangle in 3-spacewith vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). See Fig. 9.10.

Our second major assumption (beyond homogeneity) about demand functions is called
consumer insatiability. It simply states that if a consumer can afford to acquire more com-
modities, then he will choose to do so. Faced with choosing between two commodity bundles
x and y both lying in the budget constraint set with xh ≥ yh for all commodities h and xk > yk
for at least one commodity k, the consumer will prefer x to y. The bundle x does more to meet
the consumer’s wants or needs and hence provides more happiness or utility than bundle y.

Consumer insatiability may at first sight seem unreasonable. If I already have enough
milk in a particular bundle x that I can consume before it spoils, why would I want a bundle y
with even more milk even though I can afford y? Recall, however, that two gallons of milk
from my favorite local grocery are considered to be different commodities if they are
available at different times? Thus, I might spend some of my wealth left over after purchasing
x to add to the bundle milk from that grocer that I will pick up next week. As an alternative,
we could consider money in a savings account to be a commodity and “spend” the difference
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FIGURE 9.10 The set of
normalized prices for
economies with two com-
modities (on the left) and
three commodities (on the
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between my wealth and the cost of x as a deposit in the bank. Thus, our more sophisticated
view of a commodity makes consumer insatiability a more plausible assumption.

Geometrically speaking, if bundle x “lies northeast” of bundle y and both are in the
budget constraint set, then our consumer prefers x to y. Recall Fig. 9.2 where Zoey preferred
x= c″, m″ to y= c, m because c''> c and m''>m.

Consumer insatiability leads to the conclusion that the output of a consumer’s
demand function will be a commodity bundle x whose cost under the current prices p will
equal the consumer’s wealth—that is,

p • f p, e =p • e

We will make one more reasonable assumption about consumer demand functions:
the output of the demand function f will not change very much if there are small changes in
prices or endowment. Mathematically, this assumption is the assertion that consumer
demand functions are continuous.

D. Consumer Interaction

We consider now the interaction of m consumers: 1, 2, . . . , i, . . . , m. We have m demand
functions f1, f2, . . . , fm and m endowment vectors e1, e2, . . . , em where ei is the endowment
of consumer i and f i is her demand function.

To find the total available amount of some commodity, we would simply add together
the corresponding component of each of the endowment vectors. The total supply of
commodity 3, for example, would be the sum of the third components of e1, e2, . . . , and em.
Since addition of vectors is defined by adding together corresponding components, the sum
of all the endowment vectors gives us a total supply vector:

Total Supply S=
m

i=1

ei.

The total supply vector S is an element of ℝℓ
+ whose hth component is the total

available amount of commodity h.
In a similar fashion, if we add the desired commodity bundles together we obtain a

total demand vector D, which is also in ℝℓ
+ :

Total DemandD=
m

i=1

f i p, ei

Once we have the total supply and total demand vectors, we can create their difference,
which defines an excess demand function F whose output is the excess demand vector:

Excess DemandF p =
m

i=1

f i p, ei −

m

i=1

ei =
m

i=1

f i p, ei − ei

If the hth component of the excess demand vector is positive, then the overall demand
for commodity h exceeds the total supply. If that component is zero, then we have exactly as
much of this commodity to satisfy everyone’s desires. If the component is negative, then
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there is more supply than demand for that particular good or service. The vector F p is an
l-dimensional vector, which may have a mixture of positive, negative, and zero compo-
nents. We will use the notation F p ≤ 0 to signify that each component of the excess
demand vector is nonpositive (less than or equal to 0).

A price vector p is called an equilibrium price vector if F p ≤ 0. Under equilibrium
prices, there is enough of every commodity to meet or exceed everyone’s demands. A fun-
damental question for us is: Under what conditions does there exist an equilibrium price
vector?

Example

Suppose our economy has l= 3 commodities and m=4 consumers with the following
endowments:

e1 = 2, 1, 8 e2 = 6, 0, 3

e3 = 4, 4, 4 e4 = 2, 5, 4

Then the total supply is (14, 10, 19).

(A) Suppose our prices (before normalization) are given by p= 1, 2, 3 . Then the wealth of
our consumers is given by w= w1, w2, w3, w4 = 28, 15, 24, 24 . Suppose also that the
individual demands under p are

f1 p = 12, 5, 2 f2 p = 2, 5, 1

f3 p = 1, 1, 7 f4 p = 9, 6, 1

so that the total demand vector is (24, 17, 11). Then the excess demand vector is
24, 17, 11 − 14, 10, 19 = 10, 7, − 8 . There is an excess demand for commodity 1 and
for commodity 2, but an abundant supply of commodity 3. Thus, neither p= 1, 2, 3 , nor its
normalized form 1

6 ,
1
3 ,

1
2 are equilibrium prices.

(B) Suppose our prices are q= 5, 0, 4 . The wealth vector is (42, 42, 36, 26). If the
demand vectors under q are:

f1 q = 6, 3, 3 f2 q = 2, 2, 8

f3 q = 2, 0, 13 2 f4 q = 5, 2, 1

then the total demand vector is (14, 8, 19). Then the excess demand vector is
F q = 14, 8, 19 − 14, 10, 19 = 0, − 2, 0 so q is an equilibrium price vector. Note that the
commodity for which we have a surplus (commodity 2) has a price of 0.

(C) Consider a third set of prices r= 3, 8, 5 where the wealth vector becomes (54, 33, 64,
66). If the demand vectors under r are:

f1 r = 3, 0, 9 f2 r = 3, 3, 0

f3 p = 0, 3, 8 f4 p = 7, 6, 3
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We can now state in a simple manner the central questions we hope our model will
address:

1. Do equilibrium prices p exist under our assumptions?

2. What extra assumptions must we make or which assumptions must we weaken to
guarantee the existence of such a price system p?

3. Is such a p unique?

4. How do we find or compute such a p?

E. Walras’s Law

In this section, we will derive an important consequence of our assumption of consumer
insatiability and its implications for equilibrium prices.

Suppose p is any set of prices, equilibrium or not. Consumer insatiability tells us that

p • f i p, ei =p • ei

for each consumer i. Let’s rewrite this equality as

0=p • f i p, ei − p • ei = p • f i p, ei − ei

and then sum these numbers over all our consumers to obtain

0=
m

i=1

0=
m

i=1

p • f i p, ei − ei .

Elementary properties of vector arithmetic and the dot product allow us to rewrite the
right-hand side of this last equation as

0=
m

i=1

p • f i p, ei −ei =p •
m

i=1

f i p, ei − ei =p •F p

where the last equality follows from the definition of the excess demand function.
We have derived an important result called Walras’s Law:

THEOREM 9.1 Walras’s Law For any price vector p, we have p •F p = 0.

This result is named for the French economist Marie Esprit Léon Walras (1834 1910) who
expounded it in several of important books Eléments d’economie politique pure
(1874 1877) and Théorie mathematique de la richesse sociale (1883). The English

then the total demand vector is (14, 10, 19). The excess demand vector is
F r = 14, 10, 19 − 14, 10, 19 = 0, 0, 0 so r is an equilibrium price vector. Here total
supply and total demand are the same for every commodity.
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philosopher John Stuart Mill formulated a similar idea without a mathematical represen-
tation in the 1840s. Note that we can also write Walras’s Law in a more compact form
l

h=1
phFh p = 0.

Walras’s Law has an interesting implication if p is an equilibrium price vector. In this
case F p ≤ 0 so each number Fh p is less than or equal to zero. Since prices are non-
negative, each product phFh p is also less than or equal to 0. But according to Walras’s
Law, the sum of these nonpositive numbers phFh p is 0. Such a sum can only equal 0 if
every term is 0; if any term were negative, the entire sum would be negative.

In particular, if there is a commodity h for which there is an excess supply under an
equilibrium price vector p so that Fh p is negative, we must have ph = 0:

THEOREM 9.2 Under equilibrium prices, the price of a commodity that has an
excess supply must be zero.

IV. Existence of Economic Equilibrium
In this section, we will establish the main result of this chapter: under our assumptions
about consumers, at least one price equilibrium will always exist. We will first present a
proof for the l= 2 case that only uses results from elementary calculus. Then we provide an
argument for the general case that rests on a 20th-century theorem in topology.

We list here the three important assumptions we are making about consumers and
their demand functions f :

1. f is continuous; small changes in p or e result in small changes in x.

2. f λp,e = f p,e for all λ> 0.

3. the consumer is insatiable—that is, for all p and e, we have

p • f p, e = p • e

A. Price Equilibrium in a Two-Commodity Economy

THEOREM 9.3 Equilibrium prices always exist in a two-commodity economy.

Proof We can describe the setΠ of normalized prices in a two-commodity economy as

Π= p p= p1, p2 where p1 ≥ 0, p2 ≥ 0 and p1 + p2 = 1

Consider two special price structures in∏, q= 1,0 and r= 0,1 . If either q or r
is an equilibrium price vector, we are done. So suppose neither one is. Consider q first.
By Walras’s Law,

0= q •F q = q1F1 q + q2F2 q = 1F1 q + 0F2 q =F1 q

Thus, F1 q = 0. Since q is not an equilibrium vector, we must have F2 q > 0. A
similar argument shows that F1 r > 0.
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Since there are only two prices and they sum to 1, the price vector is determined
once we know the price of commodity 1. Thus, we can think of the price vector as a
function of its first component.

Take any price vector p “between” r and q—that is, p = p1, p2 where
0< p1 < 1. Such a p will also have p2 strictly between 0 and 1. Fig. 9.11 shows the
relative positions of r, q, and p . If p turns out to be an equilibrium vector, then we are
done. What can we say if p is not an equilibrium set of prices?

If we apply Walras’s Law to p , we have

0= p •F p = p1F1 p + p2F2 p

Since p1 and p2 are both positive, we conclude that F1 p and F2 p must be of
opposite sign. We may assume, without loss of generality, that F2 p is negative. [In
Exercise 20, you will examine the case that F1 p < 0.] Now we have F2 q > 0 and
F2 p < 0.

As we noted above, in a two-commodity economy, F2 is really a function of the
first component of a price vector. Thus, F2 is a continuous real-valued function on the
closed interval [0, 1]. Since q= 1,0 and p = p1, p2 with 0< p1 < 1, we have
F2 p1 < 0<F2 1 ; we can also think of this inequality as F2 p < 0<F2 q . By the
Intermediate Value Theorem of elementary calculus, there is at least number s1 between
p1 and 1 with F2 s1 = 0. Since s1 determines a price vector s= s1,1− s1 , we have
F2 s = 0.

Now apply Walras’s Law to the price vector s:

0= s •F s = s1F1 s + s2F2 s = s1F1 s + s2 0 = s1F1 s

We have s1F1 s = 0 with s1 strictly positive; hence, F1 s must also be 0. Since
F1 s =F2 s = 0, we have F s = 0. Be definition, s is an equilibrium price vector. We
have shown the existence of equilibrium prices in a two-commodity economy. ⋄

FIGURE 9.11 The relative
position of r, p*, and q*.
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B. Price-Setting Agency

Let’s turn to the more general case of an economy with large numbers of commodities and
consumers. We will demonstrate that our assumptions about our consumers are strong
enough to guarantee the existence of an equilibrium price vector.

Imagine that there is an official Price-Setting agency that is trying to establish an
equilibrium set of prices. The agency might announce a tentative set p of normalized prices
and then poll all the consumers to obtain their desired commodity bundles. The agency
would then compare total demand and total supply for all the commodities in the market.
The agency would expect that an arbitrarily chosen p would result in excess demands for
some goods and services and an oversupply of others.

The agency might then consider revising the prices, hoping to move toward equi-
librium by raising the price on commodities with too great a demand. Suppose that under p,
there is not enough supply of commodity h to meet the total desired by the aggregate of
consumers. Since the endowments are fixed, it makes sense to raise the price of commodity
h by some positive amount δh to lessen the demand. How big should δh be? We need a
number that we know is nonnegative and related to commodity h. One simple answer is to
take δh to be the larger of 0 and Fh p :

δh p =max 0, Fh p =
0 if Fh p ≤ 0

Fh p if Fh p > 0

If we compute such a quantity for each commodity, we can form a vector of price
modifications δ p = δ1 p , δ2 p , . . . , δh p , . . . , δl p and a new price vector p+ δ p .
We need to normalize this vector by dividing each component by the sum of all the
components. Let a=u • p+ δ p where u= 1,1, . . . ,1, . . . ,1 . Finally we define the
transformed prices as

T p = 1 a p+ δ p

Example

Suppose p=
1
6
,
2
6
,
3
6

and F p turns out to be

F p =Demand−Supply= 24,17,11 − 14,10,19 = 10,7,− 8

Then δ1 = 10, δ2 = 7, δ3 = 0 so that the new prices are initially

1
6
+ 10,

2
6
+7,

3
6
+ 0 =

61
6
,
44
6
,
3
6

which sum to
61+ 44+ 3

6
=
108
6

. We normalize by multiplying by
6

108
to obtain

T p =
61
108

,
44
108

,
3

108
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Let’s examine some of the important properties of this transformation T .
First, observe that T is a function from the set ∏ of normalized prices to ∏.
Second, consider what happens if we begin with an equilibrium price vector p. Then

Fh p ≤ 0 for all h. Hence, δh p = 0 for all h and so δ p = 0 and p+ δ p =p. In this case,
a=u • p+ δ p =u • p= 1 so T p = p. The transformation T does not change p.

Third, and perhaps the most critical property is that if T p = p for some price vector
p, then p must be an equilibrium price vector. Here is a proof of this claim: Suppose
T p = p so that p= 1 a p+ δ p . Thus, ap= p+ δ p . Rewrite this equation as
a− 1 p= δ p and take the dot product of each side with F p :

a− 1 p •F p = δ p •F p

Applying Walras’s Law once more, we see that a− 1 p •F p = a− 1 0= 0 so
δ p •F p = 0. We examine this last dot product more carefully:

0= δ p •F p =
l

h=1

δh p Fh p

but note that δh p Fh p is either 0 if Fh p < 0 or Fh p Fh p = Fh p 2 if Fh p > 0. Thus,

each term in the sum
l

h=1
δh p Fh p is nonnegative. Since the sum is 0, it must be that each

term δh p Fh p is 0. If any Fh p > 0, then δh p Fh p = Fh p 2 > 0. Hence, each Fh p
must be less than or equal to 0, which implies that p is an equilibrium price vector.

To summarize our last two results, we have established the following core theorem:

THEOREM 9.4 p is an equilibrium price vector if and only if p is a fixed point of T .

The centrality of fixed points to our question about the existence of equilibrium prices
suggests this concept bears further investigation.

C. Fixed Points

DEFINITION: If f is a function from a set S to S, then an element a of S is called a fixed
point of f if f a = a.

Interpreting the prices in terms of dollars and cents, we see the original prices were
(17¢, 33¢, 50¢) and now are (56¢, 41¢, 3¢). Under p, we had an excess demand of com-
modities 1 and 2 and an excess supply of commodity 3. The transformation T has raised
the prices of the first two commodities, which should lower the demand for them. T has,
however, dramatically lowered the price of the third commodity. We can expect that under
T p , the demand for commodity 3 will increase. It is certainly possible that could be more
demand for commodity 3 under the price vector T p than there is supply. There is no
guarantee then that T p will be an equilibrium set of prices.
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We illustrate the definition with a number of examples:

1. Let f be the function from the real numbers to the real numbers given by f x = x3 − 6.
The number 2 is a fixed-point of this function, since f 2 = 23 − 6= 8− 6= 2.

2. The squaring function, f x = x2, that maps the unit interval [0, 1] into itself has two
fixed-points, 0 and 1, since f 0 = 02 = 0 and f 1 = 12 = 1.

3. The function that adds 1 to a number, f x = x+ 1, maps the real numbers to the real
numbers but has no fixed-point.

4. The identity function, f x = x, on any set S has every point of S as a fixed-point.

5. The function that rotates the unit disk D= x, y x2 + y2 ≤ 1 in the plane coun-
terclockwise through an angle of π 3 has exactly one fixed-point, the origin
O= 0, 0 .

6. The function that rotates the unit circle D= x, y x2 + y2 = 1 in the plane
counterclockwise through an angle of π 3 has no fixed-points.

7. Let T be the function defined on the set ∏ of normalized prices in a two-commodity

economy,which is givenbyT x, y =
3x+ 6y
10

,
7x+ 4y
10

.Thevector
6
13

,
7
13

is afixed-

point forT sinceT
6
13

,
7
13

=
18+ 42
13

10
,
42+ 28
13

10
=

60
13× 10

,
70

13× 10
=

6
13

,
7
13

8. It is not difficult to see that the function T defined by T x, y, z =
y+ 2

x+ y+ z+ 9
,

z+ 3
x+ y+ z+ 9

,
x+ 4

x+ y+ z+ 9
maps the set ∏ of normalized prices in a

three-commodity economy into itself and has a fixed-point
26
111

,
38
111

,
47
111

.

Sometimes it is possible to show that a particular function has a fixed-point without
necessarily being able to compute one. Our next example shows such an instance.

Example

Consider the continuous function on the real numbers given by f x = x101 + 2x− 1. Alge-
braically attempting to find a fixed point would mean solving the equation x101 +2x− 1= x,
which is equivalent to x101 + x−1= 0. We don’t have effective tools for solving a
101st-degree polynomial equation explicitly. However, the function g given by
g x = f x − x= x101 + x− 1 is a continuous function with the property that g 0 = − 1 and
g 1 =1 so by the Intermediate Value Theorem of calculus, there exists an number x
between 0 and 1 with g x = 0 and hence, f x = x .

As another example where the geometry indicates the existence of a fixed
point, consider the functions f x = cos x and f x = x on the interval 0, π 2 . The graphs of the
functions intersect somewhere over the subinterval 3π 16, π 4 . At the point of intersection
x , x we have cos x = x so x is a fixed point for the cosine function. See Fig. 9.12.
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D. Brouwer’s Fixed-Point Theorem

A set S has the fixed-point property if every continuous function f from S into S has at least
one fixed-point. Theorem 9.5 shows that the closed interval [0, 1] has the fixed-point
property. Example 3 above f x = x+ 1 demonstrates that the real line does not have the
fixed-point property.

THEOREM 9.5 If f is a continuous function from the unit interval I = 0, 1 of real
numbers into I, then f has at least one fixed-point. Thus, the unit interval [0, 1] has the
fixed-point property.

Before we examine a formal proof, let’s look at an intuitive graphical argument.
Imagine there is a function f with f 0 > 0 and 0< f 1 < 1 as in Fig. 9.13 where we show
the points A= 0, f 0 and B= 1, f 1 . The graph starts above the line Lwith equation
y= x and ends below this line. If f is continuous, its graph has no holes and displays no
jumps. If you draw such a graph from A to B, you will have to hit the line L at least once.
(Try it!) Any such intersection of L and the graph of f is a fixed-point for f .

We turn now to a more formal argument.

Proof of Theorem 9.5 Note first that f 0 ≥ 0 and f 1 ≤ 1. Define a new function g
on I by g x = f x − x. Then, being the difference of two continuous functions, g is
continuous with g 0 = f 0 − 0≥ 0 and g 1 = f 1 − 1≤ 0. By the Intermediate Value
Theorem, there is a number x in [0, 1] with g x = 0. But g x = 0 means
f x − x = 0 or, equivalently, f x = x —that is, x is a fixed-point for f . ⋄

We can use this theorem about the fixed-point property of [0, 1] to show that in the
two-commodity economy the set ∏ of normalized prices also has the fixed-point

FIGURE 9.12 The cosine
has a fixed point where its
graph crosses the graph of
the identity function.
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property. To accomplish this end, suppose f is an arbitrary continuous function from ∏
to∏. We define two auxiliary functions h from I to∏ and j from∏ to I by the formulas
h x = x, 1− x and j x, y = x. Observe that h∘j is the identity. Note that h and j are
continuous functions so that the composition j∘f ∘h is a continuous function from I to I.
Since I has the fixed-point property, there is a number x between 0 and 1 with
j∘f ∘h x = j f h x = x . Applying h to both sides and using the fact that h∘j is the
identity function on ∏, we have f h x = h∘j f h x = h j f h x = h x and
thus, h x is a fixed-point of f .

In 1920, the Dutch mathematician L. E. J. Brouwer (1881 1966) proved a very
powerful generalization of Theorem 9.5 that implies that the set∏ of normalized prices
for an economy with any number of commodities has the fixed-point property. His
result, known as the Brouwer Fixed-Point Theorem, established a category of sets in all
dimensions that possess the fixed-point property. These sets also include circular disks,
filled-in squares or rectangles, solid cylinders, balls, and their analogues in higher
dimensional spaces. (See Exercises 27 31 for more details.)

Brouwer’s result has some surprising consequences that may cause you to doubt
the theorem’s validity. Take two sheets with maps of the same state or country, one
lying directly above the other. Crumple, without tearing, the top map and drop it onto
other map. The fixed-point theorem asserts there must be at least one spot on the top
map lying directly over the same location on the bottom map.

Going up a dimension, grab a cup of coffee and stir it around. When the stirring is
over, Brouwer’s Theorem claims that there must be some point in the coffee (not
necessarily on the surface), which is in the very same spot it was before you started. If
you attempt to slosh that point out of its original position, then Brouwer says you will
move some other point back into the spot when it began.

The proof of Brouwer’s Theorem is a little too long and complex for us to include
here, but we will show an equivalent result that is a little easier to believe, the No
Retraction Theorem.

0.2

0.4

0.6

0.8

x

1

0
0.2 0.4 0.6 0.8

B

A L
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FIGURE 9.13 The graph of a continuous function f on 0, 1 ,
which contains points above and below the line y= x, must
intersect the line in a fixed point for f .
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There are references to proofs of Brouwer’s Theorem listed in the references.
Perhaps the most accessible one, for students who have studied vector calculus, can be
found in Joel Franklin’s Methods of Mathematical Economics.

DEFINITION: If A is a set and B is a subset of A, a retraction of A onto B is a continuous
function f : A→B such that every point of B is fixed—that is f b = b for all points in B.

Thus, it is possible to retract a solid square onto one of its edges; see Figure 9.14. On
the other hand, it is not possible to retract a disk onto its circular boundary. This result,
called the No Retraction Theorem, is not easy to prove but it is intuitively possible. If there
were such a retraction, we could continuously pull the head of drum onto its rim. This seems
impossible without tearing the drum head at some point which would introduce a dis-
continuity. We will assume that the No Retraction Theorem is true and use it to prove the
Brouwer Fixed-Point Theorem.

THEOREM 9.6 (BROUWER FIXED-POINT THEOREM FOR NORMALIZED
PRICES) In any dimension, the set∏ of normalized prices has the fixed-point property.

In Exercises 29 and 30, you will demonstrate that ∏ has the fixed-point property
if and only if the unit disk has the fixed-point property. More precisely, the unit disk D in
n-dimensional space D1 is the set of all vectors x= x1, x2, . . . , xn such that
x21 + x22 +⋯+ x2n ≤ 1. For n= 1, the unit disk is the line segment − 1, 1 . For n= 2, the unit
disk is all the points on or inside the unit circle in the plane. For n= 3, the unit is a solid ball
of radius 1. The unit disk is the set of all points within 1 unit of the origin. By the unit
sphere, we will mean the set of all points precisely 1 unit from the origin.

Example

Let A be the solid square a, b a, b are in 0, 1 and B the bottom edge
a, 0 a is in 0, 1 . Then f x, y = x, 0 is a retraction of S onto R. The function f is the pro-

jection of square onto its bottom edge.

FIGURE 9.14 Retracting
a solid square onto its
bottom edge.
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Exercise 30 shows that the unit disk in n-dimensional space has the fixed-point
property if and only if the set ∏ of normalized prices in an economy with n+ 1 com-
modities has the fixed-point property. It is a bit easier to work with the unit disk. We can
state the No Retraction Theorem in the following language:

THEOREM 9.7 (NO RETRACTION THEOREM) There is no retraction of the
unit disk onto the unit sphere.

We will now show that the No Retraction Theorem implies Brouwer’s Fixed-
Point Theorem. We need to show that if the No Retraction Theorem is true, then the
Bouwer Fixed-Point Theorem must be true. We will actually proceed with a proof by
contradiction. We begin by assuming that there is some function from D into D with no
fixed-point. We will then use that function to build a retraction from D onto its
boundary sphere C, contradicting the No Retraction Theorem.

Suppose then that f D→D is a continuous function with no fixed-points. Then
for each x in D, f x ≠x, so x and f x are distinct points of D. We can then trace out a
path along the line segment beginning at f x and ending at x. Continue this line
segment until it hits C. Call the point of intersection of C and this line g x . Thus, we
have defined a function g from D into C. Fig. 9.15 illustrates the function g for the two-
dimensional unit disk.

There are four qualitative possibilities depending onwhether or not (a) x is an interior
point ofD or x is belongs toC and (b) f x is an interior point ofD or f x belongs toC. Fig.
9.16 illustrates the possibilities. Note that if x belongs toC, then g x = x whether f x lies
in the interior of D or f x belongs to C. Thus, g is the identity on C.

Finally, note that g is the composition of the continuous function f followed by a
straight line motion, which is also continuous. Hence, g is continuous and provides a
retraction of D onto C, contradicting the No Retraction Theorem.

The No Retraction Theorem and the Brouwer Fixed-Point Theorem are in fact
equivalent to each other. We have just shown that the No Retraction Theorem implies
Brouwer’s result. We now outline an argument that Brouwer Fixed-Point Theorem
implies the No Retraction Theorem. Again, we will use an argument by contradiction.
Suppose the No Retraction Theorem is false and let g be a retraction of D onto C. Let r
be a slight rotation of C about the origin so r has no fixed-points. Then the

x

g(x)

f(x)

FIGURE 9.15 The function g which maps an interior point of the disk to the
boundary.
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composition f = r∘g is a fixed-point free continuous function from D into D, contra-
dicting Brouwer’s Theorem.

E. Existence of Price Equilibrium

We have seen that p is an equilibrium price vector if and only if T p = p where T is the
particular price modifying formula introduced earlier. In other words, p is an equilibrium
price vector exactly when p is a fixed-point for the function T .

Recall that one of our basic assumptions about consumers was that their demand
functions are continuous functions of prices and endowments. We obtain the total demand
by adding up the individual demands of all our consumers, so the total demand is the sum of
continuous functions and hence is continuous. The excess demand function is the difference
of the continuous total demand and the constant vector of endowments. Since constant
functions are also continuous, we find that the excess demand function F is also continuous.
Each component function Fh is also continuous.

It is easy to show that if g is any continuous real valued function, then the maximum
of 0 and g is also continuous. Hence, δh p =maximum 0, Fh p is continuous for each h
as is the operation sending ph to ph + δh p . Therefore, S p = p+ δ p is continuous. It is a
straightforward argument to show then that u • p+ δ p is also a continuous procedure.

Putting all these pieces together, we conclude that our price transformation function T
is continuous. Since T is a continuous function from ∏ into ∏, Brouwer’s Fixed-Point
Theorem tells us that T has at least one fixed-point. Thus, under our assumptions about
consumers and their demand functions, there always exists a price equilibrium, a vector p of
prices under which supply meets or exceeds demands for every single commodity.

We can summarize our findings with the following:

If consumers have insatiable continuous demand functions that depend on prices and
their fixed endowments, then there always exists an equilibrium set of prices that
ensures that total demand will not exceed available supply.

FIGURE 9.16 There are
4 possible relations
between x and f (x): (1)
x and f (x) are both in the
interior of the disk; (2)
x is in the interior, but f (x)
is on the boundary; (3)
Both x and f (x) are on the
boundary, and (4) x is on
the boundary, but f (x) is
in the interior.
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Unlike Arrow’s Theorem of Chapter 6 where a plausible set of axioms proved to be
inconsistent, in this model of price equilibrium, the axioms contain no contradictions and a
powerful mathematical theorem shows that an appropriate set of prices must always exist.

V. Some Remaining Questions
Almost every aspect of the model we have presented has been challenged and revised by
mathematicians and economists who have sought more realistic and useful models of
equilibrium in a dynamic, rapidly shifting economy. The scholarly literature in this vast and
expanding field often makes use of highly sophisticated mathematics well beyond the scope
of this book. We hope we have presented a sufficiently interesting introduction to the topic
that will whet your appetite to learn more. The References on our text’s website can help get
you started.

In this section, we will discuss two troublesome features of our model and indicate
how they have been ameliorated.

First, our approach to showing that there are equilibrium prices in our model relied on
Brouwer’s Fixed-Point Theorem. Many of the proofs of Brouwer’s result, such as our
reduction to the No Retraction Theorem, are proofs by contradiction. The assumption that a
mapping is fixed-point free leads to contradicting another well-established truth. The sit-
uation is bit awkward. We know there are these equilibrium prices, but our proof gives no
indication as to how to find or compute them.

An alternative path would be to find a constructive proof, one that would show us that
an equilibrium price vector exists by actually describing how to locate one. Fortunately,
many scientists have studied the problem of producing an algorithm, a recipe so to speak, to
find equilibrium prices. The pioneer work is Herbert Scarf’s book Computation of Eco-
nomic Equilibria, which first appeared in 1973. Scarf demonstrated how to build a sequence
of price vectors that was guaranteed to converge to an equilibrium. A recent survey of the
field with new results on the computational complexity of finding price equilibria appears in
Ye Du’s 2009 thesis Essays on the Computation of Economic Equilibria and Its
Applications.

Second, let us review first our axioms about consumer behavior. We have assumed
the existence of a demand function from the set of prices to the set of commodities so that,
given the consumer’s endowment e and a vector p of prices, the consumer can tell which
single commodity bundle x is most preferred.

A more realistic assumption is that even if the choice of commodity bundles is limited
to the frontier of the consumer’s budget constraint set, there is still such a vast choice of
affordable bundles that it would be hard to pick out a single one. More likely, there will be
set of possible bundles, all of which have exactly the same appeal to a consumer—that is,
the consumer will be indifferent among the members of this set but prefer any commodity
bundle in the set to any bundle outside the set.

To deal with this possibility, mathematicians have developed an extension to the
classic definition of a function where the output is a single number or vector to outputs that
are collections of objects. We call this extension a set-valued function or a correspondence. If
φ is a correspondence from a set S to S, then for each x in S, φ x is a subset of S.

If f is an ordinary function from S to S, then f is continuous on S if for every x in S,
whenever xn is a sequence of points in S converging to x, the sequence yn = f xn
converges to y= f x . There is a corresponding notion, called upper semicontinuity. The
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assertion that a set valued correspondence φ is upper semicontinuous means that whenever
xn and yn are sequences such that each yn is an element of the set φ xn with xn
converging to x and yn converging to y, then it must be true that y is an element of φ x .

There is an important extension of Brouwer’s Fixed-Point Theorem that allows for a
proof of the existence of price equilibrium where consumers have indifference sets of
commodity bundles. To understand the statement of this generalization, we need one
additional definition, the notion of a convex set in l-dimensional space.

DEFINITION: A set S is convex if whenever x and y are two elements in S, the entire
straight line segment joining x and y lies entirely in S. Fig. 9.17 shows examples of convex
and nonconvex sets.

The Kakutani Fixed-Point Theorem states that if φ S→S is an upper semicontinuous
correspondence where S is a non-empty, convex, closed and bounded l-dimensional set so
that for every x in S, the set φ x is also convex and non-empty, then φ has at least one
fixed-point—that is, there is at least one x in S such that x belongs to φ x .

Kenneth Arrow and Gerard Debreu [1954] used the Kakutani Theorem to establish
existence of a price equilibrium in a model of a competitive economy. In 1950, John F.
Nash employed the theorem in his Ph.D. thesis to prove the existence of certain types of
equilibrium strategies in nonzero sum games; see Chapter 16 for more details.

VI. Historical and Biographical Notes
A. Léon Walras

Léon Walras was born December 16, 1834, in Évreux, France. His Elements of Pure
Economics was one of the earliest comprehensive mathematical analyses of general eco-
nomic equilibrium. Walras was apparently the first to examine the existence of price
equilibrium as the solution of a system of simultaneous equations. Walras’s argument
boiled down to asserting the existence of a solution since there were more unknowns than
equations. Even in the simple case of two linear equations in three unknowns, however, no
solution need exist. When there are a very large collection of nonlinear equations in many

FIGURE 9.17 The shaded
set on the left is convex.
The shaded set on the
right is not convex; there
are points P and Q in that
set such that there are
points not in the set that
belong to the line seg-
ment between P and Q.
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unknowns, it is certainly possible that the equations are mutually inconsistent: no assign-
ment of values to the unknowns can satisfy all the equations.

Walras’s father, the French economist Auguste Walras, encouraged his son to pursue
economics with a special emphasis on mathematics. The younger Walras, like many
children, ignored his father’s advice at first and tried his hand at several different occu-
pations. Initially enrolled as a student in a school of mines, he dropped out to work as a
railway clerk, journalist, bank manager, and lecturer; he even published several romance
novels. Walras eventually took up the study and teaching of economics where he claimed to
have found “pleasures and joys like those that religion provides to the faithful.” Walras
retired in 1902 at age 58 from his professorship of political economy at the University of
Lausanne; he died in Switzerland on January 5, 1910.

Before Walras, economists had made little attempt to show how a whole economy
with many goods fits together and reaches an equilibrium. Walras believed that he could
capture the essence of the problem through a system of equations whose solution would be
an equilibrium. He realized, however, that a real economy might never converge to such an
equilibrium. He posited an artificial market dynamic process he labeled tâtonnement
(French for “groping”) somewhat similar to our price-setting agency function T . Walras
suggested a process in which a tentative price was announced and then people in the market
declared how much they were willing to supply or demand at the price. If supply exceeded
demand, then the price would be lowered, resulting in a greater demand and a smaller
supply. Prices would “grope” toward equilibrium.

Walras also inherited his father’s interest in social reform. He advocated nationalizing
land, arguing that land value would always increase and that sufficient rents from that land
could support the nation without taxes.

Walras spent his career as an economic thinker in Switzerland and published in
French. He was far from then-important centers of economic thought in England and
Germany and thus had relatively little influence during his lifetime. His work gained sig-
nificant attention after his death. Walras is now considered to be one the most important of
the 19th-century economists.
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B. Abraham Wald

The first rigorous axiomatization of the problem and proof for the existence of price
equilibria was the work of Abraham Wald, published in 1935 and considered to be one of
the most distinguished achievements in mathematical economics.

Waldwas born onOctober 31, 1902, in the city ofCluj, then part of theAustria-Hungary
empire. He was home-schooled by his parents as the Hungarian school system then required
attendance on Saturday, something not permitted by the Wald family’s orthodox Jewish
religious beliefs. The University of Vienna awarded Wald a Ph.D. in mathematics in 1931.
Austrian anti-Semitism prevented Wald from securing a university position. Discrimination
against Jews intensified after the Nazis took over Austria. Wald was able to emigrate to the
United States in 1938; most of his close relatives, however, perished in the Holocaust.
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Wald also made important contributions to decision theory, geometry, and econo-
metrics. He founded the field of statistical sequential analysis. During World War II, Wald
made an important contribution to the problem of bomber losses to enemy antiaircraft fire.
Aircraft that safely returned from missions were often damaged in similar places. Some
military personnel suggested that armor should be added to those areas that displayed the
most damage. Wald wisely observed that the bullet holes on the bombers that returned
represented areas that were able to take damage. The bombers that had gone down must
have been hit in more vulnerable spots. He concluded that extra armor should be added to
those locations on the returning planes that showed the least damage.

Wald and his wife died in an airplane crash on December 13, 1950, in the Nilgiri
Mountains of southern India, while on an extensive lecture tour at the invitation of the
Indian government.
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C. Gérard Debreu

Kenneth Arrow and Gérard Debreu developed a more general model on economic equi-
librium with weaker and hence more realistic assumptions about economic agents. Arrow
and Debreu’s 1954 paper used the Kakutani Fixed-Point Theorem to prove existence of
price equilibrium for their model.

Gérard Debreu (July 4, 1921 December 31, 2004) was a French mathematician and
economist who became a U.S. citizen and taught for many years at the University of
California Berkeley. Debreu received much of his university education in occupied France
during World War II, enlisting in the French armed forces after D-Day. In autobiographical
notes, Debreu recalled, “I had become interested in economics, an interest that was
transformed into a lifetime dedication when I met with the mathematical theory of general
economic equilibrium.”

Two of Debreu’s most important works appeared while was in his thirties: the paper
with Arrow mentioned earlier and a monograph Theory of Value: An Axiomatic Analysis of
Economic Equilibrium. In this short book, considered one of the most important works in
mathematical economics, Debreu established an axiomatic foundation for competitive
markets and used variants of the Kakutani Fixed-Point Theorem to prove the existence of
equilibria.
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Gérard Debreu

Debreu received the French Legion of Honor in 1976. Seven years later he was
awarded the Nobel Prize in Economics (technically, The Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel) “for having incorporated new analytical
methods into economic theory and for his rigorous reformulation of general equilibrium
theory.”
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In the ceremony presenting the Nobel award to Debreu, Karl-Göran Mäler of the
Royal Swedish Academy of Sciences noted:

You have contributed more than anyone else to our understanding of general equilibrium
theory and the conditions under which there exists a general equilibrium in an abstract
economy. Your insightful analysis of models of abstract economies have provided us with a
general theory which may be applied to a multitude of problems offering a much broader
understanding than alternative partial models could allow.

More than anyone else, you are a symbol of a new approach to economic analysis, an
approach that, while highly abstract, yields a better intuitive understanding of the basic eco-
nomics. Your influence on methods, standards, and analytical techniques used by economists
has been outstanding.

“In addition to setting the agenda for General Equilibrium Theory,” his colleague
Robert Anderson wrote, “Gérard had a profound influence on the way all economic
research is carried out. B. G. (Before Gérard), few economics papers had clearly specified
models and virtually none showed that their models were internally consistent by exhibiting
any equilibria. If you look at articles in major research journals today, virtually all clearly
specify a model. . . . Gérard’s insistence on mathematical clarity and rigor has had a pro-
found effect on virtually all economic research.”

In 1980, Debreu courageously undertook a potentially dangerous mission to Chile on
behalf of the National Academy of Sciences to report on how scientists were being treated
under the oppressive dictatorship of Augusto Pinochet, who was later tried for numerous
human rights violations.

On the lighter side, Debreu volunteered to coach the Berkeley economics department
football team in its first “Little Big Game” against Stanford, even though he knew nothing
about American football. Playing at times in a torrential downpour, Berkeley prevailed 6 4
against the Stanford eleven, coached by Kenneth Arrow.

EXERC I S E S

II. A TWO-CONSUMER ECONOMY

1. Fifteen ounces of turkey and 50 ounces of meatballs
are divided between Rhonda and Marc so that Rhonda
initially has 8 ounces of turkey and 3 ounces of
meatballs. Suppose Rhonda’s indifference function has

the form
a

1+x 2, while Marc’s indifference function

has the form b−
x4

98
.

(a) What is Marc’s initial allotment of turkey and
meatballs?

(b) Draw the Edgeworth box for this situation and
sketch several indifference curves for Rhonda and
for Marc.

(c) What are the values of a and b so the indifference
curves pass through (8, 3)?

(d) Sketch the indifference curves passing through (8,
3) and shade in the bargaining space.

(e) Show that the indifference curves passing through

5,
750
49

are tangent to each other so that 5,
750
49

is a possible Pareto solution for dividing up the
turkey and meatballs.

(f) Show that the function h x =
x3 1+ x

49
yields a

contract curve.

(g) Determine at least two more Pareto solutions.
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2. Julie and Brian are negotiating a redistribution of 20
ounces of cola and 50 ounces of tea. Julie currently has
5 ounces of cola and 10 ounces of soda. Julie’s

indifference curves have the form y=
a

1+x 3, while

Brian’s look like y= b−
x5

100
.

(a) What is Brian’s initial allotment of cola and tea?

(b) Draw theEdgeworth box for this situation and sketch
several indifference curves for Julie and Brian.

(c) What are the values of a and b so the indifference
curves pass through (5, 10)?

(d) Sketch the indifference curves passing through (5,
10) and shade in the bargaining space.

(e) Show that the indifference curves passing through

4,
64
3

are tangent to each other so that 4,
64
3

is a possible Pareto solution for dividing up the
cola and tea.

(f) Show that the function yields a contract curve of

the form h x =
x4 1+ x

60
.

(g) Determine at least two more Pareto solutions.

3. Find equation for contract curve if the indifference

curves are y=
a

2+ x2
and y= b−

x4

200
.

4. Find equation for contract curve if the indifference

curves are y=
a

4+x 3 and y= b−
x5

200
.

5. Suppose the indifference curves for Anne and Toby

have the form y=
a

m+x p and y= b−
xq

n
, respectively,

where a, b, m, n, p, and q are all constants greater than
or equal to 1. Show that the contract curve has the

equation y=
qxq−1 m+ x

pn
.

6. (a) Indifference curves are level curves for utility func-
tions. Suppose Anne has the utility function
u x, y = ln x+ 7 ln y for x ounces of wine and y
ounces of espresso. Show that her indifference curves

have the form y= e

a−ln x
7 where a is a constant.

(b) Toby’s utility function if he receives x ounces of
wine and y ounces of espresso is u x, y = y+ 8 ln x.

If there are 15 ounces of wine and espresso
available and Anne receives x, y , then show that
Toby’s indifference curve has the form
y= 20− b+ 8 ln 20− x where b is a constant.

(c) If Anne’s initial holdings of wine and espresso is
given by (8, 12), sketch the indifference curves
passing this point and identify several points in the
bargaining space.

(d) Determine the equation for the contract curve in
this example.

III. AN m-PERSON ECONOMY

7. Find the cost of each commodity bundle x if the nor-
malized price vector p= .1, .2, .3, .4

(a) x= 12, 21, 6, 6

(b) x= 9, 13, 6, 8

(c) x= 8, 15, 7, 2

(d) x= 7, 17, 8, 2

8. If the prevailing prices are given by the unnormalized
vector p= 3, 8, 5 , find the wealth w of a consumer if
her endowment is

(a) e= 1, 4, 7

(b) e= 4, 6, 2

(c) e= 1, 1, 9

(d) e= 2, 8, 3

9. Under consumer insatiability, a consumer would seek
out the commodity bundle x on the boundary of the
constraint set that maximizes his utility. Suppose a
consumer has the utility function u x1, x2 = 3x2y, and
endowment e= 10, 20 while the normalized prices are
p= .7, .3 . Determine this consumer’s wealth, budget
constraint set, and most desired commodity bundle.

10. If normalized prices are p= .8, .2 and a consumer’s
endowment is e= 4, 6 , determine her wealth and
budget constraint set. Assuming consumer insatiability
and a utility function of the form u x, y = x+1 2y3,
find her most desired commodity bundle.

11. Some economists prefer to think of the demand func-
tion as a function of prices p and wealth w rather than
prices and endowment e. Show that these two views
are equivalent.

12. Suppose we regard demand as a function f of prices p
and wealth w. Then for l= 3, we can write f p, w as
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f p, w = f1 p, w , f2 p, w , f3 p, w where fh p, w
is the demand for commodity h. Imagine a consumer
whose demand function has the form

f1 p, w =
p1

p1 + p2 + p3

w

p1
, f2 p, w =

p2
p1 + p2 + p3

w

p2
,

f3 p, w =
p3

p1 + p2 + p3

w

p3

where all three prices are positive but do not neces-
sarily sum to 1. Is the demand function homogeneous?
Does it satisfy consumer insatiability?

13. Suppose we change the demand function in Exercise
12 so that

f3 p, w =
kp1

p1 + p2 + p3

w

p3

for some constant k, but retain the same functions for f1
and f2. Does this demand function remain homoge-
nous? For what values of k does it satisfy consumer
insatiability?

14. (a) Show that the sum of components in any price
vector q= q1, . . . , qh, ..ql can be computed as
q • u where u= 1, 1, . . . , 1 is a vector, each of
whose l components equals 1.

(b) Show that normalized version of q can be written
as q

q • u.

15. Show that if l= 3, then ∏ is all the points on or
inside equilateral triangle in 3-spacewith vertices (1, 0, 0),
(0, 1, 0), and (0, 0, 1).

16. Provide a geometric description of the set ∏ of nor-
malized prices in a four-commodity economy. What is
the dimension of ∏?

17. Use Walras’s Law to show that under our assumptions,
if p is a normalized price vector and there is a com-
modity such that ph = 1, then the demand for this
commodity will exactly equal the supply.

18. Suppose we have a price vector p where each price ph
is positive. If, under these prices, supply equals
demand for all but one commodity, show that Walras’s
Law implies supply equals demand for that final
commodity.

IV. EXISTENCE OF ECONOMIC EQUILIBRIUM

19. In the two-commodity case, show that if r is not an
equilibrium price vector, then F1 r > 0.

20. Complete the proof in the two-commodity case when
F1 p < 0.

21. Suppose F is a function that assigns to each k-dimen-
sional vector v an l-dimensional vector,F v .What is the
definition of continuity of F in each of the follow cases:

(a) k= l= 1

(b) k= 1 and l> 1

(c) k> 1 and l= 1

(d) k> 1 and l> 1

22. Suppose F is a function that assigns to each k-
dimensional vector v an l-dimensional vector, F v

(a) Show that F v can be written as F v =
f1 v , f2 v , . . . , fh v , . . . , fl v where each
component function fh v is a real-valued function
of k variables.

(b) Prove that F is continuous if and only if each fh is
continuous.

23. Prove that ifg is any continuous real valued function, then
the maximum of 0 and g is also a continuous function

24. For a two-commodity economy, verify that each of the
following functions is a mapping from ∏, the set of
normalized price vectors to ∏ and determine at least
one fixed-point for each:

(a) f x, y = x
x+ 2 ,

2
x+ 2

(b) g x, y = 2
x+ 2 ,

x
+ x+ 2

(c) h x, y = 1
x+ 1 ,

x
x+ 1

(d) k x, y = y, x

(e) m x, y = x+ y
1+ x ,

1− y
1+ x

25. Verify that the function given by T x, y, z =
y+ 2

x+ y+ z+ 9
,

z+ 3
x+ y+ z+ 9

,
x+ 4

x+ y+ z+ 9
does indeed

map∏ into∏ andhas
26
111

,
38
111

,
47
111

as afixed-point.

26. Use the Intermediate Value Theorem of elementary
calculus to prove that any continuous function from the
closed interval a, b to a, b has a fixed-point.

27. Show that the open interval (0, 1) of real numbers does
not have the fixed-point property.

28. Let I be the unit interval 0, 1 and B the set of points in
the plane of the form t, et for 0≤ t≤ 1.
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(a) Let h I→B by h t = t, et . Show that h is con-
tinuous and each point in B is the unique image of
a single point in I. [Hint: use the fact that the
exponential function is strictly increasing.]

(b) Show that if p, q is a point on B, then p= ln q.

(c) Let j B→I by j p, q = p. Show that j is continu-
ous and each point of I is the unique image of a
point in B.

(d) Verify that the composition h∘j is the identity
function on B and j∘h is the identity function on I.

(e) Let f B→B be any continuous function from B
into B. Define a new function g I→I by
g t = j∘f ∘h t and show that g is continuous.

(f) Why do we know that g necessarily has at least one
fixed-point?

(g) Let x be any fixed-point of g. Show that h x is a
fixed-point for f .

(h) Prove that B has the fixed-point property.

29. Two sets A and B are called topologically equivalent if
there is a one-to-one continuous function h from A
onto B such that the inverse function h−1 is also con-
tinuous. Prove that if A and B are topologically
equivalent and A has the fixed-point property, then B
must also have the fixed-point property. [Hint: use an
argument similar to the one outlined in Exercise 28.]

30. The standard ball Dr of radius r in l-dimensional space
is the set of all vectors within r units of the origin—
that is, the vector x= x1, x2, . . . xl belongs to Dr if

and only if x • x≤ 1—that is, x21 + x22 +⋯+ x2l ≤ 1.
Show that the standard ball of radius 1 in n-dimen-
sional space is homeomorphic to the set ∏ of nor-
malized prices in an economy with n+ 1 commodities.
Brouwer’s original proof essentially demonstrated that
the standard ball of radius 1 in n-dimensional space has
the fixed-point property. Thus, this exercise and
Exercise 29, along with Brouwer’s Theorem, show that
∏ also has the fixed-point property.

31. Let A be the solid square a, b a, b are in 0, 1 .
Find retractions of A onto

(a) the top edge a, 1 0≤ a≤ 1

(b) the left-hand edge 0, b 0≤ b≤ 1

(c) the center point ½, ½

32. Let D be the closed disk of radius 1 centered at the
origin in the plane. Find a retraction of D onto the
origin (0, 0) and a retraction of D onto the disk of
radius ½ centered at the origin.

33. Let Dr be the standard ball of radius r in l-dimensional
space. Find a retraction of D1 onto the origin and a
retraction of D2 onto D1.

34. Show that the closed interval 0, 1 and the open
interval 0, 1 of real numbers are not homeomorphic.
[Hint: one of them has the fixed-point property, but not
the other.]

35. Does the half-open interval 0, 1 = x 0< x≤ 1
have the fixed-point property?

SUGGES T ED PRO J ECTS

1. Investigate Abraham Wald’s first proof of the exis-
tence of price equilibria. Wald’s assumptions were a
bit different from our presentation, which made pos-
sible a proof that used induction on the number of
commodities. You can begin with Wald’s original
papers or the account by John Reinhard; see citations
on text website.

2. Wald assumed The Weak Axiom of Revealed Prefer-
ence (WARP), one of the criteria which need to be
satisfied in order to make sure that the consumer is
consistent with his preferences. If a bundle of goods a
is chosen over another bundle b when both are
affordable, then the consumer reveals that he prefers a
over b. WARP says that when preferences remain the

same, there are no circumstances (budget sets) where
the consumer strictly prefers b over a. By choosing a
over b when both bundles are affordable, the consumer
reveals that his preferences are such that he will never
choose b over a, regardless of income and prices. How
does WARP play a role in Wald’s proof?

3. Work through the details of a proof of Brouwer’s
Fixed-Point Theorem for the n-dimensional disk. Joel
Franklin’s treatment (referenced below) is a good
starting point. A weaker version of the theorem, which
is adequate for showing that ∏ has the fixed-point
property is the Brouwer Theorem for compact, convex
sets in Euclidean spaces. Fill in the details of a proof of
that result.
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4. Another approach to Brouwer’s Fixed-Point Theorem
is through the use of Sperner’s Lemma. For a pre-
sentation of Sperner’s result and its consequences, see
Michael Henle’s A Combinatorial Introduction to
Topology. Scarf’s book is also especially useful.

5. Our model of ensuring that supply was adequate for
demand was based on prices. Another approach, which
envisions a pure trading of goods without money, may
possibly be constructed around the concept of a
numeraire: select one commodity as a base and then
value every other commodity in comparison to the

numeraire. For example, if l= 4, then a set of values
with commodity 2 as the numeraire might be (2, 1, 1/3,
7). In this evaluation one unit of commodity 2 can be
exchanged for 2 units of commodity 1. Three units of
commodity 2 would be need to swap for 1 unit of
commodity 3. A consumer’s wealth would then be
measured in units of commodity 2. Investigate proving
that there must be some way of valuing the com-
modities so that total demand does not exceed total
supply for all commodities.

VII. Additional Historical and Biographical Notes
More information about the lives and works of Walras, Wald, and Debreu are easily found. For Léon Walras, I
advise the article on Walras in the International Journal of Social Sciences, William Darity, ed. (Macmillan,
2007). It can be also be found online at www.encyclopedia.com/topic/Leon_Walras.aspx. Oskar Morgenstern has
a useful memoir, “Abraham Wald, 1902 1950,” in Econometrica 19 (1951): 361 367. Debreu submitted a short
autobiography at the time of his receipt of the Nobel Prize. You can find it at www.nobelprize.org/nobel_prizes/
economic-sciences/laureates/1983/debreu-bio.html. There are additional personal recollections of Debreu in the
Spring 2005 issue of The Econ Exchange: News and Notes of the Department of Economics (University of
California Berkeley) 8(1), www.econ.berkeley.edu/sites/default/files/econexchangespring05.pdf.

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
10

Elementary Probability

The most important questions of life are, for the most part, really only

questions of probability. Strictly speaking, one may even say that

nearly all our knowledge is problematical; and in the small number of

things which we are able to know with certainty, even in the mathe-

matical sciences themselves, induction and analogy, the principal

means of discovering truth, are based on probabilities, so that the entire

system of human knowledge is connected with this theory.

—Pierre-Simon de Laplace

I. The Need for Probability Models
The deterministic and axiomatic models developed in earlier chapters show that both types
of models can serve to give concise and precise descriptions of some real-world situations.
Deterministic models have an added feature of being predictive in nature, while the best that
axiomatic models seem to do is guarantee the existence or uniqueness of certain kinds of
sets or functions.

The usefulness of a model increases if that model gives some new information not yet
observed about the situation it is supposed to represent. The predictions of the model can be
tested against what actually happens in the real world. Refinements can then be made in the
model and better understanding gained of the real-world problem.

The deterministic models of Chapters 1 5 are typical of the type one sees in the
natural, physical, and social sciences. They consist of systems of differential equations, the
mathematical tool that has been most useful in the study of physical systems. Mathemat-
ically, differential equations of the type we have examined assert that once the equations
and the initial conditions are specified, then the state of the corresponding system at any
later moment is completely determined.

The main criticism of the deterministic approach to the study of social problems lies
precisely in this feature of the mathematics. Social problems deal with individuals or groups
of individuals and we can never completely predict the exact future behavior of any person
in a specific situation, no matter how well we understand the situation and the person.
People are not particles, this objection concludes, and the equations of physics cannot be
used to describe human actions.

There are at least two responses to such objections. First, the mathematical modeler
never makes the grandiose claim that his equations completely describe the real-world
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situation. He realizes that he has undoubtedly left out some important variables and that he
has simplified the interactions among the variables he has included. At best, he hopes the
qualitative nature of his quantitative results will mimic what happens in the real world.

There is a second response to the objection. Accept the premise that determinism is no
fit way to describe social phenomena. This does not mean that mathematical social science
is inherently any less rigorous than physics. Physicists have come, in this century, to the
belief that determinism is also not possible in this most deterministic of all sciences. Nobel
Laureate Richard Feynman emphasizes this realization in his Lectures on Physics [1965]:

We would like to emphasize a very important difference between classical and quantum
mechanics. We have been talking about the probability that an electron will arrive in a given
circumstance. We have implied that in our experimental arrangement (or even in the best
possible one) it would be impossible to predict exactly what would happen. We can only predict
the odds! This would mean, if it were true, that physics has given up on the problem of trying to
predict exactly what will happen in a definite circumstance. Yes! Physics has given up. We do
not know how to predict what would happen in a given circumstance, and we believe that it is
impossible—that the only thing that can be predicted is the probability of different events. It
must be recognized that this is a retrenchment in our earlier ideal of understanding nature. It
may be a backward step, but no one has seen a way to avoid it . . . . We suspect very strongly
that it is something that will be with us forever . . . that this is the way nature really is.

This chapter begins the study of probabilistic models of human behavior by intro-
ducing the basic tools of probability. Before starting, it should be emphasized that while
mathematical social scientists believe that the existence of human “free will” implies that
the probabilistic approach is the more correct style of modeling, deterministic approaches
will still be employed. Most social phenomena are quite complex. Accurate mathematical
models must also be complex. A deterministic model based on a given set of axioms may be
simpler to analyze than a probabilistic one. In addition, probabilistic models are often
analyzed by approximating them with more tractable deterministic ones. A successful
modeler cannot dismiss either approach. In Section III and again in Chapters 12 and 14, we
will present comparisons of deterministic and probabilistic attacks on the same problems.

II. What Is Probability?
A. Fundamental Definitions

This section (parts A F) outlines the bare minimum of probability theory on finite sample
spaces. Sources for complete treatments are listed in the References at the end of the chapter.

DEFINITION Let E be a set with a finite number of elements. A probability measure
on E is defined to be a real-valued function Pr whose domain consists of all subsets of E
and that satisfies three rules:

1. Pr E = 1

2. Pr X ≥ 0 for every subset X of E

3. Pr X ∪ Y = Pr X +Pr Y for every pair of disjoint subsets X and Y of E

A finite set E together with a probability measure is called a sample space.
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The definitions will be illustrated by several examples.

Example 1

Let E be the set of possible outcomes in an experiment consisting of flipping a coin and noting
which side faces up when the coin lands. Then E has two elements, h and t, corresponding to
“heads” and “tails.” Note that E = h, t and there are four subsets: E, ∅, h , t .
An assumption that the coin is fair, that is, there is asmuchchanceof a head asof a tail, may be
reflected by the probability measure:

Pr ∅ = 0, Pr E = 1, Pr h =Pr t = 1 2

Example 2

Suppose that the coin of Example 1 has been weighted so that heads appear twice as often
as tails. Then we might assign a different probability measure:

Pr ∅ = 0, Pr E = 1, Pr h = 2 3, Pr t = 1 3

Note that Examples 1 and 2 are two different sample spaces with the same
underlying set.

Example 3

There is an urn with four marbles. Each marble has a different color: green, blue, red, or
white. Reach your hand into the urn and, without looking, remove one marble. If E repre-
sents the set of possible outcomes of this experiment, the E consists of four elements,
represented by the letters g, b, r, and w, corresponding to the color of the marble selected.
Rather than list the probability measures of all 16 subsets of E, we may define the prob-
ability of any subset X by

Pr X =
Number of distinct elements in X

4

As an exercise, check whether this definition satisfies the three conditions of a probability
measure.
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The elementary events in Example 3 were each assigned the same measure, 1/4. This
is an illustration of an equiprobable measure that occurs whenever each of the finite number
of elements of a set E has the same weight. The probability measure in the equiprobable
situation has a very simple form: If E has n distinct elements and X is a subset containing r
of these elements, then Pr X = r n. Note that the equiprobable measure was also used in
Example 1, but not in Examples 2 and 4.

It is useful to list here some of the elementary laws of probability implied by the
definition of a probability measure. These are gathered together in the following theorem,
whose proof is left as an exercise.

THEOREM 1 If Pr is a probability measure on a finite set E, then the following
statements are true for all subsets X, Y , X1, X2, …, Xk of E:

1. If X ⊆ Y , then Pr X ≤Pr Y .

2. Pr ∅ = 0.

3. Pr X ∪ Y = Pr X +Pr Y Pr X ∩ Y .

4. Pr XC = 1 Pr X where XC is the complement of X—that is, XC =E X.

5. Pr Y = Pr X ∩ Y + Pr XC ∩ Y .

6. If X1X2, …, Xk are mutually disjoint subsets of E, then

Pr X1 ∪X2 ∪…∪Xk = Pr X1 + Pr X2 +⋯+ Pr Xk

= 1 Pr X1
C ∩X2

C ∩…∩Xk
C

B. Conditional Probability

As you read this section and glance through probability textbooks, you will see many
examples having to do with pulling objects out of urns. Probabilists have no particular
psychological hang-ups about urns. Urns simply provide a convenient mechanism for
conceptualizing and clarifying many of the important concepts of the subject. Be patient;
we will soon be dealing with people and not urns.

Imagine, then, an urn containing six red marbles—numbered 1, 2, 3, 4, 5, 6 and ten
green marbles, numbered from 1 to 10. Other than color, the marbles are identical in shape

Example 4

Replace the urn of Example 3 by one holding 4 green marbles, 3 blue ones, 2 red ones, and
1 white one. Otherwise the experiment is the same and the set E is again the collection of all
possible outcomes of removing one marble. Call the outcomes g, b, r, w elementary events
and assign them weights of .4, .3, .2, and .1, respectively. Define a probability measure on
E by letting Pr X be equal to the sum of the weights of the distinct elementary events in X.
For example, if X = g,w , then Pr X = .4+ .1= .5. Check whether this assignment of
probabilities also satisfies Rules (1)—(3).
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and appearance. As usual, reach into the urn without looking and remove one marble. What
is the probability that the selected marble is labeled with a “3”?

A reasonable answer to this question is 2/16. A reasonable explanation is, “There are
16 marbles and I am no more likely to pick one than another, so I assume I am working with
the equiprobable measure. Since the set E has 16 elements, each has probability 1/16. The
subset that corresponds to obtaining a marble labeled 3 has exactly two elementary events:
the green marble 3 and the red marble 3. Thus, the probability is 1 16+ 1 16= 2 16.”

Very good. Nothing new so far. Suppose, however, that you observed that the
selected marble was red before you were asked “What is the probability that the selected
marble bears a ‘3’ on it?” The reasonable answer to the question is now 1/6 since
there are six red marbles, each equally likely to be chosen, and exactly one of them is
labeled “3.”

Different answers to the same question are appropriate because different amounts of
information were given in each of the situations. Additional information often changes
estimates of probabilities. The concept of conditional probability makes this precise.

DEFINITION Let Pr be a probability measure defined on a set E. If X and Y are any
two subsets of E with Pr X > 0, then the conditional probability of Y given X, denoted
Pr Y X is defined by

Pr Y X =
Pr Y ∩X

Pr X

If Pr X = 0, then the conditional probability of Y given X is not defined.

To illustrate the definition with the example just given, let Y be the subset
corresponding to “The marble is labeled 3” and X the subset corresponding to “The
marble is red.” Then Pr Y = 2 16, Pr X = 6 16, and Pr Y ∩X = 1 16 since there
is exactly one marble that is red and labeled “3.” The conditional probability of
Y given X is

P Y X =
Pr Y ∩X

Pr X
=

1 16
6 16

=
1
6

agreeing with the verbal explanation first given.
In this case, note that the conditional probability of X given Y is also defined and is

equal to

P X Y =
Pr X ∩ Y

Pr Y
=

1 16
2 16

=
1
2

To see that this is a reasonable result, consider that Pr X Y is the answer to the
question, “If you are told that the marble is labeled ‘3’, what is the probability that it is red?”

The calculations just given illustrate the critical warning that, in general, Pr Y X ≠
Pr X Y .
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C. Bayes’s Theorem

The equation defining conditional probability can be rewritten as

Pr Y ∩X =Pr Y X Pr X

This equation is useful in computing Pr X Y in certain instances when the proba-
bility Pr Y X is given, since

Pr X Y =
Pr X ∩ Y

Pr Y
=

Pr Y ∩X

Pr Y
=

Pr Y X Pr X

Pr Y

Example 5

Two weeks before the state primary to choose a single nominee for election to the U.S.
Senate, there were four candidates. Political experts gave Oppenheim a .4 chance of
winning, Mazzoli a .3 chance, Levine a .2 chance, and Newman a .1 chance. Just prior to
the election, a grand jury indicts Levine, charging him with accepting illegal campaign
contributions. If Levine withdraws from the race, how would this affect the chances of
winning of the remaining three candidates?

Solution
In the absence of other information, we may assume that we have a set with four elements,
Oppenheim, Mazzoli, Levine, and Newman, with weights of .4, .3, .2, and .1 measuring the
probability of each winning. We will compute the chances for Oppenheim winning if Levine
withdraws.

By Theorem 1, Pr Levine loses =1 Pr Levine wins = 1 .2= .8. To find the condi-
tional probability thatOppenheimwins given that Levine loses, use the definition of conditional
probability:

Pr Oppenheim wins and Levine loses

=
Pr Oppenheim wins and Levine loses

Pr Levine loses

=
Pr Oppenheim wins
Pr Levine loses

=
.4
.8

=
1
2

In this computation, we use condition (5) of Theorem 1 in the form

Pr Oppenheim wins

=Pr Oppenheim wins and Levine wins +Pr Oppenheim wins and Levine loses

= 0+Pr Oppenheim wins and Levine loses

since the subset corresponding to “Oppenheim wins and Levine wins” is empty.
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Example 6

A multiple-choice exam has four suggested answers to each question, only one of which is
correct. A student who has done her homework is certain to identify the correct answer. If a
student skips her homework, then she chooses an answer at random. Suppose that two-
thirds of the class has done the homework. In grading the test, the teacher observes that
Julie has the right answer to the first problem. What is the probability that Julie did the
homework?

Solution
Let X denote “Julie has done the homework” and Y denote “Julie has the right answer.” The
information given in the problem translates into three probability statements:

Pr X =
2
3

Pr Y X = 1 Pr Y XC =
1
4

The question asks for the computation of Pr X Y . From Theorem 1, we have
Pr Y =Pr Y ∩X +Pr Y ∩XC and two uses of the equation

Pr Y ∩B =Pr Y B Pr B , with B=X and B=XC respectively
give

Pr Y ∩X =Pr Y X Pr X

and

Pr Y ∩XC =Pr Y XC Pr XC

Putting this information together with the definition of conditional probability gives
the answer:

Pr X Y =
Pr Y X Pr X

Pr Y X Pr X +Pr Y XC Pr XC

=
1 2 3

1 2 3 + 1 4 1 3
=
8
9

The type of calculation used to solve the question of Example 6 occurs in a great
many applications. The general rule that underlies it is called Bayes’s Theorem and is the
content of Theorem 2. It is named after the Reverend Thomas Bayes (1702 1761) and first
appeared in print in 1763.
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THEOREM 2 (Bayes’s Theorem)
Let Pr be a probability measure defined on a set E and suppose Y is a subset of E with
Pr Y > 0. If X1, X2, . . . , Xk is any collection of mutually disjoint subsets of E whose
union is all of E, and each Xi has positive probability, then

Pr Xj Y =
Pr Y Xj Pr Xj

k

i= 1
Pr Y Xi Pr Xi

Proof of Theorem 2 Write

Y = Y ∩E=Y ∩ X1 ∪X2 ∪…∪Xk

= Y ∩X1 ∪ Y ∩X2 ∪…∪ Y ∩Xk

and use Theorem 1 to obtain

Pr Y =
k

i= 1

Pr Y ∩Xi .

Now use (*) to write Pr Y ∩Xi = Pr Y Xi Pr Xi so that Pr Y =
k

i= 1
Pr Y Xi Pr Xi . An application of equation (**) completes the proof. ⋄

Example 7 (Mass Screening for Drug Use)

The chief of a large metropolitan police force has evidence that 2% of his officers are heroin
users. The chief wants to identify the drug users on his force so he can fire them. He orders
mandatory drug testing each week for everyone on the force. The drug test correctly
identifies users 95% of the time and also correctly identifies nonusers with 90% accuracy.
Detective Joe Friday’s test has a positive outcome. Should the chief fire Joe? What is the
probability that Joe is actually a heroin user?

Solution
Given that the accuracy levels of the test are so high, many people’s first response is
that someone who tests positive is in all likelihood a heroin user. A careful analysis tells
another story.

Let Pr(Heroin User) be the probability that a random chosen person is a heroin user,
Pr(Positive Test) be the probability of a positive test—that is, the test indicates the person
uses the drug. The information that we are given in the problem is Pr(Heroin User) = .02, Pr
(Positive Test | Heroin User) = .95 and Pr(Negative Test | not Heroin User) = .90. We seek
the conditional probability Pr(Heroin User | Positive Test).

In drug testing, the term “sensitivity” describes the likelihood of a true positive—that
is that the test detects heroin in a user. Sensitivity in this case is Pr(Positive Test | Heroin
User) = .95. The term “specificity” refers to the probability of a true negative—that is, the
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test finds no heroin in a non-user. In our example, the specificity is .90. We would like to
have numbers close to 1 for both the sensitivity and the specificity. These numbers would
give small values for the possible outcomes of the test that are wrong: False Positive and
False Negatives. In the case of a False Positive, an innocent person may be labeled a drug
user. In the event of a False Negative, a true user escapes detection.

Now Pr Positive Test = Pr Heroin User∩Positive Test

+Pr Not Heroin User∩Positive Test

= Pr Heroin User Pr Positive Test Heroin User

+Pr Not Heroin User Pr Positive Test Not Heroin User

= .02 .95 + .98 .10 = .019+ .098= .117

Thus, the likelihood that Joe is a heroin user is

Pr Heroin User Positive Test =
Pr Heroin User∩Positive Test

Pr Positive Test

=
.019
.117

= ∼ .162

On the basis on the drug test alone, there is just over a 16% chance that Joe is a
heroin user. The vast majority (nearly 84%) of the positive tests are false positives.

The results of this example are fairly typical of mass screening for a particular trait
that occurs with low frequency in a large population. Even with high levels of sensitivity and
specificity, the rate of false positives will be large.

One final example will illustrate the use of Bayes’s Theorem to assess the reliability of
eyewitness testimony.

Example 8

The city of Metropolis has three taxi companies, each of which uses only cabs of the color
that matches the company name: Yellow Cab, Blue Cab, Green Cab. Sixty percent of the
cabs are yellow, 37% are blue, and the remaining 3% are green. On a dark and stormy night
a cab was involved in a hit-and-run accident. There was a single eyewitness who saw the
cab fleeing the scene of the accident. He identified the cab as a green one. Tests show that
people report cab color with the accuracies shown in Table 10.1:

Table 10.1 Probabilities of What Witnesses Report

Actual Color Says Blue Says Green Says Yellow

Yellow .1 .1 .8

Blue .8 .15 .05

Green .08 .8 .12
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D. Independent Events

Knowledge about some aspects of the outcome of an experiment on a sample space can
influence the estimate of the probability of other aspects of the outcome. This influence is
measured using conditional probability. Sometimes, however, the extra knowledge does
not influence the estimate.

Consider, as an example, an experiment consisting of flipping a coin and rolling a die.
The outcome of the experiment consists of two observations: a head or a tail for the coin,
and a number between 1 and 6 for the die. The coin in no way affects the die, so the answer
to the question “What is the probability that the die shows a 3?” is the same whether or not
you know how the coin landed. More exactly, the probability that the die shows a 3 given
the coin lands heads is the same as the probability that the die shows a 3 given no infor-
mation about the coin. A probabilist would say that the coin flip and die roll are independent
of each other. The general definition looks like this:

DEFINITION Let Pr be a probability measure on a set E. If X and Y are subsets of E
with Pr X > 0 and Pr Y > 0, then X and Y are independent events if Pr Y X =Pr Y .

If X and Y are independent, then

Pr X Y =
Pr Y X Pr X

Pr Y
=

Pr Y Pr X
Pr Y

= Pr X

The definition also gives the very important multiplicative rule for independent events.

What is the probability that the cab involved in the accident was an indeed a green
one, as our witness said. Is it as high as 80%, as the data in Table 10.1 indicate?

Solution
We want to find Pr(Cab was Green | Witness says Green)

By the definition of conditional probability, this probability is

Pr Cab was Green and Witness says Green
Pr Witness says Green

Pr Witness says Green = Pr Witness says Green AND Cab was Yellow

+Pr Witness says Green AND Cab was Blue

+Pr Witness says Green AND Cab was Green

= Pr Witness says Green Cab was Yellow Pr Cab was Yellow

+Pr Witness says Green Cab was Blue Pr Cab was Blue

+Pr Witness says Green Cab was Green Pr Cab was Green

= .1 .6 + .15 .37 + .8 .03 = .06+ .0555+ .024= .1395

Thus, Pr Cab was Green Witness says Green = .024
.1395 = .172. In the absence of other

evidence, a jury would be more accurate at assigning only a 17% chance to the witness’s
being correct in his claim that the cab was green.
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THEOREM 3 Suppose Pr X > 0 and Pr Y > 0. Then X and Y are independent if
and only if Pr X ∩ Y = Pr X Pr Y .

Proof of Theorem 3 Recalling equation (*) of Section II.C, we have

Pr X ∩ Y =Pr Y ∩X =Pr Y X Pr X

so that Pr X ∩ Y =Pr Y Pr X if and only if Pr Y X = Pr Y . ⋄
Since the definition of independent events makes use of conditional probabilities, it

must be restricted to events with positive probabilities. However, the equation
Pr X ∩ Y =Pr X Pr Y may hold true for events with zero probabilities. For this reason,
many probability theorists define two events X and Y to be independent if the multiplicative
rule is valid.

There is a standard mistake that many students make in thinking about independence.
The independence of two events is not determined strictly from the intrinsic nature of the
events. Independence is also a function of the probability measure that has been assigned to
the original set of outcomes. Two events may be independent under one probability
measure, but not independent under another measure. Consider the next two examples.

By making use of the multiplicative rule, the concept of independence is easily
extended to more than two events. Three events X, Y , Z will be calledmutually independent
if each pair of events is independent and

Pr X ∩ Y ∩ Z = Pr X Pr Y Pr Z

More generally, a set of events X1, X2,…, Xn in a sample space is mutually inde-
pendent if the probability of the intersection of any k distinct events in the set is equal to the
product of the probabilities of the events where k= 2, 3, …, n.

Example 9

A pyramid is a solid figure with four triangular faces. Suppose the faces are labeled with the
letters a, b, c, d. Roll the pyramid and observe which triangle faces the ground when
the pyramid comes to rest. The set E of outcomes may be denoted by E = a, b, c, d . Let X
be the subset a, c and Y the subset b, c . The X ∩Y = c . If Pr is the equiprobable
measure on E, then Pr X ∩Y = 1 4 while Pr X Pr Y = 2 4 2 4 = 1 4. Thus, X and Y are
independent events in this sample space.

Example 10

Consider the same situation as Example 9, except that the probability measure is defined
by assigning a, b, c, d weights of .4, .4, .1, .1, respectively. Then Pr X ∩Y = .1 while
Pr X Pr Y = .5 .5 = .25. Thus, X and Y are not independent in this sample space.
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Independence is an important idea in discussion of situations in which the same
experiment is repeated under identical conditions a number of times. Suppose, for example,
that a fair coin is tossed three times. It is reasonable to assume that successive tosses of the
coin do not influence each other: the coin has no memory of how it has landed before on
earlier tosses. In other words, the sequence of outcomes is a mutually independent set. Let
Hi be the subset corresponding to obtaining a head on the ith toss, for i= 1, 2, 3, then the
probability of obtaining heads on all three tosses is Pr H1 ∩H2 ∩H3 . By the assumption of
independence this is equal to Pr H1 Pr H2 Pr H3 = 1

2 •
1
2 •

1
2 =

1
8.

Modifying the example, suppose the coin has been weighted so the probability of a
head on a single toss is 1

3. If the coin is tossed three times, what is the probability that it will
land heads exactly once? If A is the subset corresponding to obtaining exactly one head in
three tosses, then A can be written as the union of three mutually disjoint subsets

A= H1 ∩ T2 ∩ T3 ∪ T1 ∩H2 ∩ T3 ∪ T1 T2 ∩H3

where Ti indicates a tail on toss i. By condition (6) of Theorem 1 and the assumption of
independence, we have

Pr A = Pr H1 Pr T2 Pr T3 + Pr T1 Pr H2 Pr T3 + Pr T1 Pr T2 Pr H3

=
1
3

2
3

2
3

+
2
3

1
3

2
3

+
2
3

2
3

1
3

=
12
27

As a significant generalization of this example, consider an experiment with precisely
two outcomes with associated probabilities p and q, where p and q are nonnegative numbers
with p+ q= 1. Call the outcome with probability p a “success” and the other outcome a
“failure.” Repeat this experiment a number of times in such a manner that the outcomes of
any one experiment in no way affect the outcomes in any other experiment—that is, assume
the sequence of outcomes forms a mutually independent set. Let Xi represent the outcome
of a success on the ith trial of the experiment and Yi the outcome of a failure on the ith trial.
Then Pr Xi = p and Pr Yi = q= 1 p for each i.

Suppose the experiment is repeated four times. The probability that there are suc-
cesses on the first and fourth trials and failures on the second and third is given by

Pr X1 ∩ Y2 ∩ Y3 ∩X4

which by independence is equal to

Pr X1 Pr Y2 Pr Y3 Pr X4 = pqqp= p2q2 = p2 1 p 2

It should be clear that any other prescribed sequence of two successes and two
failures in four trials will also have probability p2 1− p 2.

In general, if the experiment is repeated n times, then the probability of obtaining a
prescribed sequence of exactly k successes and n− k failures will be pkqn− k = pk 1− p n− k .
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A related question concerns the probability of obtaining exactly k successes in n trials.
This probability will be pkqn− k multiplied by the number of distinct ways one can prescribe
a sequence of k successes and n k failures. This number is equal to

n

k n− k
=

n n− 1 n− 2 ⋯ n− k + 1 n− k n− k − 1 ⋯ 3 2 1
k k− 1 k− 2 ⋯1 n− k n− k − 1 ⋯1

=
n n− 1 n− 2 ⋯ n− k + 1

k k − 1 k − 2 ⋯1

(See Exercises 25 27 for its determination.) Thus, the number of ways of exactly obtaining
3 successes in 7 trials is computed by letting n= 7 and k = 3 so that n− k + 1= 5. The

number of ways is then 7 6 5
3 2 1 = 35. The probability that a fair coin will give 3 heads and 4

tails in 7 tosses is then 35 1
2

3 1
2

4 = 35
128.

E. Expected Value

The discussion of gambles in the development of utility theory (Chapter 8) presented
intuitively an idea of “expected value” or “expectation” of a gamble. This was a number
meant to measure the average result of the gamble if it is made many times. In this section
we formally extend this concept to more general probabilistic situations.

DEFINITION Let Pr be a probability measure on a finite set E. A random variable is a
real-valued function R defined on E. Let a1, a2, . . . , ak be the finite set of distinct values
taken on by the function R. Then the expected value or expectation of R, denoted EV R , is
the number

EV R =
k

i= 1

aiPr R= ai = a1Pr R= a1 +⋯+ akPr R= ak

The mysteries of this equation will disappear after considering the next few examples.

Example 11

Roll a fair die and let R be equal to the number showing on the top of the die when it comes
to rest. Then R takes on the values 1, 2, 3, 4, 5, and 6. The event “R= 3” is just the event
that the die shows a 3 and thus has probability 1/6, so that Pr R=3 = 1 6. Similarly, R
takes on each of the other values with probability 1/6. The expected value of R is given by

EV R =1
1
6

+ 2
1
6

+ 3
1
6

+4
1
6

+ 5
1
6

+ 6
1
6

=
21
6

=
7
2
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Examples 11 13 show that the expected value of a random variable need not be one
of the values the random variable actually takes on.

Example 12

Roll the die of Example 10, but this time let R be the square of the number that appears on
top. The function R takes on the values 1, 4, 9, 16, 25, and 36, each with probability 1/6. The
expected value of this random variable is

1
1
6

+4
1
6

+ 9
1
6

+ 16
1
6

+ 25
1
6

+36
1
6

=
91
6

Example 13

Supposeyouwin$3every time the fair die showsanoddnumberand lose$2each timeaneven
number appears. The set E of outcomes of rolling the die is the same, E = 1, 2, 3, 4, 5, 6 .
Define the random variableR on E byR 1 =R 3 =R 5 = +3, andR 2 =R 4 =R 6 = 2.
Then Pr R=3 =Pr l, 3, 5 = 1 6+ 1 6+ 1 6=1 2, and Pr R= 2 is also 1/2. Then the
expected value of R is 3 1 2 + 2 1 2 = 1 2. The interpretation of expected value here is
that if you roll the die a great many times, you can expect to win, on average, 50¢ on each roll.

Example 14

Brian’s roommate accidentally knocks Brian’s passport into the wastebasket. By the time
Brian discovers what has happened, the janitor has cleaned up the entire dormitory. The
contents of the wastebasket have been dumped into one of nine fully packed garbage cans
outside thedorm.Brian insists that his roommate find thepassport. Find theexpectedvalueof
the number of garbage cans Brian’s roommate will empty in order to find the passport.

Solution
When the roommate arranges the cans in a line for searching, the position of the can con-
taining the passport is the only critical factor. LetXi represent the outcome that the passport is
in the ith can. It is reasonable to assume that each of the nine possible outcomes has
probability 1/9. If the passport is in the ith can, then the roommate must empty i cans. Let the
random variable R be defined by R Xi = i. The problem is solved by computing EV R . Now

EV R =
9

i=1

i Pr R= ai

=
9

i=1

i Pr Xi

=
9

i=1

i
1
9

=
1
9

9

i=1

i=
1
9

45=5

so, on average, Brian’s roommate can expect to search five cans.
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Example 14 shows that there may be many applications of expected value when the
random variable is measuring quantities other than money. Example 15 provides another
example.

A final example shows how we may use expected value considerations in decision
making.

Example 15

In a study designed to test the efficiency of the postal service, a researcher mailed 1,000
letters from Los Angeles to New York on August 1. He kept a careful record of the delivery
dates of each letter. The data are summarized in Table 10.2. What is the expected number
of days for delivery of a letter?

Solution
Formulate the question as a probability problem by letting the experiment consist of mailing
a letter and observing the date of its delivery. Define the random variable R to be the
number of days it takes the letter to be delivered. The problem is to find EV R .

From the data in Table 10.2, we see that R takes on values 3, 4, 5, 6, and 7 with
respective probabilities of .12, .20, .36, .21, and .11. The expected value of R is
3 .12 +4 .20 + 5 .36 + 6 .21 + 7 .11 =4.99. The researcher concluded that on average,
the postal service takes just under 5 days to deliver a letter.

Table 10.2

Date of delivery Number of letters delivered

August 4 120

August 5 200

August 6 360

August 7 210

August 8 110

Example 16

A suburban San Francisco construction firm is considering bidding on a contract to build
one of two new schools. One possibility is that the firm will submit a bid to construct a high
school. The firm estimates that it would make a $500,000 profit on the building, but that it
would cost $10,000 to prepare the plans that must be submitted with the bid. (In estimating
the profit, all costs, including that of the bid, have been considered.) The second possibility
is a bid on a new elementary school. The firm has built several elementary schools in the
recent past and estimates that the preparation costs for a bid would be only $5,000 while
the potential profit is $400,000. The construction company has enough resources to submit
only one bid. Past experience leads the company to estimate that it has one chance in five
of submitting the winning bid for the high school and one chance in four for the winning bid
on the elementary school. Which bid should the company prepare and submit?
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F. Variance and Standard Deviation

The expected value of a random variable R provides information about the “long-term”

average value of Rwhen the associated experiment is repeated over and over again. For many
purposes, however, an average value may give insufficient or even misleading information.

Consider the distribution of income among a large population. A study shows that the
average annual income per person in the United States is $30,000. Based on this figure,
the Congress decides to classify all communities into three categories of income: below
average, average, and above average. Communities in which the average income is
below $30,000 will be singled out for financial assistance. Three hypothetical communities
are of interest here, each having a population of 100 people. In the town of New Haven,
every person earns exactly $30,000. In Bristol, 99 persons are unemployed and earn
nothing, and one person has a trust fund that provides him with $3 million each year. In
Ferrisburg, the income distribution is described by Table 10.4.

In each of the three communities, the total community income is $3 million, so the
average income in each place is $30,000. The town of Bristol would be ineligible for the
governmental assistance, even though 99 percent of the population is in a desperate situation!
If we want to determine which communities need assistance, more information than average
income is required. Ameasure of “deviation” from the average provides such additional data.

Solution
The relevant data are summarized in Table 10.3.

If the company submits a winning bid on the high school, its profit is $500,000. If
it submits a bid on the high school that is not accepted, then its profit is $10,000. Thus,
the expected value of submitting a bid on the high school is $500,000 .20 +
−$10,000 .80 =$92,000. The expected value for submitting a bid on the elementary

school is $400,000 .25 + $5,000 .75 = $96,250. This indicates that the firm should
submit the bid for constructing the elementary school, as it has a higher expected profit.

Table 10.3

Contract Profit Bid cost Probability of winning

High School $500,000 $10,000 .20

Elementary School $400,000 $5,000 .25

Table 10.4 Distribution of income in Ferrisburg

Income Number of persons

$15,000 10

$24,000 20

$30,000 40

$36,000 20

$45,000 10
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To develop a measure of deviation, consider another example. There are two random
variables, R and S, defined on the same sample space and each takes on the values 1, 2, 3, 4,
5, 6, 7, but with different probabilities. These probabilities are given in Table 10.5.

It is easy to calculate thatEV R =EV S = 4. Both randomvariables have an average of
4. Yet it is more likely that the random variable Swill take on values closer to the average than
that R will. For example, the probability that R lies within 1 unit of the average value of 4 is

Pr R= 3, 4, 5 = .05+ .2+ .05= .3,

while the probability that S lies within one unit of the average is

Pr S= 3, 4, 5 = .2+ .5+ .2= .9.

In only about 1 time in 10 will the values of S differ from the mean by more than one
unit, but this will happen about 7 out of 10 times for R. The random variable R has more
“variability” or “deviation” about its average value than does the random variable S.

Suppose that an experiment is carried out using this sample space and the outcome
results in the random variable R taking on the value i. Then the number

i EV R

is called the deviation of i from EV R . The deviation will be positive if i>EV R and
negative if i<EV R .

In our example, EV R = 4, so that the deviations look like

i −4

1 −3

2 −2

3 −1

4 0

5 1

6 2

7 3

Table 10.5

i Pr R= i Pr S= i

1 .3 0

2 .05 .05

3 .05 .2

4 .2 .5

5 .05 .2

6 .05 .05

7 .3 0
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The sum of all the deviations is not a good measure of the variation of the random
variable, because that sum is 0. We would hope that the variation should be 0 only if the
random variable always assumed its expected value, and that the variation would be pos-
itive otherwise. We could make the deviations positive in a variety of ways: consider only
the absolute values i EV R or the square of the differences i EV R 2, for example.
It turns out to be more convenient to use the squares of the deviations. [Recall the
discussion of the least squares approach in Chapter 5.]

In constructing a measure of variation, then, we might simply add up the squares of
the deviations from the expected values. This is not quite satisfactory either, since the sum
would be the same, for example, for both random variables R and S in the case. The measure
of variation should indicate that R varies more than S from the average values of 4. To
obtain such a measure, multiply each particular i EV R 2 by the relative frequency with
which it is likely to occur, Pr R= i .

If this is done for the random variable R, the result is

1 4 2Pr R= 1 + 2 4 2Pr R= 2 +⋯+ 7 4 2Pr R= 7

= 9 .3 + 4 .05 + 1. .05 + 0 .2 + 1 .05 + 4 .05 + 9 .3 = 5.09.

A similar computation for the random variable S yields

1. 4 2Pr S= 1 +⋯+ 7 4 2Pr S= 7

= 9 0 + 4 .05 + 1 .2 + 0 .5 + 1 .2 + 4 .05 + 9 0 = .8

so that the random variable S has a smaller measure of variability than the random variable
R. Such a measure can be defined for any random variable.

DEFINITION Let Pr be a probability measure on a finite set E, and suppose R is a
random variable taking on values a1, a2, …, ak . Then the variance of R, denoted Var R is
the number

Var R = a1 −EV R 2Pr R= a1 + a2 −EV R 2Pr R= a2 +⋯

+ ak −EV R 2Pr R= ak =
k

i= 1

a1 −EV R 2Pr R= ai

Example 17

Let R be the random variable whose values are the number of dots showing on the top of
a fair die when it comes to rest after being rolled. As noted earlier, R takes on the values
1, 2, 3, 4, 5, 6, each with probability 1/6. The expected value of R is 7/2 (Example 11). The
variation of R is
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Given a random variable R associated with a sample space, we may define a new
random variable DR, which takes on value i EV R 2 whenever R takes on value i. Then
the variation of R is just the expected value of DR. Another formula for the variation of R is
given by the following formula.

THEOREM 4

Var R =
k

i= 1

a2i Pr R= ai − EV R 2

Proof of Theorem 4 Expand the indicated sum in the definition of variation:

Var R =
k

i= 1

ai −EV R 2Pr R= ai

=
k

i= 1

a2i − 2aiEV R + EV R 2 Pr R= ai

=
k

i= 1

a2i Pr R= ai − 2EV R
k

i= 1

aiPr R= ai + EV R 2
k

i= 1

Pr R= ai

=
k

i= 1

a2i Pr R= ai − 2EV R EV R + EV R 2 1

=
k

i= 1

a2i Pr R= ai − EV R 2

The formula of Theorem 4 is easier to use than the definition of variation since the
former requires only one subtraction while the latter demands k subtractions. Using the

Var R =
6

i= 1

i−
7
2

2

1
6

=
1
6

6

i=1

i=
7
2

2

=
1
6

1−
7
2

2

+ 2−
7
2

2

+ 3−
7
2

2

+ 4−
7
2

2

+ 5−
7
2

2

+ 6−
7
2

2

=
1
6

−
5
2

2

+ −
3
2

2

+ −
1
2

2

+
1
2

2

+
3
2

2

+
5
2

2

=
1
6

25+9+ 1+ 1+ 9+ 25
4

=
35
12
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formula to compute the variation of the random variable to Example 17, for instance,
involves the calculation

Var R =
1
6

12 + 22 +⋯+ 62 −
7
2

2

=
91
6

−
49
4

=
35
12

Since the variance is calculated using squares of the values of the random variable,
the units of Var R are the squares of the units of R. If the values of R are dollars, then the
units of Var R would be “square dollars.” In many instances, it is convenient to have a
measure of variability about the expected value that is in the same type of units as the
random variable itself. This can be accomplished by determining the nonnegative square
root of the variance. The resulting number, Var R , is called the standard deviation of R.
It is often denoted by SD R .

As a final example, note that the standard deviation of the random variable associated
with the throwing of a fair die is 35 12, which is approximately 1.71.

III. A Probabilistic Model
Chapter 3 discussed a deterministic model for single species population growth, the so-
called pure birth process. The assumptions of this process are that the population is made up
entirely of identical organisms reproducing independently at a rate that is the same for every
individual at all moments. The deterministic model for the pure birth process is the first-
order differential equation dN dt= bN, where N =N t is the population at time t and b is
the positive constant birth rate for each individual. The solution of the differential equation
is N t =Aebt where A is the population at time t = 0.

The deterministic model assumes not simply that each individual may reproduce but
that in actuality it does reproduce with absolute certainty. This section outlines a proba-
bilistic model for the pure birth process. The assumption that makes this a probabilistic
model is the assertion that there is a certain probability that a particular individual will
reproduce in a given time interval.

More precisely, we assume that the probability of reproduction in a very short time
interval is directly proportional to the length of the interval—that is, there is a constant b
such that in any small time interval of duration Δt the probability of reproduction is bΔt.
Take Δt as so small that no individual can reproduce more than once in the time interval.
Thus, during the interval of lengthΔt, a given individual either produces one offspring with
probability bΔt or produces no offspring with probability 1 bΔt. In a population of N
organisms, the probability of a birth during the time interval is NbΔt.

Let PN t+Δt denote the probability that the population is of size N at time t+Δt.
This outcome can occur in one of two distinct ways:

(a) At time t, there were N 1 individuals and one birth occurred in the next Δt seconds.

(b) At time t, there were N individuals in the population and no births occurred in the
next Δt seconds.

(By choosing a small enough Δt, it is safe to assume that not more than one birth takes
place. As in any pure birth process, the assumption is that no individual dies.)

322 CHAPTER 10 Elementary Probability



For each positive integer N N = 1, 2, 3, … , the fact that (a) and (b) describe disjoint
events gives

PN t+Δt =PN − 1 t b N 1 Δt+PN t 1 b NΔt 1

Rewrite this equation as

PN t+Δt PN t = bNΔtPN t +PN − 1 t b N 1 Δt

and divide each side by Δt to obtain

PN t+Δt −PN t

Δt
= bNPN t +PN − 1 t b N 1 2

Taking the limit of each side of (2) as Δt tends to zero yields a differential equation:

dPN t

dt
= bNPN t + b N 1 PN − 1 t 3

There is such a differential equation for each positive value of N. Denote the size of
the population at time 0 by A so that PA 0 = 1 and PN 0 = 0 whenever N ≠A.

When N is equal to the original population A, Eq. (3) becomes

dPA t

dt
= bAPA t + b A 1 PA− 1 t 4

Under the assumption of this simple model that there are only births and no deaths,
the population is always at least as large as A. The probability that there are ever fewer than
A individuals is 0. In particular, PA− 1 t = 0 for all t. Eq. (4) then simplifies to

dPA t

dt
= bAPA t 5

If we let y=PA t , Eq. (5) is of the form dy dt= bAy, which can be solved by
integration to obtain y= y0e− bAt, where y0 = y 0 =PA 0 = 1. Thus, the model gives

PA t = e− bAt. 6

Eq. (6) predicts the probability that the population is still at size A at time t—that is,
the probability that no births have occurred in the interval 0,t . Note that this probability is
always positive, but that it decreases as time increases, asymptotically approaching 0 as t
increases without bound.

Thus far, the consequences derived from this model are

PN t =
0 if N <A

e− bAt if N =A
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The next step is to calculate PA+ 1 t , which is the probability of a population of A+ 1
individuals at time t. Substitute N =A+ 1 into Eq. (3):

dPA+ 1 t

dt
= b A+ 1 PA+ 1 t + bAPA t

and use the result of Eq. (6) to obtain

dPA+ 1 t

dt
+ b A+ 1 PA+ 1 t = bAe− bAt 7

Eq. (7) has the form

dx

dt
+ b A+ 1 x= bAe bAt 8

where x=PA+ 1 t . Eq. (8) is a first-order linear differential equation. It may be solved (see
Appendix V) by multiplying through by an integrating factor, eb A+ 1 t, then integrating:

eb A+ 1 t dx

dt
+ eb A+ 1 tb A+ 1 x= bAe bAteb A+ 1 t = bAebt 9

or

d

dt
eb A+ 1 tx= bAebt 10

which becomes, upon integration,

eb A+ 1 tx=Aebt +Constant 11

which is to say

eb A+ 1 tPA+ 1 t =Aebt +Constant. 12

Since PA+ 1 0 = 0, the constant of integration is equal to A and the solution of the
differential equation is

PA+ 1 t =Ae Abt 1 e− bt 13

Once PA+ 1 t is known, it can be used to find PA+ 2 t by making use of Eq. (13) and
the modeling Eq. (3) with N =A+ 2:

dPA+ 2 t

dt
= b A+ 2 PA+ 2 t + b A+ 1 PA+ 1 t 14
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or

dPA+ 2 t

dt
+ b A+ 2 PA+ 2 t = b A+ 1 Ae−Abt 1− e− bt 15

Eq. (15) is again a first-order linear differential equation. Multiply each side of the
equation by eb A+ 2 t, integrate, and then use the fact that PA+ 2 0 = 0 to obtain the solution

PA+ 2 t =
A+ 1 A

2
e Abt 1 e− bt 2 16

Continue in a similar manner to find PA+ 3 t , PA+ 4 t , PA+ 5 t , and so forth. The
general formula, which may be checked by induction, is

PN t =
N − 1

A − 1
e−Abt 1− e− bt N −Afor all N ≥A 17

where

N − 1

A − 1
=

N − 1
A− 1 N −A

(see Exercise 58).
The solution (Eq. (17)) of the probabilistic model for a pure birth process gives the

probability distribution of the size of the population at time t. While the deterministic model
gives a single number as the prediction for the population size at time t, the probabilistic
model gives much more information—namely, the relative likelihood of each different
possible population size at time t.

The deterministic model was much simpler to treat mathematically than the proba-
bilistic one. What is the connection between these two models? In what sense is the
deterministic model an approximation for the probabilistic one? This relationship becomes
clearer if the solution of the probabilistic model is used to compute the expected value of the
size of the population at time t. This expected value turns out to be Aebt, the number pre-
dicted by the deterministic model. The probabilistic model also provides a measure of the
variation from this expected value, a measure that is unavailable if a deterministic approach
alone is used. The variation is Aebt ebt 1 . The calculation of expected value and variance
is left to the exercises.

IV. Stochastic Processes
A. Definitions

A stochastic process is a sequence of experiments in which the outcome of each experiment
depends on chance. A stochastic process consisting of a finite number of experiments, each
having a finite number of possible outcomes is called a finite stochastic process. (The Greek
word “stochos” means “guess.”)

The experiments may or may not be related to each other. The outcomes of one
experiment may or may not affect the probabilities of the outcomes of subsequent
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experiments. We will emphasize two types of stochastic processes in this book. In the first,
the experiments are mutually independent. In the second, called a Markov chain, the
likelihood of an outcome of one experiment depends only on the outcome of the imme-
diately preceding experiment.

Stochastic processes have been widely used as mathematical models in the study of
many diverse social, physical, and biological problems. Researchers have used stochastic
processes to investigate problems in economics, genetics, learning theory, educational
planning, demography, job mobility, social conformity, evolution, consumer buying
behavior, the geographical diffusion of innovations, and in many other fields. In many of
these applications a process is studied that may be in one of various “states” at each
moment. The “states” correspond to the outcomes of the experiments. A sequence of
experiments is constructed by examining the process at equally spaced time intervals.

Example 18

TheBoardof Trustees of a small Vermont collegedecides to choosea student fromoneof two
dormitories to serve on a housing committee. A dorm will be chosen at random and then a
student will be selected at random from that dorm. The dormitories are Starr Hall and Forest
Hall. There are 30 students in Starr; 20 oppose coeducational housing and 10 favor it. Of the
60 students living in Forest, only 10 favor coed housing, and all the others oppose it. What is
the probability that the student chosen to serve on the committee will favor coed housing?

Solution
Describe the situation in terms of a stochastic process involving two experiments, each
with two possible outcomes. In experiment 1, a dorm is chosen. There are two possible
outcomes: Starr S and Forest F , with probabilities Pr S =Pr F = 1 2. In experiment 2,
a student is chosen. The possible outcomes are: Approves coed housing A or
disapproves coed housing D . The probabilities of A and D depend on which dorm is
chosen—that is, they are conditional probabilities. These probabilities are

Pr A S =
10
30

=
1
3
, Pr D S =

20
30

=
2
3

Pr A F =
10
60

=
1
6
, Pr A F =

50
60

=
5
6

The problem is to determine Pr(A). By Theorem 1 and the definition of conditional
probability,

Pr A = Pr A∩F +Pr A∩FC

= Pr A∩F +Pr A∩S

= Pr A F Pr F +Pr A S Pr S

=
1
6

1
2

+
1
3

1
2

=
1
4
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B. Tree Diagrams

A convenient way to study stochastic processes is through the use of tree diagrams. A tree
diagram summarizing the information of Example 18 is shown in Fig. 10.1.

From the starting point, or node, there are two branches, corresponding to the two
possible outcomes of the first experiment. The numbers along each branch give the
probabilities of each outcome. From each outcome of the first experiment there are again a
pair of branches representing the two possible outcomes of the second experiment. The
numbers on these branches indicate the probabilities of the outcomes.

The probability of tracing through any particular path in a tree diagram is the product
of the probabilities along the branches of that path. To find the probability of selecting a
student who approves coed housing, Pr A , simply add up the probabilities of all distinct
paths from the start to outcome A. In a similar fashion, the probability of a particular
outcome of the final experiment of a sequence can be computed by summing the proba-
bilities of every path in the tree diagram, which ends at that outcome. The next example
gives an additional illustration.

1/2

1/2 1/3

2/3

5/6

1/6
A

D

A

D

S

F

(Start)

Fig. 10.1 Tree diagram corresponding to
Example 18.

Example 19

The winners of some tennis matches are determined by playing a best-of-three sets
competition. The competitors keep playing until one of them wins two sets; no set may end
in a tie. Fig. 10.2 shows a tree diagram illustrating the possible outcomes for one of the
players. Note that the outcomes of certain sets determine whether or not successive sets
are played.

Suppose the player under study has an even chance of winning the first set, that
whenever she wins a set, she has a tendency to relax in the next set so that her probability
of winning drops to 3/8, and that whenever she loses a set, she exerts herself to such an
extent that her probability of winning the next set jumps to 3/4. What is the probability that
she will win the match?
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The probabilities along the branches given by this information are indicated in
Fig. 10.3.

The probability of winning is

Pr Wins match = Pr WW +Pr WLW +Pr LWW

=
1
2

3
8

+
1
2

5
8

3
4

+
1
2

3
4

3
8

=
9
16

where Pr LWW is the probability of losing the first set and then winning the second and
third sets. The events WW and WLW are similarly defined. After the first set, the probability
of winning a subsequent set depends only on the result of the previous set. This probability
does not depend, for example, on the total number of sets she has won previously, or
on how many sets have been played. The assumptions about this player are those of a
Markov chain.

As an alternative possibility, suppose the results of each set are independent of the
results of earlier sets. Then the probabilities along each branch might be assigned values of
1/2. In this case, the probability of winning the match is given by

Pr WW +Pr WLW +Pr LWW =
1
2
1
2
+
1
2
1
2
1
2
+
1
2
1
2
1
2
=
1
2

FIGURE 10.2 Tree
diagram for best-of-three
tennis competition.
W =Win, L=Lose,
and (*) indicates that
the match terminates
at the node.

(Start)

W

L

W W(*)

W(*)

W(*)

L(*)

L(*)
L

L(*)

FIGURE 10.3

(Start)

1/2

1/2
W

3/8

5/8

1/4

3/8

5/8

3/4

W(*)

L

W

1/4

3/4

L

L(*)

L(*)

L(*)

W(*)

W(*)
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C. Examples

This chapter concludes with brief descriptions of a number of stochastic processes in which
a single experiment is repeated a number of times. Each repetition of the experiment will be
a “step,” and the outcomes of the experiment are “states.” The viewpoint is one of studying
a process that moves in a sequence of steps through a set of states. At each step, there are
certain probabilities of being in each of the possible states; these probabilities are the
likelihoods of the various outcomes of the experiment.

As a third possibility, suppose the player gets stronger as the match goes on so that
her probability of winning each set is twice the probability of winning the previous set. If her
probability of winning the first set is 1

5, then her probability of winning the match is

Pr WW +Pr WLW +Pr LWW =
1
5
2
5
+
1
5
3
5
4
5
+
4
5
2
5
4
5
=

54
125

The assumptions in this case do not correspond to either a mutually independent
sequence of experiments or to a Markov chain.

Example 20

At each a step a coin is tossed. There are two possible states: heads and tails. The
probability of being in the “head” state on each step is 1 2. It is independent of all previous
steps.

Example 21

Each step is a new day. The states are the hours of the day. We are interested in the time
you go to sleep. There is a probability that can be attached to each of the 24 states for
today’s step. Knowledge of what the probabilities were yesterday will help determine what
probabilities to assign for the states today.

Example 22

Each step is a new month. There are two states, “Flakes No More” and “Head, Neck, and
Shoulders,” two antidandruff shampoos. We are concerned with the percentage of con-
sumers who use each product. Interpret this as the probability associated with picking a
person at random and determining which shampoo she uses. If 60% of the consumers use
Flakes No More, assume that there is a probability of .6 that a randomly chosen person
uses that shampoo.
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The next chapter is devoted to a detailed study ofMarkov chains, the type of stochastic
process that has been most widely used in model building in the social and life sciences.

Example 24

A particle is constrained to move along the x-axis. It starts at 0 and at each step it may
move one unit to the right or one unit to the left. The direction of motion is randomly
chosen. To view this motion as a stochastic process, consider that the particle may be in
any one of an infinite number of states, corresponding to possible positions it might reach
on the x-axis 0,± 1,± 2,… . The study of random walk along a line, in the plane, or in higher
dimensional spaces has many applications in modern physics.

Example 25

A mathematically inclined sports broadcaster applied stochastic processes to study the
movement of the puck in a hockey game between the Montréal Canadians and the
Philadelphia Flyers. The playing area of the hockey rink can be divided into five states: center
ice, Montréal territory, Philadelphia territory, Montréal goal, and Philadelphia goal. Each step
corresponds toachangeofstateof thepuck. Thus, thepuckcannotenter thestateof “Montréal
goal” fromthestateof “center ice”withoutfirst passing through thestateof “Montréal territory.”

Example 23

An investigator for the Equal Opportunity Commission analyzed job mobility for women in
Cook County, Illinois. She determined from census data the percentage of women who
were professionals, skilled workers, and unskilled workers. She amassed data for six
successive generations of women. She then formulated a stochastic process with six steps
and three states. Each step corresponded to a new generation. The states were: profes-
sional, skilled, and unskilled.

Example 26

The simplest type of inheritance of traits in human beings occurswhen a trait is governed by a
pair of genes, each of which may be of two types, say A and B. An individual may have an AA
combination or AB (which is genetically the same as BA) or BB. Very often, the AA and AB
types are indistinguishable in appearance, in which case it is said that A dominates B.

An individual is called dominant if he has AA genes, recessive if he has BB, and hybrid
if he has an AB pairing.

In reproduction, the offspring inherits one gene of the pair from each parent. A basic
assumptionofgenetics is that thesegenesareselectedat random, independentlyofeachother.

Geneticists are interested in the probability of an individual being in one of the three
states—dominant, recessive, or hybrid—and in how this probability changes from gener-
ation to generation. Each succeeding generation is a new step in this stochastic process.
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EXERC I S E S

I. The Need For Probability Models

1. Can you think of any further objections to the use of
deterministic models in the social or life sciences?

2. Are the responses to the objections made against deter-
ministic models adequate to your way of thinking?

3. In what ways can physics be validly described as more
“rigorous” than mathematical social science?

II. What Is Probability?

A. Fundamental Definitions

4. Find a probability measure consistent with the obser-
vation that a flipped coin shows tails eight times more
frequently than heads.

5. (a) Show that the definition of Pr X in Example 3
establishes a valid probability measure.

(b) Show that the definition of Pr X in Example 4
establishes a valid probability measure.

6. Construct an example of a sample space on a set E so
that for some nonempty subset X of E, Pr X = 0.

7. Prove Theorem 1.

8. Find Pr A∪B if Pr A = .6, Pr B = .7, and
Pr A∩B = .5.

9. If Pr A∩B = 1 5, Pr AC = 1 4, and Pr B = 1 3,
find Pr A∪B .

10. Prove that Pr X ∪ Y ∪Z =Pr X + Pr Y + Pr Z
Pr X ∩ Y Pr X ∩Z Pr Y ∩Z +Pr X ∩ Y ∩ Z
for any three subsets X, Y , Z of a sample space.

11. Roll a pair of dice and assume that all 36 possible
outcomes are equiprobable. Find the probability of
each of the following events:

(a) The sum of the numbers on the faces is 7.

(b) The sum of the numbers is odd.

(c) Both numbers are odd.

(d) The product of the numbers is greater than 10.

12. The odds in favor of an outcome are r to s if the
probability of the outcome is p and r s= p 1 p .

(a) Show that if the odds in favor of an outcome are r
to s, then the probability that the outcome will
occur is r r+ s .

(b) If you believe the Los Angeles Dodgers have 1
chance in 3 of winning the World Series next year,
what odds should you offer in making bets about
the series?

13. Probability measures may also be defined on some
infinite sets. Let E be the set of all positive integers and
let the weight of integer j be equal to 1 2 j. The
probability, Pr X , of a subset X of E is defined to be
the sum of the weights of the elements of X.

(a) Show that Pr E = 1.

(b) Show that Pr, defined in this manner, satisfies the
defining properties of a probability measure.

(c) What is the probability that an integer chosen from
this sample space will be even?

B. Conditional Probability

14. Under what conditions does Pr X Y =Pr Y X ?

15. In Example 5, find the probability that Mazzoli wins
given that Levine loses. Which candidate benefits most
from Levine’s withdrawal? (Note that most may be
defined in several different ways.)

16. There are three chests, each having two drawers. The
first chest has a gold coin in each drawer, the second
chest has a gold coin in one drawer and a silver coin in
the other, and the third chest has a silver coin in each
drawer. A chest is chosen at random and a drawer
opened. If that drawer contains a gold coin, what is the
probability that the other drawer contains a gold coin?
Warning: The answer is not 1/2.

17. IfX andY are eventswith positive probabilities, show that

Pr X Y Pr Y = Pr Y X Pr X

18. Consider the following problem and three proposed
solutions. Problem: A census taker is interviewing Mr.
Linovitz who is babysitting his son. Mr. Linovitz tells
the census taker that he has two children. What is the
probability that the other child is a boy?

Solution 1 There are four possibilities. Mr.
Linovitz has two sons, he has two daughters, he had a
son first and then a daughter, or he had a daughter and
then a son. In only one of the four cases is the other
child also a boy. Thus, the probability is 1/4.
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Solution 2 Since we know that one of the chil-
dren is a boy, there are only three possibilities: two
sons, son first and then daughter, daughter first and
then son. The probability is 1/3.

Solution 3 There are only two possibilities: the
other child is either a boy or a girl. The probability is 1/2.

Which of the three solutions is correct?

C. Bayes’s Theorem

19. There are three cookie jars in our kitchen containing
both chocolate and vanilla cookies. The green jar
contains 3 chocolate and 4 vanilla cookies, the blue
jar contains 5 chocolate and 2 vanilla, and the red jar
contains 2 chocolate and 5 vanilla cookies. While his
parents are asleep, Eli sneaks downstairs to the dark-
ened kitchen and steals a cookie. After biting it, he
discovers the cookie is a chocolate one. What is the
probability that it came from the blue jar?

20. A recently devised self-administered test for pregnancy
has been found to have the following reliability. The
test detects 75% of those who are actually pregnant, but
does not detect pregnancy in 25% of this group. Among
those women who are not pregnant, the test detects
85% as not being pregnant, but indicates 15% of this
group as being pregnant. It is known that in a large
sample of college women 2% are pregnant. Suppose a
coed is chosen at random, given the test, and registers
as being pregnant. What is the probability that she
actually is?

21. If Detective Friday (Example 7) never takes drugs, but
is tested every week, what is the probability that he
will have at least one positive test in the first 6 months?

22. The National Cancer Institute estimates that 1 in 5,000
women in the United States has invasive cervical
cancer. One of the major diagnostic tests used today is
the Pap smear, which has a specificity of .95 and a
sensitivity somewhere between 70% and 80%. What is
the probability that a randomly chosen woman who
gets a positive test actually has cancer? If a cancer-free
woman has an annual Pap smear beginning at age 20,
how likely is she to receive at least one false-positive
test by the time she reaches middle age?

D. Independent Events

23. A dog has a litter of four puppies. Is it more likely that
there will be two males and two females or exactly
three of the same gender?

24. Sandra and Matt independently proofread the manu-
script of Ron’s book. Sandra found 60 errors and Matt
identified 40, 20 of which Sandra had also reported.

(a) What is the total number of distinct errors they
discovered?

(b) Estimate the number of errors that remain
unnoticed.

25. Suppose you’re on the game show Let’s Make a Deal,
and you’re given the choice of three doors. Behind one
door is a car, the others, goats. You pick a door, say #1,
and the host, Monty Hall, who knows what’s behind the
doors, opens another door, say #3, which has a goat. He
says to you: “Do you want to pick door #2?” Is it to
your advantage to switch your choice of doors?

26. John, who is a better player than you, offers you the
opportunity to play a sequence of three games where
you will play alternately between John and Pete, who
is an even better player than John. You will receive
a large cash prize if you win at least two games in a
row. You have a choice between playing Pete in games
1 and 3, facing John in game 2 or playing John in the
first and last games with Pete as your opponent in
the second game. Suppose your probability of beating
John in a single game is q and of defeating Pete is p.
Who would you chose to face in game 1?

27. If X and Y are disjoint subsets of E, under what con-
ditions are they independent events?

28. An urn contains eight marbles numbered from 1 to 8.
A marble is picked at random and removed from the
urn. Then a second marble is picked at random from
the remaining seven marbles.

(a) Find the probability that the numbers on the two
chosen marbles differ by two or more.

(b) What is the answer to (a) if the first marble is
replaced in the urn before the second marble is
chosen?

29. Polya’s urn scheme. An urn originally has r red mar-
bles and b black marbles. A marble is selected at
random and removed from the urn. Then that marble
and c other marbles of the same color are added to the
urn. This procedure is repeated n 1 additional times.
Show that the probability of selecting a red ball at any
trial is r b+ r .

30. Suppose X, Y , and Z are mutually independent events
and Pr X ∩Y ≠ 0. Show that Pr Z X ∩Y = Pr Z .
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31. The factorial of a positive integer n is denoted n and is
defined to be the product of the integers from 1 to n.
Thus, 3 = 3× 2× 1= 6. For convenience, we define
0 = 1.

(a) Compute 4!, 5!, 6!.

(b) Show that n+ 1 = n+ 1 n for any positive
integer n.

32. The symbol
n
k

where n and k are nonnegative

integers and k≤ n is defined to be the number n
k n− k

(a) Compute
6
k

for k= 0, 1, 2, 3, 4, 5, 6.

(b) Show that
n
k

=
n

n− k
.

(c) Prove that k
n
k

= n
n− 1
k− 1

.

(d) Prove that
n
k

is always an integer.

33. (a) Show that the number of distinct ways of arrang-
ing r objects in a straight line is r .

(b) Show that the number of distinct ways of choosing

k objects from a set of n objects is
n
k

(c) An experiment has two possible outcomes: a suc-
cess with probability p and a failure with probability
1 p. Show that the probability of obtaining exactly
k successes in n repetitions of the experiment is

n

k
pk 1 p n− k

34. (a) Show that p+ q n =
n

k= 0

n
k

pkqn− k if n is a
positive integer.

(b) Prove that
n

k = 0

n
k

pk 1− p n− k = 1.

E. Expected Value

35. In Example 16, let p and q be the probabilities of
winning the bids for the high school and the elemen-
tary school, respectively. For which values of p and q
are the expected values of the two bids equal?

36. In the game of “craps” a player rolls a pair of dice. If the
sumof the numbers shown is 7 or 11, hewins. If it is 2, 3,
or 12, he loses. If it is any other sum, he must continue
rolling the dice until he either repeats the same sum (in

which case he wins) or he rolls a 7 (in which case he
loses). Suppose the outcome of each round is a win or a
loss of $5. What is the probability that he will win a
round? What is the expected value of shooting craps?

37. A roulette wheel has the numbers 0, 1, 2, ..., 36 marked
on 37 equally spaced slots. The numbers from 1 to 36
are evenly divided between red and black. A player
may bet on either color. If a player bets on red and a
red number turns up after the wheel is spun, she
receives twice her stake. If a black number turns up,
she loses her stake. If 0 turns up, then the wheel is spun
again until it stops on a red or a black. If this is red, the
player receives only her original stake, and if it is
black, she loses her stake. If a player bets $1 on red
with each spin, what is her expected value of winning?

38. A new-car dealer receives nine station wagons from the
factory for sale. The next day, a telegram from the fac-
tory informs him that there is strong reason to believe
that the brakes in two of the cars are defective. What is
the expected value of the number of cars the dealer will
have to test in order to find both defective ones?

39. (a) Show that
n

k= 0
k

n
k

pk 1− p n− k = n
n

k = 1

n− 1
k− 1

pk 1− p n− k

(b) Show that the sum in (a) is also equal to

np
n− 1

k= 1

n− 1
k

pk 1− p n− k − 1

(c) Show that the sum in (b) is equal to np.

(d) Find the expected number of heads in n tosses
of a coin if the probability of a head on each toss
is p.

40. Let R and S be random variables defined on a set E.
Then the random variable R+ S is the function defined
on E whose value is R+ S e =R e + S e for each
element e of E. Prove that EV R+ S =EV R +
EV S .

41. Extend the result of Exercise 40 to show that if
R1, R2, . . . , Rk are random variables on a set E, and

X =
k

i= 1
Ri is defined by X e =

k

i= 1
Ri e , then

EV X =
k

i= 1
EV Ri

42. An experiment has two possible outcomes: success
with probability p and failure with probability q.
Suppose the experiment is repeated n times in such a
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manner that the outcomes on successive repetitions are
independent. Let Ri be the random variable with the
value 1 if the outcome of the ith experiment is a suc-
cess and 0 if it is a failure. Show that EV Ri = p and

EV X = np if X =
n

i= 1
Ri. Find that the expected

number of heads in n tosses.

43. Let R be a random variable defined on a set E. If c is
any constant, define the random variable cR and prove
that EV cR = cEV R .

44. Let R be a random variable with nonnegative values
a1, a2, a3…, defined on the sample space of Exercise
13. The expected value of R is defined to be EV R =
∞

i= 1
aiPr R= ai provided this infinite series converges.

(a) Suppose R j = 3−j for each j in E. Compute
EV R .

(b) Suppose R j = 2j for each j in E. Does R have an
expected value? Interpret this result in the light of
the St. Petersburg paradox.

(c) How would you define expected value for a ran-
dom variable defined on the set of all integers
greater than or equal to a fixed positive integer A?

45. A coin has probability p of Heads. Show that the
expected number of flips until you get a Heads is 1 p.

46. China attempted to implement a “One Child” policy
whereby each family was limited to one child. Because
of the traditional importance of having a son in Chi-
nese culture, many couples were aborting female
fetuses or putting baby girls up for adoption so that
they might try again for a son. Suppose China changed
to a “One Boy” policy whereby families could have as
many children as they wanted until they had a boy who
would then be their last child. What would be the
expected family size under the “One Boy” policy?
What would be the expected ratio of boys to girls in
China a generation or two in the future? (Note that the
large population of China would mean that there would
be many families with 4 or 5 or 6 girls.)

F. Variance and Standard Deviation

47. Find the variance and standard deviation of income in
New Haven, Bristol, and Ferrisburg.

48. A random variable takes on the values 2, 1, 0, 1, 2,
with probabilities .2, .3, .3, 1, .1, respectively. Find the
expected value, variance, and standard deviation.

49. Show that the variance of a random variable is zero if
and only if the random variable takes on exactly one
value with probability 1.

50. Toss a coin eight times and let R denote the number of
heads. Find the expected value, variance, and standard
deviation of R if

(a) The coin is a fair one.

(b) The coin is weighted so that it comes up heads
with probability 3/5.

51. Show that the variance of a random variable can be
determined from the formula Var R =EV R2

EV R 2

52. If R is a random variable and c is a constant, show that
Var cR = c2Var R .

53. Suppose R is a random variable defined on a set E and
b is a constant. Define a new random variable, R+ b,
by R+ b e =R e + b for each e in E. Show that
Var R =Var R+ b .

54. Find the variance in the number of heads in n tosses of
a coin if the probability of a head on each toss is p.
(See Exercise 39; you should arrive at the number
np 1 p .)

55. Suppose R and S are random variables defined on the
same sample space. What is the relation between
Var R+ S , Var R , and Var S ?

III. A Probabilistic Model

56. Verify the details in the derivation of PA+ 2 t .

57. Use PA+ 2 t and Eq. (3) to compute PA+ 3 t .

58. Prove, by induction on N, that PN t =
N − 1
A − 1

e− bAt 1 e− bt N −A for each N ≥A.

59. Show that PN t induces a probability measure on the
set of all integers greater than or equal to A. You must

show that
∞

N =A
PN t = 1.

60. Graph PN t as a function of t. Show that, for a fixed
N >A, PN t first increases and then decreases toward
0. For what value of t is the probability greatest?

61. In this problem, you will compute the value of the
population at time t for the stochastic pure birth pro-
cess. For convenience, let PN denote PN t .
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(a) With this notation, show that Eq. (3) becomes

dPN

dt
= bNPN + b N I PN − 1.

(b) Use the fact that PA− 1 t = 0 for all t to show that
∞

N =A

−N2PN +N N − 1 PN − 1

=
∞

N =A
PN N + 1 N −N2 =

∞

N =A
NPN

(c) Let E=E t denote the expected value of
PN =PN t . Show that E 0 =A.

(d) Show that E=
∞

N =A
NPN .

(e) Justify each step in the following calculation:

dE

dt
=

∞

N =A

N − bNPN + b N − 1 PN − 1

= b
∞

N =A

−N2PN +N N − 1 PN − 1

= b
∞

N =A

NPN = bE

(f) The expected value E then satisfies the differential
equation dE

dt = bE with initial condition E 0 =A.

Show that the solution of this equation is
E t =Aebt .

62. Use the approach of Exercise 61 to show that the
variance of PN t is given by Aebt ebt 1 .

IV. Stochastic Processes

63. In Example 17, suppose the probability of choosing a
dorm is proportional to the number of residents in it.

(a) Show that Pr F = 2 3.

(b) Determine Pr A .

64. Draw a tree diagram representing the possible out-
comes of a baseball World Series. The winner of the
series is the first team to win four games.

65. If a baseball team has a probability of .55 of winning
each World Series game in which it competes, find

(a) The probability that it sweeps the series in four
games

(b) The probability that it wins the series after losing
the first two games

(c) The probability that it wins the series

SUGGES T ED PRO J ECTS

1. The stochastic pure birth processmay be generalized to a
birth-and-death process. In addition to the basic
assumptions of the pure birth process, suppose that the
probability that an individual will die in a short time
interval is directly proportional to the length of the
interval. Show that this assumption leads to the equation

PN t+Δt =PN − 1 t b N 1 Δt+PN t 1
b+ d NΔt +PN + 1 t d N + 1Δt

for some positive constants b and d.
Derive a set of differential equations analogous

to those of Eq. (3) of the text. Solve, if possible, the
equations for PN t , where N =A, A± 1, A± 2,…

Show that the expected value of the population
at time t is Ae b d t . Compare the probabilistic model
with the deterministic one. Find the probability that a
population governed by a birth-and-death process will
eventually become extinct.

2. As a different generalization of the pure birth process,
suppose the proportionality factor b is not constant, but

is a function of the population N. Show that this leads
to a model of the form

dPN t

dt
= bNPN t + bN − 1PN − 1 t .

Investigate such models.

3. Develop in as much detail as possible a probabilistic
model for logistic population growth.

4. Investigate how misconceptions of probability can
affect legal decisions. These misunderstandings are
often called the “prosecutor’s fallacy” or the “defense
attorney’s fallacy” or even the “juror’s fallacy.” Some
of the common errors involve confusing Pr A B with
Pr B A or multiplying together probabilities of events,
which are not independent, to find the probability of a
compound event. The use of DNA evidence, results of
lie detector tests, and the accuracy of eyewitness tes-
timony have all been plagued by misuse of probability.
See the References.

You can find a listing of references and suggestions for additional reading on the books’s website, www.wiley.com
/college/olinick
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CHAPTER
11

Markov Processes

Often do the Spirits
Of great events

stride on before the events.
And in today already walks tomorrow . . .

—Samuel Taylor Coleridge

I. Markov Chains
A. Definitions

Markov chains have been and continue to be one of the most important and popular tools of
mathematical model builders. This chapter presents some of the fundamental ideas of
Markov chains and indicates some of their uses. More extended applications are presented
in Chapters 12, 13, and 17. The necessary mathematical prerequisites for reading this
chapter are the concepts of probability presented in Sections II (A–D) and IV of Chapter 10
and the elementary properties of matrix algebra discussed in Appendix II.

The fundamental principle underlying Markov processes is the independence of the
future from the past if the present is known. Imagine an experiment that is repeated once
each day for many days. If the probabilities of the outcomes of tomorrow’s experiment
depend only on the outcome of today’s experiment and do not depend on the results of any
previous experiments, then you are dealing with a Markov process.

In slightly different language, a finite Markov chain is a stochastic process with a
finite number of states in which the probability of being in a particular state at the n 1 st
step depends only on the state occupied at the nth step; this dependence is the same at all
steps. More formally, there is the following definition:

DEFINITION An experiment with a finite number of possible outcomes S1, S2, . . . , Sr
is repeated a number of times. The sequence of outcomes is aMarkov chain if there is a set
of r2 numbers {pij} such that the conditional probability of outcome Sj on any experiment
given outcome Si on the previous experiment is pij—that is,

pij Pr Sj on experiment n 1 Si on experiment n , 1≤ i, j≤ r, n 1, 2, . . .

The outcomes S1, S2, . . . , Sr are called states, and the numbers pij (which depend
only on i and j not on n) are called transition probabilities. The transition probabilities may
be arranged in a matrix with r columns and r rows:
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P

p11 p12 . . . p1r

p21 p22 . . . p2r

. . .

pr1 pr1 prr

1

which is called the transition matrix for the Markov chain.

Note that each entry of a transition matrix is nonnegative and that the sum of the
numbers in each row of the matrix is 1.

B. State Diagrams

Transition probabilities may be conveniently presented in a matrix. They may also be
shown in what is called a transition diagram or state diagram. This is a graph with vertices
corresponding to the states and a directed arc from vertex i to vertex j if the transition
probability pij is positive. The numerical values of the transition probabilities are written
alongside the arcs. A transition diagram for Example 1 is shown in Fig. 11.1.

EXAMPLE 1

A recent study focused on the relationship between the birth weights of English women and
the birth weights of their daughters. The weights were split into three categories: low (below
6 pounds), average (between 6 and 8 pounds), and high (above 8 pounds). Among women
whose own birth weights were low, 50% of the daughters had low birth weights, 45 percent
had average weights, and 5% had high weights. Women with average birth weights
had daughters with average weights half of the time, while the other half was split
evenly between low and high categories. Women with high birth weights had female babies
with high weights 40% of the time, with low and average weights each occurring 30% of
the time.

Example 1 can be considered as a Markov chain with three states (low, average, high),
corresponding to an “experiment” of choosing a woman at random and noting her birth
weight. The transition matrix, easily derived from the verbal description, looks like this:

P

M

o

t

h

e

r

Daughter
Low Average High

Low

Average

High

.5 .45 .05

.25 .5 .25

.3 .3 .4

2

I. Markov Chains 337



Consider this as an example of Markov chain with states of TV, radio, and stereo. The
transition matrix is

P

T S

o p

d e

a c

y i

’ a

s l

Tomorrow’s Special
TV Radio Stereo

TV

Radio

Stereo

1 2 1 3 1 6

1 3 1 2 1 6

1 2 1 2 0

3

and the state diagram is shown in Fig. 11.2.
The loops at the TV and radio vertices correspond to the fact that it is possible for

either of these items to be repeated as the specials on consecutive days. The absence of a
loop at the stereo vertex reflects the store’s policy of never repeating the stereo as a special
item on successive days.

Although the transition matrix is a powerful tool in analyzing Markov chains, the
state diagram often reveals information about the process not immediately apparent from
the matrix. For example, Fig. 11.2 indicates that no matter what item is the special today, it
is possible for any one of the three items to be the special on the day after tomorrow.

FIGURE 11.1 State dia-
gram for Example 1 about
birth weights.

.5

Low .3

.3

.5

.25

.25

Average
.45

.05

High .4

Example 2

The Audio-Video Den, an electronics store in Milwaukee, has one item on special sale each
day; it is either a television, a radio, or a stereo set. Stereos are never on sale two days in a
row; if the store has a stereo as the special one day, it is equally likely to have a TV or radio
on special the next day. If the special one day is a TV or a radio, there is an even chance of
continuing the item the next day. If the special item is changed from a TV or radio, only one-
third of the time will a stereo set be the special the next day.
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Fig. 11.3 presents a state diagram for another Markov chain. It is evident from this
diagram that S1 can be reached, at most, once. If the process is in state S1 at the nth step,
then it will be in state S2 or S3 at the (n+ 1)st step. From either of these states it is impossible
to return to S1.

The transition matrix for this Markov chain would have the form

P

S1 S2 S3
S1
S2

S3

0 a 1− a

0 b 1− b

0 c 1− c

4

for some positive numbers a, b, and c.

C. Tree Diagrams

Since Markov chains are particular examples of stochastic processes, they can be analyzed
with the help of tree diagrams. For example, if a stereo is the special sale item today, we
may be interested in the probability that a stereo will again be the special item 3 days from
now. The tree diagram that enables us to answer this question is drawn in Fig. 11.4. Note
that we have omitted the branches corresponding to a zero probability and have used the
notation S Stereo, R Radio, T Television.

TV

1
6

Stereo

1
2

Radio

1
2

1
2

1
6

1
3

1
2

1
6

FIGURE 11.2 State diagram for Example 2 about the
Audio-Video Den.

S1

S2

S3

FIGURE 11.3
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From the tree diagram, we see that there are four distinct ways the stereo can be the
special sale item 3 days from now: RRS, RTS, TRS, and TTS. Here RRS indicates that radios
are the special items for tomorrow and the next day and a stereo the day after that. The
desired probability is

Pr RRS Pr RTS Pr TRS Pr TTS

1
2

1
2

1
6

1
2

1
3

1
6

1
2

1
3

1
6

1
2

1
2

1
6

1
24

1
36

1
36

1
24

5
36

In Section II, it will be shown how the same question can be more easily answered by
use of the transition matrix and the technique of matrix multiplication.

D. Initial Probabilities

In order to describe the way a Markov chain develops, we need, in addition to the transition
probabilities, a distribution of initial probabilities p1, p2, . . . , pr where pk is the proba-
bility that the outcome of the first experiment is Sk. In the study of birth weights for
example, the first generation of women investigated had 25 percent of its members of low
birth weight, 60 percent of average weight, and 15 percent of high weight. The initial
probabilities would then be described by p1, p2, p3 .25, .6, .15 .

A Markov chain then operates in the following way. There is a stochastic process that
moves from state to state in a sequence of steps. By means of the initial probability dis-
tribution, the process starts at one of the states Sk with probability pk . If at any step it is in
state Si, then it moves to state Sj with probability pij. This probability is found in the

FIGURE 11.4 To find the
probability that a stereo
(S) is on sale 3 days from
now, add the probabilities
of each of the paths from
the starting node S to the
circled final S nodes.

S

1
2

1
2 1

3

1
3

1
6

1

R

T

R

R

T

S

S

S

S

R

R
T

R

R

R

T

T

T

T

S

T

R

S

T

2

1
6

1
6

1
6

1
2

1
6

1
6
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distribution of the ith row of the transition matrix. The entire process is completely
described by the initial probability distribution (a 1× r vector) and the transition matrix.

E. An Absorbing Example

This section concludes with one more example of a Markov process.

II. Matrix Operations and Markov Chains
A. Stochastic Matrices

If all the entries of a matrix are nonnegative and the sum of the entries in each row is 1, then
the matrix is called a stochastic matrix. Every transition matrix for a Markov chain is an
example of a stochastic matrix. Stochastic matrices have an interesting property: whenever
two of them are multiplied, the result is another stochastic matrix.

Example 3

The Academic Personnel Committee at Lower Pine Cone College reviews the contracts of
all faculty members each year. The rules of the college demand that a professor with tenure
must be continued, but all other faculty members may be fired. If a faculty member is not
fired, then he may be kept on for another year at the same rank, promoted to a tenured
position, or promoted but not given tenure. However, if a professor was promoted and not
given tenure the previous year, his next promotion must be to a tenured rank. Life is so
pleasant at this college and the job market so dismal that no one leaves the school vol-
untarily: everyone is either eventually fired or given tenure.

This process may be viewed as a Markov chain. The states are the employment
categories of an individual at the end of a particular year: fired F , promoted to tenure rank
T , promoted but not with tenure P , and retained at an untenured rank without promotion
R . The transition matrix then has the form

P

Position

at end

of this

year

Position at end of next year
F T R P

F

T

R

P

1 0 0 0

0 1 0 0

a b c d

e f g 0

5

where the numbers a g are nonnegative probabilities.
This Markov chain has a feature missing from the others we have examined. There

are two states, F and T , which may be called absorbing states. Once the process enters
one of these states, it never leaves.
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THEOREM 1 If A and B are stochastic matrices and the product AB is defined, then
AB is a stochastic matrix.

Proof of Theorem 1 Suppose A is a k ×m matrix and B is an m× n matrix. It is clear
that all the entries of AB will be nonnegative (review Appendix II if matrix multipli-
cation is not familiar to you). We must show that the sum of the elements in any row of
AB is equal to 1. Now the sum of the entries in row i of AB is given by

n

j 1

AB ij

n

j 1

m

s 1

AisBsj definition of matrix multiplication

m

s 1

n

j 1

AisBsj reversing order of summation

m

s 1

Ais

n

j 1

Bsj factoring out Ais

m

s 1

Ais 1 sum of entries in any row of B is 1

m

s 1

Ais 1 sum of entries in any row of A is 1 .

Since i was an arbitrarily chosen row number, the theorem is proved. ⋄

Corollary If A is an r× r stochastic matrix, then so are A2, A3, A4, . . . .
As an example, consider the 2× 2 stochastic matrix

A
.7 .3

.4 .6
6

that has

A2 .61 .39

.52 .48

and

A3 .583 .417

.556 .444

As an exercise to be completed before reading any further, interpret the r × r
stochastic matrix as the transition matrix of a Markov chain and prove the corollary
directly using probabilistic considerations only. ⋄
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B. Probability Distribution after n Steps

One of the most important questions about Markov chains is this: if the process begins in
state Si, what is the probability that after n steps it will be in state Sj? Denote this probability
by p n

ij . If we are interested in this problem for all possible starting states Si, and terminating
states Sj, the probabilities may be represented in a matrix,

P n

p n
11 p n

12 . . . p n
1r

p n
21 p n

22 . . . p n
2r

. . .

p n
r1 p n

r2 . . . p n
rr

7

or a tree diagram (Fig. 11.5).
In Section I.C, we saw how such a problem can be solved through the use of tree

diagrams. Tree diagrams are convenient, however, only when n is a relatively small
number. If n is large, the number of branches in the corresponding tree diagram is too great
to draw easily. In this section, we will see how the question can be answered using matrix
multiplication.

If n 1, then p n
ij p 1

ij is the probability of moving from state Si to state Sj in one
step. By definition of a Markov process, this is exactly the transition probability pij.

Thus, p 1
ij pij for all i and j, and P 1 P.

Determine next p 2
ij . The computation is facilitated by examining the relevant por-

tions of the tree diagram in Fig. 11.5.
Note that

p 2
ij pi1p1j pi2p2j ⋯ pirprj

r

k 1

pikpkjr

The definition of matrix multiplication, however, asserts that this number is just the
ijth entry of P2. In other words, p 2

ij P2
ij so that P 2 P2. The matrix that gives the

probability distribution after two steps is the square of the transition matrix.

Start

si
sj

s2

s1

s3

pir pir

sr

Step 1

End at Step 2

pi3 p3j

p2j
pi2

pi1 p1j

FIGURE 11.5
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With these first two steps completed, the general result is easy to guess: the matrix of
probability distributions after n steps is the nth power of the original transition matrix. The
proof follows by induction on n. For later reference, we list the result as

THEOREM 2 For a Markov chain, P n Pn.
As noted in Section I, a Markov chain is determined by the transition matrix and a

distribution of initial probabilities. Suppose the initial states are given by probabilities
p 0
i , i 1, 2, . . . , r. Write the initial probability distribution as a row vector

p 0 p 0
1 , p 0

2 , . . . p 0
r

If p n
j denotes the probability of being in state Sj after n steps, the vector of these

probabilities is

p n p n
1 , p n

2 , . . . p n
r

Note that the sum of the entries in each of these vectors is 1—that is, p n is a
stochastic matrix of dimension 1× r.

We may now obtain the critical relation between these probability row vectors
and the transition matrix. Suppose we wish to compute p n

j . The tree diagram of
Fig. 11.6 tells what to do.

We have

p n
j p n− 1

1 p1j p n− 1
2 p2j ⋯ p n− 1

r prj

r

k 1

p n− 1
k pkj

Now this last sum is simply the product of the row vector p n 1 and the
jth column of the transition matrix P. Thus, the components of p n are obtained

FIGURE 11.6 Determin-
ing p n

j , the probability of
being in state Sj after
n 1 steps and the
transition matrix.

Start
si

s2

s1

sk

pr
(n–1)

prj

sr

Step (n – 1)

Step n
pk

(n–1)
pkj

p2j
p2

(n–1)

p1
(n–1) p1j
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by multiplying p n 1 by the appropriate column of P. This gives the important
relationship

p n p n 1 P 8

From this relationship, we obtain

p 1 p 0 P 9

p 2 p 1 P p 0 P P p 0 P2 10

p 3 p 2 P p 0 P2 P p 0 P3 11

A straightforward induction argument establishes the general result stated in the
next theorem. ⋄

THEOREM 3 For any Markov chain, p n p 0 Pn.
Review of notation

pij = probability of moving from state Si to state Sj in one step.

P r× r transition matrix whose entries are pij.

p n
ij = probability of moving from Si to Sj in exactly n steps.

P n r × r matrix whose entries are p n
ij .

p n
j = probability of being in state Sj after n steps.

p n 1× r vector whose entries are p n
j .

Main results:

1. P n Pn.

2. p n p 0 Pn. ⋄

C. Applications

The result of Theorem 3 can be used to answer the question about the Audio-Video Den
stated in Section I.C. In this Markov chain, S1 television, S2 radio, and S3 stereo. The
question concerned the probability that a stereo will be the special sale item 3 days hence if it
is the sale item today. Taking today as the 0th step of the process, we have p 0 0, 0, 1 .
By Theorem 3, the probability distribution after three steps is p 3 0, 0, 1 P3. Now the
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row vector 0, 0, 1 P3. will simply be the third row of P3. Carrying out the matrix multi-
plication gives

P2

16 36 15 36 5 36

15 36 16 36 5 36

15 36 15 36 6 36

12

and

P3

93 216 92 216 31 216

92 216 93 216 31 216

93 216 93 216 30 216

13

so that p 3 93
216 ,

93
216 ,

30
216 , and the probability of being in state S3 after three steps is the

final entry of this vector, 30
216

5
36.

Once the matrix P3 is determined, any question about the nature of this Markov chain
during its first three steps can be answered.

As another illustration of the use of Theorem 3, consider the birth weight model of
Example 1. Suppose the initial generation of mothers surveyed contained 25% low birth
weight women, 60% average weight, and 15% high weight. What would the distribution
look like for the generation of their great-great-granddaughters? Since Sl low,
S2 average, S3 high, we have p 0 .25, .6, .15 and we need to find p 4 p 0 P4,
where P is the transition matrix (2). In this case, the fourth power of the transition
matrix is

P4

.347969 .442762 .209269

.346813 .438719 .214469

.348113 .438863 .213025

and the required probability vector is

p 4 .347297, .439751, .212952 .

The conclusion then is that about 35% of the great-great-granddaughters will have
low birth weights, 44% average weights, and 21% high weights.

As a final application, consider the tenure model of Example 3. Over the past 10
years, the Academic Personnel Committee has consistently followed a pattern of promotion
described by the transition probabilities

a .1, b .01, c .67, d .22, e .05, f .45, g .5.
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so that the transition matrix has the form

F T R P

F

T

R

P

1 0 0 0

0 1 0 0

.1 .01 .67 .22

.05 .45 .50 0

14

Suppose there are now 100 members of the faculty, distributed 30, 40, 30 in the states
T , R, P, respectively. If the personnel committee continues its past policies for another 5
years, let us determine the status of this group of professors at the end of that period.

For simplicity, assume that no one on the faculty leaves the system through retire-
ment, death, or some voluntary action. Let p 0 0, .3, .4, .3 represent the initial distri-
bution. We seek p 5 p 0 P5. Matrix multiplication gives

P5

F T R P

F

T

R

P

1 0 0 0

0 1 0 0

.33 .3 .29 .08

.2 .57 .18 05

where the entries have been rounded off to two decimal places. Thus, the distribution after 5
years is

p 5 .19, .59, .17, .05 .

The prediction of this model is that 19 of the untenured facultymembers will be fired, 29
will have advanced to tenured rank so that the faculty will have 59 tenured members, 17 will
have been retained but without promotion, and 5 will be given promotions without tenure.

Although this model cannot predict what happens to a particular untenured professor
during the 5 years, it is still a quite useful tool for planning and decision making. The
personnel committee can use the model to predict the cumulative effects of its past policies
if they are continued into the future or to assess the effects of proposed changes in the
transition probabilities.

The next two sections, III and IV, present a more detailed mathematical treatment of
two particular types of Markov processes: regular chains and absorbing chains.

III. Regular Markov Chains
A. Definitions

If you glance back at the matrix P3 of Eq. (13),

TV Radio Stereo

TV

Radio

Stereo

93 216 92 216 31 216

92 216 93 216 31 216

93 216 93 216 30 216

13
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it may surprise you to see that the rows of the matrix are almost identical. In the
discussion of the Audio-Video Den, for which the matrix was derived, we saw that
the probability of being in the “stereo state” after three steps, if the process began in the
stereo state, is the third component of the third row of P3—that is, 30/216. We can also
read from the matrix P3 that the probability of being in the stereo state after three steps,
if the starting state is “TV” or “radio” is practically the same: 31/216. It appears, then,
that the long-range probability that a stereo is the special sale item may, in fact, be
independent of what item is the special when the process starts. Inspection of the first
and second columns of P3 indicates that this may be true for televisions and radios
as well.

As another illustration, consider the distribution of birth weights of great-great-
granddaughters for different initial distributions of birth weights of the original generation
of mothers. Some of these are presented in Table 11.1.

Note that despite wide variations in the choice of an initial distribution, the proba-
bility distribution after four steps is always very close to (.35, .44, .21).

The type of behavior shown by these two examples occurs whenever the underlying
Markov chain process possesses a regularity property.

DEFINITION A Markov process is a regular chain if some power of the transition
matrix has only positive entries.

In particular, the Markov process is regular if all entries in the transition matrix
P P1 are positive. Thus, the birth weight model of Example 1 is a regular chain. The
matrix of transition probabilities for the Audio-Video Den illustration (Example 2) contains
a 0 entry, but its second power, P2, has all entries positive (Eq. (12)). Thus, this is a regular
chain also.

If the transition matrix of a Markov process is an identity matrix, then so is every
power of that matrix and the underlying chain is not regular. The tenure model
(Example 3) is not a regular chain either; every power of the transition matrix will have
its first two rows identical to the first two rows of P and hence will contain entries
equal to 0.

A Markov process is a regular one if there is some positive integer n, so that the
process may be in any one of the possible states n steps after starting, regardless of the initial
state. The smallest n for which this is possible is the smallest positive integer n for which Pn

has no zero entries.

Table 11.1

p 0 p 4

(.25, .6, .15) (.347297, .439751, .212952)

1
3
,
1
3
,
1
3

(.347631, .440115, .212254)

(1, 0, 0) (.347969, .442762, .209269)

(.1, 8, .1) (.347058, .439138, .213804)

(0, 0, 1) (.348113, .438863, .213025)
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If P is the transition matrix of a regular Markov chain, then it turns out that the powers
of P approach a matrix W , all of whose rows are the same. If w denotes the row vector
formed from any of the rows of W , then it also happens that wP w. There results will be
formalized, proved, and applied in the next few pages.

DEFINITION A vector w is a fixed-point vector of the matrix P if wP w. A Markov
chain is said to be in equilibrium if the probability distribution at some step is given by a
fixed-point vector of the transition matrix.

Note that if wP w, then wP2 wP P wP w, and, in general, wPn w.

Example 6

If P is any 2×2 matrix,

P
a b

c d
with b c≠0 , 15

then the vector

W
c

b c
,

b
b c

is a fixed-point vector of P.

Example 5

If P is the transition matrix

P
.7 .3

.4 .6

and w is the vector w 4
7 ,

3
7 , it is easy to check whether wP w.

Example 4

The zero vector 0 0, 0, . . . , 0 is a fixed-point vector of every transition matrix.
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B. First Basic Theorem

THEOREM 4 (FIRST BASIC THEOREM FOR REGULAR MARKOV
CHAINS) If P is the transition matrix for a regular Markov chain, then

(a) the powers Pn approach a stochastic matrix W ;

(b) each row of W is the same vector w w1, w2, . . . , wr ; and

(c) the components of w are positive.

In order to prove this theorem, we first establish a helpful lemma.

LEMMA Suppose P is an r × r transition matrix having no zero entries and let q be
the smallest entry of P. Let x be an r × 1 column vector, having largest component M0

and smallest component m0. Let M1 and m1 be the largest and smallest components of
the vector Px. Then

1. M1 ≤M0

2. m1 ≥m0

3. M1 m1 ≤ 1 2q M0 m0 ⋄

Example 7

If P is the transition matrix (2) of the birth weight model—that is,

P

Low Average High

Low

Average

High

.5 .45 .05

.25 .5 .25

.3 .3 .4

then we have q .05. If x is the vector

x

.2

.3

.5

then M0 .5 and m0 .2.
According to the lemma, the largest component of Px will be at most .5, the smallest

component will be at least .2, and the difference between these components, M1 m1, will
be at most

1 2 .05 .5 .2 .9 .3 .27
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Before proceeding to a proof of the lemma, note that if all entries of a transition
matrix P are positive, then we must have 0< q≤ 1

2 since the sum of the entries in each row
is 1. Thus, 0≤ 1 2q< 1. In particular, the lemma asserts that M1 m1 < M0 m0 .
The effect of applying the matrix P to the vector x is to produce a vector Px whose
components are more nearly equal than the components of x.

Proof of Lemma The ith component of Px is the product of the ith row of the matrix
P and the vector x—that is,

Px i pi1 pi2 . . . pir

x1

x2
. . .

xr

pi1 x1 pi2 x2 ⋯ pir xr 16

Since pi1 pi2 ⋯ pir 1, the ith component of Px may be regarded as the
expected value of a gamble whose outcomes are the components of x that occur with
probabilities given by the entries of the ith row of P. Considering each of the rows of P as a
different gamble, the number M1 measures the expected value of the most favorable
gamble. We shall concentrate on this particular gamble.

If the outcomes of the gamble are changed so that one of them ism0 and all the rest are
M0, then the new gamble will have an expected value at least as large as the original
gamble. Now the largest possible expected value for such a gamble occurs if the smallest
outcome, m0, occurs with the smallest probability, q. In this case, the expected value is
qm0 1 q M0. Thus, we have

M1 ≤ qm0 1 q M0 ≤ qM0 1 q M0 M0 17

establishing the inequality M1 ≤M0.
A similar argument, based on considering the least favorable gamble, shows that

m1 ≥ qM0 1 q m0 ≥ qm0 1 q m0 m0 18

so that m1 ≥m0.
Multiply the first inequality of (18) by (–1) and add to the first inequality of (17) to

obtain

M1 m1 ≤ q m0 M0 1 q M0 m0 1 2q M0 m0

completing the proof of the lemma. ⋄

This claimmaybe checkedby carrying out the indicatedmatrixmultiplication.Weobtain

Px

.26

.325

.35

so that M1 .35< .5 M0 and m1 .26> .2 m0. The difference satisfies M1 m1

.35 .26 .09< .27.
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Proof of Theorem We deal first with the case when all entries of P are positive.
Suppose x is a column vector. Let q be the smallest entry in P and let Mn and mn denote
the largest and smallest components of Pnx, respectively.

Since Pnx P Pn 1x , repeated applications of the lemma give

M1 ≥M2 ≥M3 ≥⋯ 19

m1 ≤m2 ≤m3 ≤⋯ 20

and

Mn mn ≤ 1 2q Mn 1 mn 1 21

so that

Mn mn ≤ 1 2q n M0 m0 22

Since 1 2q is less than 1, 1 2q n tends to 0 as n gets large. Thus, the difference
Mn mn also goes to zero. This implies thatMn and mn approach a common limit and Pnx,
tends to a vector all of whose components are the same.

This common value will lie between mn and Mn, for all n. Since we have
0<m0 ≤M0 < 1, the common value is a strictly positive number less than 1.

Now let x be the column vector with kth component equal to 1 and all other
components 0. Then Pnx is simply the kth column of Pn. We have shown that the kth
column of Pn tends to a vector with all components equal. Denote the common value of the
components by wk . Thus, Pn tends to a matrix W with all rows the same vector
w w1,w2, . . . ,wr

Since the sum of the entries in each row of Pn is always 1, regardless of n, the same
must be true of the limit W (because the limit of a sum is the sum of the limits). Thus, W is
a stochastic matrix. This establishes the theorem in the case that all entries of P are
positive.

In the general case of a regular Markov chain, the transition matrix P may have some
zero entries. Since the Markov chain is regular, some power PN of P has all positive entries.
If q is the smallest entry of PN , then the first part of the proof shows that

MN+1 mN+1 ≤ 1 2q MN mN

The sequence {dn} where dn Mn mn is then a nonincreasing sequence with a
subsequence {dn N} tending to 0. This forces the entire sequence {dn} to have limit 0. The
rest of the proof is the same as the proof of the special case. ⋄

C. Second Basic Theorem

The next important theorem shows an easy way to find the limiting matrix W of a regular
Markov chain.
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THEOREM 5 (SECOND BASIC THEOREM FOR REGULAR MARKOV
CHAINS) If P is the transition matrix for a regular Markov chain and W and w
are the matrix and vector promised by Theorem 4, then

(a) For any stochastic row vector p, pPn approaches w

(b) The vector w is the unique fixed-point stochastic vector of P

Proof of Theorem 5 Since Pn→W , we have pPn→pW . Every entry in the kth column
of W is wk so the kth component of pW is equal to wk multiplied by the sum of the
entries of p. Since p is a stochastic vector, that sum is 1. Thus, the kth component of
pW is wk. In other words, pW w. This proves (a).

To prove (b), note that the powers of P approach W so that Pn 1 PnP
approaches W also. But PnP also approaches WP. Thus, W WP.

Each row of the matrix equationW WP simply asserts that w wP so that w is
a fixed-point vector of P. By Theorem 4, w is a stochastic vector. All that is left to show
is the uniqueness of w. Accordingly, suppose v is any stochastic fixed-point vector of P.
The vPn approaches w. But v is a fixed-point vector for P, so that vPn v for all n.
Thus, v approaches w. But v is a constant vector. Hence, v w. This completes the
proof of Theorem 5. ⋄

If P is the transition matrix of a regular Markov chain and p 0 is the initial probability
distribution, then Theorem 5 implies that p 0 Pn approaches w, the unique fixed-point
stochastic vector of P, regardless of the particular numerical values of the entries of p 0 . We
have already shown, however, that p 0 Pn p n , the probability distribution after n steps.
Thus, p n approaches w. In other words, no matter what the initial probabilities are for a
regular Markov chain, after a large number of steps the probability that the process is in a
particular state Sk will be very nearly Wk: a regular Markov chain approaches equilibrium.

To illustrate the approach to equilibrium, consider the transition matrix of Example 5:

P
.7 .3

.4 .6

A fixed-point vector w w1, w2 for P must satisfy wP w—that is,

w1, w2 P w1, w2 23

which is equivalent to

.7w1 .4w2 w1

.3w1 .6w2 w2
24

or

− .3w1 .4w2 0

.3w1 − .4w2 0
25
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and this system is satisfied by any pair of numbers, w1 and w2 such that w2
3
4w1. Since a

stochastic vector must have w1 w2 1, we have

w1
3
4
w1 1

This gives w1
4
7 and w2

3
7. The unique fixed-point stochastic vector for the

transition matrix P is

w
4
7
,
3
7

.571428, .428572

The first few powers of P are given by

P2
.61 .39

.52 .48
P3

.583 .417

.556 .444

P4
.5749 .4251

.5668 .4332
P5

.57247 .42753

.57004 .42996

P6
.571741 .428259

.571012 .428988
P7

.571522 .428478

.571304 .428696

P8
.571457 .428543

.571391 .428609
P9

.571437 .428563

.571417 .428583

and we see that Pn does approach W . If the Markov chain starts with initial probability
vector p 0 .9, .1 , then the distributions after the first 10 steps are

p l .67, .33

p 2 .601, .399

p 3 .5803, .4197

p 4 .57409, .42591

p 5 .572227, .427773

p 6 .571668, .428332

p 7 .571500, .428500

p 8 .57145, .42855

p 9 .571435, .428565

p 10 .57143, .428569
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D. Markov Processes as Discrete Dynamical Systems

We can gain a different insight into the behavior of a simple Markov process by regarding it
as a linked system of difference equations. If we have a two-state Markov process, then we
may write the transition matrix P as

P
p 1− p

q 1− q

where the probabilities p and q lie between 0 and 1.
If we let An be the probability that the process is in the first state at step n, and Bn the

probability that it occupies the second state at this step, the transition matrix gives us a
discrete system of equations

An 1 p An q Bn

Bn 1 1 p An 1 q Bn

Since An Bn 1, we may rewrite the first of these equations as

An 1 pAn q 1 An p q An q

From Chapter 1, we know that the solution of this difference equation is

An p q nA0 q
1− p−q n−1

1− p− q

The probabilities p and q are between 0 and 1, so that |p q|< 1, and the powers of
p q will converge to 0. Thus,

lim
n→∞

An
q

1− p q

Hence, in the long term, the process will occupy the first state with probability
q

1− p q
and the second state with probability 1−

q

1− p q

q

1− p
.

In Example 5, we have p 7 10 and q 4 10 so this approach also predicts that

the process will, in the long run, be in the first state with probability
7
10

1− 7
10

4
10

4
7
.

E. Applications

This section on regular Markov chains concludes with some illustrations of how Theorems
4 and 5 can be applied to certain mathematical models.
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Example 8

A study of “brand loyalty” in the antidandruff shampoo market showed that 70% of con-
sumers who bought Flakes No More would buy it again when it was time to repurchase
shampoo, and 30% would switch to the other available brand, Head, Neck, and Shoulders.
The study also showed that 40% of Head, Neck, and Shoulders users would switch to
Flakes No More while 60% would continue with the brand. In the long run, how much of the
market can Flakes No More capture?

Solution
This is a regular Markov chain with two states, customer choosing Flakes No More F or
Head, Neck, and Shoulders H . The transition matrix is

P This

purchase

Next purchase

F H
F

H

.7 .3

.4 .6

Since the unique fixed-point stochastic vector for P is w
4
7
,
3
7

, in the long run
4
7

of the population will be using Flakes No More and
3
7
will be using Head, Neck, and Shoulders.

Example 9

According to the birthrate model of Example 1, what are the long-term distributions of birth
weights among female babies?

Solution
We need to compute the fixed-point stochastic vector for the transition matrix P of Eq. (2).
This leads to the matrix equation

w1, w2, w3

.5 .45 .05

.25 .5 .25

.3 .3 .4

w1, w2, w3

which becomes the system

.5w1 .25w2 .3w3 w1

.45w1 .5w2 .3w3 w2

.05w1 .25w2 .4w3 w3

and this is equivalent to the homogeneous system

− .5w1 .25w2 .3w3 0

.45w1 − .5w2 .3w3 0

.05w1 .25w2 − .6w3 0
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Chapter 12, which you may wish to read at this time, gives an extended discussion of
a mathematical model in anthropology that makes critical use of a regular Markov chain to
investigate certain questions about cultural stability.

IV. Absorbing Markov Chains
This section offers a detailed look at another important class of Markov chains frequently
used in mathematical models of social and biological phenomena.

A. Definitions and Questions

A state Sk in a Markov chain is called an absorbing state if it is impossible to leave it—that
is, the transition probabilities satisfy

pkk 1

pkj 0 if j≠ k

A Markov chain is an absorbing chain if it has at least one absorbing state and from
every state it is possible to reach some absorbing state in a finite number of steps. If a state is
not an absorbing state, it is called a transient state.

The Markov chain describing the personnel policies of Lower Pine Cone College
(Example 3) is an absorbing chain with two absorbing states (F and T) and two transient
states (R and P). It is possible to reach either of the absorbing states from either of the
transient states in a single step.

The state diagram of Fig. 11.7 represents an absorbing Markov with the absorbing
states (S1, S4, and S6). From state S2, the process can move to S4 in two steps. From state S3,
the process may move to S4 in one step. From state S5, the process can move to S4 (two
steps) or S6 (one step).

Some of the important questions about absorbing Markov chains follow:

1. Will the process eventually reach an absorbing state?

2. What is the average number of times we can expect the process to be in one transient
state if it starts in another (or the same) transient state?

A solution to this system is any triple of numbers w1, w2, w3 such that w1
90
55

w3

and w2
114
55

w3. To find a stochastic vector, impose the extra condition that

w1 w2 w3 1. This gives w3
55
259

so that the fixed-point stochastic vector is

w
90
259

,
111
259

,
55
259

.34749, .440155, .212355

Hence, about 35% of the births will be in the low range, 44% in the average range,
and 21% in the high range.
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3. What is the average number of steps before the process enters an absorbing state?

4. What is the probability that the process will be absorbed in a particular state if it starts
in a given transient state?

Our procedure in this section will be to introduce first the notation by which the
answers to these questions may be presented, state the answers to the questions, illustrate
with a few examples, and then give the proofs of the relevant theorems.

B. Notation and Answers

There is a standard way of representing the transition matrix of an absorbing chain: list the
absorbing states first and then the transient states. For the Lower Pine Cone College
example, the transition matrix is already in standard form:

26

A standard form for the transition matrix of the chain whose state diagram is given by
Fig. 11.7 is

27

FIGURE 11.7 State
diagram illustrating a
Markov chain with
three absorbing states
(S1, S4, and S6).

s1

s2 s3

s4

s5

s6
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If an absorbing Markov process with r states has k absorbing states, then the tran-
sition matrix has the standard form:

where
I is the k × k identity matrix
0 is the k× r k zero matrix
R is a r k × k matrix
Q is a r k × r k matrix

If I is the r k × r k identity matrix, then it turns out that the square matrix
I Q is always invertible. The matrix N I Q 1 is called the fundamental matrix of
the Markov chain: Let Nij represent the ijth element of N, Ti the sum of the entries in row i
of N, and Bij the ijth entry of the matrix B N R.

We can now state the answers to the four important questions about absorbing
Markov chains:

1. Every absorbing Markov process eventually reaches some absorbing state.

2. The number Nij is the average number of times the process is in the jth transient state
if it starts in the ith transient state.

3. The number Ti is the average number of steps before the process enters an absorbing
state if it starts in the ith transient state.

4. The number Bij is the probability of eventually entering the jth absorbing state if the
process starts in the ith transient state.

These results are easier to remember if you keep track of the sizes of the matrices. The
matrix N is r k by r k and its rows and columns correspond to transient states.
The matrix B N R has size r k × k; the rows correspond to transient states and the
columns to absorbing states.

An Application
Consider the personnel policies of Lower Pine Cone College (Example 3) with the tran-
sition probabilities given in Section II.C:

a .1, b .01, c .67, d .22, e .05, f .45, g 5.
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The matrices R and Q are given by

R
.1 .01

.05 .45
Q

.67 .22

.5 0

and we have

I −Q
1− .67 0− .22

0− .5 1− 0

.33 − .22

− .5 1

so that

N I −Q −1 4.54545 1

2.27273 1.5

and

B NR R

P

F T

.504545 .495455

.302273 .697727

Here are some conclusions we may make about this absorbing Markov process:

(a) Every nontenured faculty member will eventually be promoted to a tenure rank or
will be fired.

(b) A faculty member who has just been promoted but not given tenure (initial state P)
will eventually be given tenure with probability .697727 (B22) or be fired with
probability .302273 (B21). A professor should expect to wait, on average, 3.77273
years (T2 N21 N22) before the decision is made.

(c) A professor who was retained at her present rank by the committee this year (initial
state R) faces a probability of .495455 of eventually gaining tenure and a probability
of .504545 that she eventually will be fired. Her expected waiting time for a decision
is 5.54545 years (T1 N11 N12).

You will find more extended discussions of absorbing Markov chains in the sports
examples of Section IV.C below, in a mathematical model of learning in Chapter 13, and a
model of recidivism in the criminal justice system in Chapter 17.

C. Sports Examples

Imagine two teams, A and B, playing a championship series of three games. The first
team to win two games is declared the winner of the series. Let p represent the
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probability that team A will win any one particular game and let q 1 p. Let m n
denote the state that the series stands at m wins for team A and n wins for team B. The
initial state is then 0−0 while 2−0 denotes a clean sweep for A, and 1−1 means the series
is even after 2 games. There are eight possible states: 0−0, 1−0, 0−1, 1−1, 2−0, 2−1,
1−2, 0−2. The absorbing states are 2−0, 2−1, 1−2, and 0−2 since the series ends as
soon as one team has won two games. A state diagram for this Markov process appears
in Fig. 11.8.

From the state diagram, a standard form for the transition matrix can be constructed:

The matrix I Q has the form

I −Q

0−0 1−0 0−1 1−1

0−0

1−0

0−1

1−1

1 − p − q 0

0 1 0 − q

0 0 1 − p

0 0 0 1

0-0

1-0

2-0

2-1

1-1

1-20-1

0-2

p p

p

q

q

q

q

p

FIGURE 11.8 State diagram
for a three-game series.
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and the fundamental matrix N 1 Q 1 is

N I −Q −1

0−0 1−0 0−1 1−1

0−0

1−0

0−1

1−1

1 p q 2pq

0 1 0 q

0 0 1 p

0 0 0 1

so that the matrix B NR is given by

B NR

2−0 2−1 1−2 0−2

0−0

1−0

0−1

1−1

p2 2p2q 2pq2 q2

p pq q2 0

0 p2 pq q

0 p q 0

Since the series begins in state 0−0, examine the first rows of N and B. Team A wins
the series if the absorbing state is 2−0 or 2−1. Thus, the probability that A wins the series is
the sum of the first two entries of the first row of B:

Pr Team A wins series p2 2p2q 28

The series lasts two games if the absorbing state is 2−0 or 0−2, and it lasts three
games if the absorbing state is 2−1 or 1−2. From the first row of B, we obtain

Pr Series lasts two games p2 q2 29

Pr Series lasts three games 2p2q 2pq2 2pq p q 2pq 1 2pq 30

The expected length of the series is the sum of entries in the first row of N:

1 p q 2pq 1 p 1 p 2p 1 p 2 1 p p2 31

Now the function f p 2 1 p p2 achieves its maximum (2.5) at p .5 and
decreases monotonically to 2 as p increases to 1. Thus, we can determine p from the average
length of a large number of series.

As an example, the U.S. Tennis Association’s Official Encyclopedia of Tennis lists
the results of 112 men’s tennis tournaments in which the winner was determined by a three-
set series. Of these matches, 67 were concluded after two sets and 45 lasted three sets, for an
average length of 2.401 sets. From Eq. (31), this corresponds to a probability p .72486 of
a player winning a single given set.
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With this value of p, Eqs. (29) and (30) predict that in 112 matches 67.22 would last
two sets and 44.78 would last three sets.

Turn now to the situation of players A and B engaged in a five-set championship
series. The first player to win three sets is the winner. As before, p denotes the probability
that player A will win any one particular set and q 1 p.

Treating this series as a Markov process, there are 15 states:

Six absorbing states: 3−0, 3−1, 3−2, 2−3, 1−3, 0−3

Nine transient states: 0−0, 1−0, 0−1, 2−0, 1−1, 0−2, 2−1, 1−2, 2−2

The model of this competition is an absorbing Markov chain with matrices Q and R
given by

0−0 1−0 0−1 2−0 1−1 0−2 2−1 1−2 2−2

Q

0−0

1−0

0−1

2−0

1−1

0−2

2−1

1−2

2−2

0 p q 0 0 0 0 0 0

0 0 0 p q 0 0 0 0

0 0 0 0 p q 0 0 0

0 0 0 0 0 0 q 0 0

0 0 0 0 0 0 p q 0

0 0 0 0 0 0 0 p 0

0 0 0 0 0 0 0 0 q

0 0 0 0 0 0 0 0 p

0 0 0 0 0 0 0 0 0

and

R

3−0 3−1 3−2 2−3 1−3 0−3

0−0

1−0

0−1

2−0

1−1

0−2

2−1

1−2

2−2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

p 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 q

0 p 0 0 0 0

0 0 0 0 q 0

0 0 p q 0 0
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The fundamental matrix N is

0−0 1−0 0−1 2−0 1−1 0−2 2−1 1−2 2−2

0−0

1−0

0−1

2−0

1−1

0−2

2−1

1−2

2−2

1 p q p2 2pq q2 3p2q 3pq2 6p2q2

0 1 0 p q 0 2pq q2 3pq2

0 0 1 0 p q p2 2pq 3p2q

0 0 0 1 0 0 q 0 q2

0 0 0 0 1 0 p q 2pq

0 0 0 0 0 1 0 p p2

0 0 0 0 0 0 1 0 q

0 0 0 0 0 0 0 1 p

0 0 0 0 0 0 0 0 1

and the matrix B NR is

B

3−0 3−1 3−2 2−3 1−3 0−3

0−0

1−0

0−1

2−0

1−1

0−2

2−1

1−2

2−0

p3 3p3q 6p3q2 6p2q3 3pq3 q3

p2 2p2q 3p2q2 3pq3 q3 0

0 p3 3p3q 3p2q2 2pq2 0

p pq pq2 q3 0 0

0 p2 2p2q 2pq2 q2 0

0 0 p3 p2q pq q

0 p pq q2 0 0

0 0 p2 pq q 0

0 0 p q 0 0

The sumof the entries in thefirst row ofN gives the expected number of sets in the series:

1 p q p2 2pq q2 3p2q 3pq2 6p2q2 32

The sum B11 B12 Bl3 gives the probability that player A wins the series:

Pr A wins series p3 3p3q 6p3q2 33

To determine the probability distribution for the length of the series, we have

Pr Series ends in 3 sets B11 B16 p3 q3 34

Pr Series ends in 4 sets B12 B15 3p3q 3pq3 35

Pr Series ends in 5 sets B13 B14 6p3q2 6p2q3 36
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To test this model of tennis competition, suppose that the probability p .72486,
based on our earlier observations, holds in general competition. Then the expected length of
a best-of-five-sets series becomes, using Eq. (32),

Predicted expected length 3.84 sets 37

The national men’s singles champion of the USTA is determined each year in a
tournament that climaxes in a best-of-five-sets series between the two finalists. In the 133
championships decided between 1881 and 2013, there were

54 three-set matches

49 four-set matches

30 five-set matches

which gives

Observed average length 3.82 sets 38

The predicted and observed average lengths are remarkably close.
Furthermore, Eqs. (34)–(36) predict

53 4 three-set matches

47.8 four-set matches

31.7 five-set matches

in a group of 133 matches.
A standard statistical test (the chi-squared) shows that the observed and predicted

distributions are significantly close together to lend weight to the assumption that tennis
competition does follow the behavior of a Markov process.

Of course, the other rows of N and B also make predictions about the course of the
tennis competition. The entry B32 p3, for example, predicts the probability of a player A
winning the match if he loses the first set. We can compare this prediction to the observed
value for the USTA championships as a further test of the model. The model predicts this
would occur 8.23 times in a group of 89 matches. In actual fact, this has happened nine
times in the USTA championships.

It is interesting to note that for a fixed probability p of winning any given set, the
probability of winning a match increases with the number of required victories. Some
representative figures are given in Table 11.2.

In their book on finite Markov chains, J. Kemeny and J. L. Snell (1960) investigate
tennis competition from a slightly different point of view. As we have noted, a match is
decided by the winner of a three-set or a five-set series. A player wins a set by being the first
to win six or more games and have a lead of at least two games over his opponent. Thus,
possible final scores in a set are 6−0, 6−1, . . . , 6−4, 7−5, 8−6, . . . , where the numbers
represent games won. An individual game is won by the first player to amass 4 or more
points, provided he leads by at least 2 points.

Kemeny and Snell compute the probability of winning a game, a set, and a match if a
player has probability p of winning each point. They show, for example, that if p .51,
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then the likelihood of winning the match is .635 while if p .6, then the probability of
winning the match rises to .9996. If there is a significant difference (.2 or more) in the
abilities of the players, as measured by p 1 p , then the better player is almost certain
to win. Even if the difference is small p .51, 1 p .49 , the better player still wins
more than 63% of the time.

D. Theorems

This section contains statements of and outlines of proofs for the major results about
absorbing Markov chains already discussed and illustrated. Detailed, rigorous proofs may
be found in Kemeny and Snell’s book on Markov chains.

THEOREM 6 In an absorbing Markov chain, the probability that the process will
eventually enter an absorbing state is 1.

Sketch of Proof of Theorem 6 Let Si be a transient state of the Markov process. It is
possible to reach at least one of the absorbing states in a finite number of steps, if the
process begins in Si. Let ri denote the minimum number of steps necessary to reach
some absorbing state from Si. Let pi denote the probability that the process does not
reach any absorbing state in ri steps if it starts in Si. Then pi is strictly less than 1.

Let r denote the largest of the numbers ri and p the largest of the probabilities pi
where i ranges over the index numbers of the transient states. Then the probability of
not reaching an absorbing state in r steps is less than p. Similarly the probability of not
reaching an absorbing state in 2r steps is less than p2. In general, the probability of not
reaching an absorbing state in nr steps is less than pn. Since p< 1, the probabilities pn

tend to 0 as n gets large. Thus, the probability of eventually reaching some absorbing
state must tend to 1. ⋄
THEOREM 7 Let P be the transition matrix of an absorbing Markov chain in
standard form

Table 11.2 Probabilities of winning matches of different lengths for selected values of p, the
probability of winning a single set.

Probability of winning a given set .51 .6 .72846

Probability of winning 3-set match .515 .648 .815

Probability of winning 5-set match .519 .683 .868

Probability of winning 7-set match .522 .710 .904
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Then Pn has the form

Pn I 0

Rn Qn

where Qn is the nth power of Q and Rn is a (r – k) × k matrix.

Proof of Theorem 7 Suppose the states have been numbered so that S1, S2, . . . , Sk
are the absorbing states and Sk+1, Sk+2, . . . , Sr are the transient states. The matrix Q
has the form

Q

qk 1,k 1 qk 1,k 2 . . . qk 1,r

qk 2,k 1 qk 2,k 2 qk 2,r

. . .

qr,k 1 qr,k 2 qr,r

where qk i, k j is the transition probability of moving from the ith transient state to the
jth transient state in one step.

Consider the matrix P2. The probability of moving from the ith transient state to
the jth transient state in 2 steps is the k i, k j th entry of P2. This number is the
matrix product of the k i -th row of P,

rk i,l, rk i, 2, . . . , rk i,k, qk i,k 1, . . . , qk i,r

and the k j th column of P,

0

0
. . .

0
qk 1,k j

qk 2,k j

. . .

qr,k j

This product is equal to
r−k

s 1

qk i,k sqk s,k j and that number is simply the product

of the ith row and jth column of Q—that is, the ijth entry of Q2. Thus, the lower right-

hand corner of P2 is Q2. The corresponding result for Pn follows by induction on n. ⋄
This theorem says that the probability of moving from the ith transient state to the jth

transient state in n steps is the ijth entry of Qn. From the proof of Theorem 6, however, we
know that this probability tends to zero. Thus, we have

Corollary The powers of the matrix Q tend to 0—that is, limn→∞ Qn 0.
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THEOREM 8 The matrix I – Q has an inverse.

Sketch of Proof of Theorem 8 For n = 1, 2, 3, . . . , let Cn be the matrix defined by

Cn I Q Q2 ⋯ Qn 2 Qn 1

Then

QCn Q Q2 ⋯ Qn 1 Qn

and

I Q Cn Cn QCn I Qn. 39

Now let n increase on both sides of Eq. (39). Letting N limn→∞ Cn and using
the fact that limn→∞ Qn 0, we have

I Q N I 0 I 40

so that N is the inverse of I Q. ⋄
Admittedly, the derivation of Eq. (40) from (39) is highly nonrigorous, but the reader

is assured that everything can be fully justified with epsilons and deltas.

THEOREM 9 Let nij be the expected number of times that an absorbing Markov
chain is in the jth transient state Sk j if it starts in the ith transient state Sk i. If N is the
matrix whose entries are given by nij, then N is the inverse of I – Q.

Proof of Theorem 9 If i j, then nij is at least one. Using the fact that the expected
value of a sum is the sum of the expected values, we have the relation

nij dij Pk i,k 1n1j Pk i,k 2n2j ⋯ Pk i,rnrj 41

where dij 1 if i j and 0 if i≠ j. The transition probabilities pk i, k j are obtained
from the transition matrix. The relation (41) follows since we must consider all possible
moves to other transient states at the first step. Note that the transition probabilities
entering the equation are exactly the entries of Q. The matrix form of Eq. (41) then is

N I QN 42

which gives IN I QN or I IN QN I Q N. Since I Q N I, N is the
inverse of I Q. ⋄
Corollary The sum of the entries in any row of N is the expected number of times the
process is in some transient state for a given starting transient state—that is, the
expected number of steps before the process enters an absorbing state.
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THEOREM 10 Let P be the transition matrix of an absorbing Markov chain in
standard form and let N I Q 1. Let bij be the probability that the process will
enter the jth absorbing state if it starts in the ith transient state. Then bij is the ijth entry
of the matrix B N R.

Proof of Theorem 10 The process could enter the absorbing state at the first step with
probability Pk i,j or it could first move to some other transient state and then eventually
move into the jth absorbing state. Thus, we have the relation

bij pk i,j

r

s 1

pk i, k sbsj 43

where the summation runs over all the transient states. Note that the transition proba-
bility pk i,j is an entry of R and the transition probabilities pk i,k s are entries of Q.
Hence, the matrix form of Eq. (43) is

B R QB 44

so that

R B QB I Q B 45

Multiply each side of Eq. (45) by N I Q 1 to obtain

NR I Q 1 I Q B B 46

⋄

V. Historical and Biographical Notes
A. Markov
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Andrei Andreevich Markov
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Markov processes are named after the man who first studied them, the Russian
mathematician Andrei Andreevich Markov. Markov was born in Ryazan, Russia, on
June 14, 1856, and was the son of a member of the gentry who managed a large private
estate.

The young Markov suffered from poor health and needed crutches until he was 10
years old. His talent for mathematics was spotted early and he received a gold medal for his
undergraduate thesis at St. Petersburg University (1878), entitled “On the integration of
differential equations by means of continued fractions.” He completed his doctoral dis-
sertation on continued fractions and the problem of moments 6 years later. In 1883, Markov
married Maria Ivanovna Valvatyeva, whom he had known since childhood: she was the
daughter of the proprietress of the estate managed by his father.

Markov combined an active research program with his teaching at St. Petersburg
University for 25 years. He made important contributions to number theory, continued
fractions, approximate quadrature formulas, function theory, integration in elementary
functions, differential equations, and probability theory. He retired in 1905 to make
room on the faculty for younger mathematicians, although he continued to present the
course on probability. Markov’s lectures and papers were noted for an irreproachable
strictness of argument and a rather peremptory manner of stating opinions on the work
of others. One biographer, Alexander Youschkevitch, described Markov as having “a
mathematical cast of mind that takes nothing for granted” and reported that he was
extremely exacting with his students and associates. It is said that during his lectures,
Markov bothered little about the order of equations on the blackboard and even less
about his personal appearance.

Markov was actively concerned with the politics of his time. He participated in the
liberal movement in Russia at the beginning of the 20th century. He protested the
Tsar’s overruling of the election of Maxim Gorky to the St. Petersburg Academy of
Sciences and repudiated his own membership in the electorate after the illegal dissolution
of the Second State Duma (parliament) by the government in 1907. In 1913, when the
government celebrated the 300th anniversary of rule by the Romanov family, Markov
organized a countercelebration of the 200th anniversary of Bernoulli’s discovery of the law
of large numbers.

In September 1917, Markov asked to be sent to the interior of Russia. He spent the
famine winter in the little country town of Zaraisk, teaching mathematics without pay. He
died in St. Petersburg on May 20, 1922.

Although he worked in a number of different areas of mathematics, Markov’s con-
tributions to probability theory produced the greatest effect on the development of science.
The work on the law of large numbers and the central limit theorem by Chebyshev
(Markov’s teacher), Lyapunov, and Markov created the basis for the modernization of
probability theory.

Markov initiated the study of stochastic processes that would later bear his name
in a 1906 paper “Rasprostranenie zakona bolshikh chisel na velichiny, t zavi syaschchie
drug ot druga” (“The Extension of the Law of Large Numbers on Mutually Dependent
Variables”). Markov arrived at his chains by starting from the internal needs of prob-
ability theory and not from applications to the physical or social sciences. He did study
the application of his theory to the distribution of vowels and consonants in Pushkin’s
Eugene Onegin; this work is often cited as the first modern paper on mathematical
linguistics.
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B. Further Applications

The English biologist-mathematician Sir Francis Galton (1822−1911) became interested in
the survival and extinction of family names. The mathematical model he formulated in
1889 was one that involved the fundamental assumptions of Markov processes.

Paul and Tatyana Ehrenfast investigated a Markov chain model for diffusion in a
1907 paper about the same time that Einstein and Smoluchowski were using Markov
processes to study Brownian motion.

Since these early studies, there have been many applications of Markov processes to
the modeling of phenomena in the physical, life, and social sciences. Physicists have
employed them to the theory of cascade processes, radioactive transformation, nuclear
fission detectors, and the theory of tracks in nuclear research emulsions. Astronomers have
studied fluctuations in the brightness of the Milky Way and the spatial distribution of
galaxies using Markov chains. Chemists use stochastic models to understand chemical
reaction kinetics and the statistical theory of polymer chains.

Mathematically inclined biologists have employed Markov chains and more general
stochastic processes to learn more about population growth, structure of biological popu-
lations, taxis and kinesis, embryogenesis, evolution, molecular genetics, pharmacology,
tumor growth, and epidemics.

Some of the areas of investigation in the social sciences that have been pursued
through the use of Markov chains include voting behavior, geographical mobility within a
country, the spread of ghettos in urban areas, growth and decline of towns, competition in
the brewing industry, the size of economic firms, the spread of the use of intrauterine
devices in Taiwan, prediction of enrollments in colleges and universities, the epidemiology
of mental diseases, changes in personal attitudes, and the deliberations of a trial jury.

EXERC I S E S

I. Markov Chains

1. Two competing companies, Pollution Products and
Environmental Hazards, simultaneously introduce new
enzyme laundry detergents. Market tests indicate that
during a year, Pollution keeps 60% of its customers
and loses 40% of its customers to Environmental. On
the other hand, Environmental keeps half of its cus-
tomers and loses the other half to Pollution. Set up this
process as a Markov chain. Determine the transition
matrix and sketch a state diagram.

2. Abigail spends her entire weekly allowance on either
candy or toys. If she buys candy 1 week, she is 60%
sure to buy toys the next week. The probability that she
buys toys in two successive weeks is 1/5. Set up this
process as a Markov chain. Determine the transition
matrix and sketch a state diagram.

3. A political scientist in Canada discovered that of the
children of Conservatives, 80% vote Conservative and

the rest vote Labor; of the sons and daughters of Labor
supporters, 60% vote Labor, 20% vote Conservative,
and 20% vote for the New Democratic Party (NDP);
and of the offspring of NDP followers, 75% vote NDP,
15% vote Labor, and 10% vote Conservative.

(a) What is the probability that the grandchild of a
Conservative will vote for the NDP?

(b) Set up this process as a Markov chain, with
steps corresponding to successive generations.
Determine the transition matrix and sketch the state
diagram.

4. A secret CIA report gives the following analysis of the
arms race between India and Pakistan: There are four
possible states: War, Total Disarmament, Escalating
Arms Race, and De-escalating Arms Race. It is not
possible to change the situation if War or Total
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Disarmament is occurring this year. If there is an
Escalating Arms Race this year, the probability of
continued escalation next year is .6, of de-escalation
next year is .2, and of War next year is .2. If there is a
De-escalating Arms Race this year, the probability of
continued de-escalation next year is .7, of escalation
next year is .1, and of total disarmament next year is .2.

Set up this process as a Markov chain. Deter-
mine the transition matrix and sketch the state diagram.

5. The National League and American League used to
alternate as hosts for the opening game of each year’s
World Series. Show that this process can be set up as a

Markov process with transition matrix P
0 1
1 0

.

6. A particle moves along a line from an initial position 2
feet to the right of the origin. Each minute it moves one
foot to the right with probability 1/2 or 1 foot to the
left. There are barriers at the origin and 4 feet to the
right of the origin; if the particle hits a barrier, it
remains there. Show that this process can be set up as a
Markov process with five states. Determine the tran-
sition matrix and draw the state diagram.

7. The random walk of Exercise 6 is modified so that if
the particle reaches the barrier at the origin, it must
move one foot to the right in the next minute, while if
it hits the other barrier, it must move one foot to the left
in the next minute. Determine the transition matrix for
the associated Markov chain.

8. Find the probability that a womanwhose birthweight was
average has a granddaughterwith an average birthweight.

9. Sketch the state diagram for the Lower Pine Cone
College example.

10. Can accurate weather predictions be made from a
Markov model of climate that uses only today’s
weather to forecast tomorrow’s?

II. Matrix Operations and Markov Chains

11. Using probabilistic considerations only, show that the
square of a stochastic matrix is also a stochastic matrix.

12. A stochastic matrix is doubly stochastic if the sum
of the entries in each column is 1. If A and B are
doubly stochastic square matrices, is A2 doubly sto-
chastic? Is AB?

13. Write out inductive proofs for Theorems 2 and 3.

14. Use matrix multiplication to solve Exercise 8.

15. Abigail bought a toy with her allowance this week (see
Exercise 2). Find the probability that she will buy a toy
4 weeks from now.

16. Find the distribution of birth weights (Example 1) after
one generation if the initial probability distribution is
(.4, .3, .3).

17. Suppose the distribution of birth weights of a genera-
tion of daughters is p 1 7 .31, .45, .24 . Can you
find the distribution of birth weights of the mothers?

18. Use the state diagram in Fig. 11.3 to find the proba-
bility that the process reaches state S3 in two steps if it
starts in state S1.

19. Let P be the transition matrix of Eq. (4). Compute P2.
What can you say about the first column of P3? Pn?

20. Consider the transition matrix for the Lower Pine
College model. Can you determine whether it is more
likely that a newly hired professor will eventually be
given tenure or be fired?

III. Regular Markov Chains

21. The matrices determined in Exercises 1−7 are all
transition matrices for Markov processes. Which ones
are regular?

22. Find, if possible, a fixed-point vector for each of the
transition matrices of Exercises 1−7.

23. Does a matrix of the form A
a b
−b d

have a
fixed-point vector?

24. How often, in the long run, will a stereo be the special
sale item at the Audio-Visual Den (Example 2)?

25. Analyze the long range prospects for the competition
model described in Exercise 1.

26. How often, on the average, does Abigail spend her
allowance on candy (Exercise 2)?

27. What are the long-term predictions for the male vote in
Canada according to the data of Exercise 3?

28. Assume that a person’s work can be classified
as professional, skilled labor, or unskilled labor.
Assume that of the children of professionals, 80% are
professional, 10% are skilled laborers, and 10% are
unskilled laborers. In the case of children of skilled
laborers, 60% are skilled laborers, 20% are profes-
sionals, and 20% are unskilled laborers. Finally, in
the case of unskilled laborers, 50% of the children

372 CHAPTER 11 Markov Processes



are unskilled laborers, and 25% each are in the other
two categories. Assume that every person has a
child, and form a Markov chain by following a given
family through several generations. In commenting
on the society described, the famed sociologist Harry
Perlstadt has written, “No matter what the initial
distribution of the labor force is, in the long run the
majority of the workers will be professionals.” Is he
correct? Why?

29. Suppose P is the transition matrix of a regular Markov
chain and let W be the matrix given by Theorem 4.
Prove that the matrix I P W is invertible.
Compute this matrix and its inverse if P is the matrix
of Example 5.

30. Let N I P W
1
be the inverse of the matrix

of Exercise 29. Here N is called the fundamental
matrix of a regular Markov process. Show that each of
the following statements is true (a) if P is the matrix of
Example 5 and (b) P is the transition matrix of any
regular Markov process:
(i) NP PN.

(ii) wN w, where w is the fixed-point stochastic
vector of P.

(iii) I N W PN.

(iv) N is a stochastic matrix.

31. Let u be a given stochastic vector. Is it always possible
to find a regular transition matrix P such that u is a
fixed-point vector of P?

IV. Absorbing Markov Chains

32. Which of the transition matrices of Exercises 1−7
represent absorbing Markov processes?

33. What is the likelihood that the arms race described in
Exercise 4 will end in a war? If there is an escalating arms
race this year,what is the expected number of years before
the arms race resolves itself into war or disarmament?

34. What predictions can you make about the random walk
models of Exercises 6 and 7 using the theorems about
regular and absorbing Markov processes?

35. Let N be the fundamental matrix of an absorbing
Markov chain. Show that N is invertible, and prove
that NQ N I.

36. Let Si and Sj be two transient states in a Markov
process. Show that there are positive numbers b and c,
with c less than 1, so that p n

ij ≤ bcn. [Hint: Examine
the proof of Theorem 6.]

37. Let P be the transition matrix of an absorbing Markov
chain with r states. Let B be the r× r matrix whose
ijth entry is the probability of being absorbed in state Sj
if the process starts in state Si. Prove that PB B .

38. Supply a rigorous proof for Theorem 8.

39. A trio of 19th century Russian noblemen fight a three-
way duel. The three men are of different abilities at
pistol shooting. They have respective probabilities of
1/2, 1/3, and 1/6 of hitting and killing the target at
which they aim. In each round of the duel, the men
shoot simultaneously and each one aims at the best
marksman not yet killed. Treat this duel as a Markov
chain by taking as the states the men who survive any
one round. Find N and B and interpret the results.

40. Gambler’s Ruin. Annie has $3 and Rachel has $2. They
flip a fair coin. If it is a head, Annie pays Rachel $1.
Otherwise, Rachel pays Annie $1. How long will it take
for one of the players to go broke or win all the money?

V. Further Applications

For the remaining problems, see the last section of Chapter 10.

41. Each individual belongs to one of three possible gen-
otypes: AA (dominant), AB (hybrid), or BB (recessive).
In a laboratory experiment, an individual of unknown
genotype is mated with a hybrid. Show that the prob-
abilities for the genotypes AA, AB, and BB of the
offspring are given by vectors:

(a) (.5, .5, 0) if the unknown parent is dominant

(b) (.25, .5, .25) if the unknown parent is hybrid

(c) (0, .5, .5) if the unknown parent is recessive

42. Suppose the experiment of Exercise 41 is repeated a
large number of generations—that is, in each genera-
tion an offspring is chosen at random and mated with a
hybrid. Set up this process as a Markov chain, show
that it is regular, and find the unique fixed-point sto-
chastic vector. Interpret the result.

43. Consider a large population inwhichmating is completely
random, half the offspring are female, and the proportion
of genotypes is the same for both males and females. Let
p 0 be the probability vector for the genotypes of an initial
generation of parents and let p k be the probability vector
of genotypes of the kth generation of offspring.

(a) Find the transition matrix P of this Markov process
so that p k p 0 Pk .

(b) Show that p 1 is a fixed-point vector for P.
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The conclusion of (b) is that the distribution of
the genotypes is stable after only one generation. This
result is called the Hardy-Weinberg equilibrant prin-
ciple and was discovered independently in 1908 by
G. H. Hardy and W. Weinberg.

44. Show that the Hardy-Weinberg principle may not be
valid if parents of one genotype have, on the average,
more offspring than parents of another genotype. How
can the principle be modified in such a case?

SUGGESTED PRO J ECTS

1. Analyze World Series competition in the spirit of the
tennis examples as an absorbing Markov chain. Let p
be the probability of winning any particular game.
Determine the transition matrix P and associated
matrices Q, N, and B. Show that for .5 ≤ p≤ 1, the
expected length of a World Series is a monotonically
decreasing function p. Thus, p can be determined from
the observed average length of World Series compe-
tition. Does this value of p predict closely the number
of 4-, 5-, 6-, and 7-game series that have occurred? Is
there some way of estimating p without relying on
World Series information? Here are some possibilities:

(a) Let A be the average number of runs scored in the
season by the American League pennant winner, and
let L be the similar number for the National League
counterpart. Let p, the probability that the American
League champion wins a given game, beA A L .

(b) Instead of using runs scored, use the difference
between runs scored and runs allowed.

(c) Instead of using runs scored, use the number of
games won.

2. An ergodicMarkov process is one in which it is possible
to go from any given state to any other one in a finite
number of steps, but the number may depend on which
states are chosen. For example, certain states may only
be reached in an odd number of steps, while others
require an evennumber. Show that every regularMarkov
process is an ergodic one. Find some examples of
ergodic chains that are not regular. Many of the impor-
tant theorems about regular chains are also true for
ergodic ones, although of necessity, the proofs are dif-
ferent. Which theorems are these? What real-world
processes can be modeled with ergodic Markov chains?

3. Markov models have been used in many studies of
learning theory and social conformity in which the
states correspond to certain “states of mind,” which
may not be directly observable: the subject may be
limited to a certain number of observable responses,
for example, but the same response can occur if the

subject is in any of several different states. Can the
transition matrix be reconstructed from the observed
behavior? Assuming that the initial state can be
determined, note that the entries of the matrix B can be
observed. Is this information enough to find Q and R?

4. It may happen that a stochastic process operates in such a
fashion that the probability of being in a particular state at
any step depends on the states occupied in the two
immediately preceding steps. Strictly speaking, this is not
a Markov process. Show that it can be made into a
Markov process by doubling the number of states. One
area where this idea can be applied is to the study of the
outcomes of political elections where the winners come
fromone of several parties.Would amodel assuming that
the results of an election depend on the two preceding
elections necessarily be amore accurate one than amodel
taking into account only the most previous election?
Use such a model to study the results of Congressional
elections in a single district during the 20th century.

5. Consider a Markov chain with transition matrix P. Sup-
pose that before making a transition from state Si to state
Sj the process spends a time tij in state Si. These holding
times, tij, may be given by a probability distribution. Such
a process is called a semi-Markov process. It has been
used as a model to study the movement of coronary
patients within different care units of a hospital (the
absorbing states are death and discharge from hospital).
Let ti be the time the process spends in state Si for each
transition into that state. Find the expected value of t, the
expected total amount of time the process will spend in
state Si if it has just arrived in state Si, and the expected
amount of time the process will spend in transient states.

6. Investigate how the following two questions could be
answered for a regular or an absorbing Markov process:
If Si, Sj and Sk are any three states,

(a) What is the expected number of steps for the
process to move from Si to Sj for the first time?

(b) If the process starts in Si, what is the probability
that it will reach Sj before Sk?

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
12

Two Models of Cultural Stability

Anthropology needs mathematics, not because mathematics

is glamorous these days, but because mathematics can help

anthropologists . . . solve the kinds of problems

anthropologists want to solve.

—Paul Kay

I. Introduction
Communities of people cannot long survive unless the basic needs of the inhabitants are
met. In a rudimentary “society” each individual might take care only of his own require-
ments. He would find food, gather and prepare it, build his own shelter, and provide his own
entertainment, medical care, and transportation. In most societies, however, people are
dependent on one another for various goods and services. There is a division of labor
among the residents. One person or group of persons specializes in constructing houses
while another harvests the crops. Certain members debate and modify the laws, while others
ensure that violators are apprehended and punished.

Furthermore, the obligations and the privileges of a single member of the society are
different at different stages of the person’s life. The social and economic contributions to
the community of a 7-year-old, for example, vary from that of a 47-year-old. These in turn
are not the same as those of a person of age 77.

Other factors besides age are often important in determining what is expected of an
individual or what she is allowed to do. The person’s gender, race, sexual orientation,
religion, and perhaps even height and weight can control what occupations she will pursue
and the extent of her power or influence in the society. The continued cultural viability of a
community may depend quite crucially on the factors that are used to structure the division
of privilege and responsibility among the members.

II. The Gadaa System
In this chapter, we will examine a system, theGadaa system, for the division of labor that has
been used by some of the peoples in East Africa. The Oromo, meaning “free men,” constitute
one of the largest racial groups in Ethiopia and a small minority in Kenya. Historically, the
Oromo were called Galla, a name now considered pejorative. The Bilisummaa Oromiyaa
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(Oromiyaa Liberation Council) highlights the centrality of the Gadaa system for their society
[2007]:

We Oromos have taken onto our own shoulders the crucially important task of beginning,
encouraging, and carrying out the reconstruction of Oromo history—i.e., uncovering data,
recording and analyzing the events and finding clues buried in the past and present about the
very structure of Oromo society. There is no question that central to any study of the Oromo is
the GADA system. GADA is recognized by all Oromos as a key to the unique heritage of Oromo
political, social, and cultural life. Whereas most of us do know about the existence of the GADA
system from our elders, its specific operations are unclear to most of us. For this reason Oromo
intellectuals have decided to spend significant time and energy on the study of GADA. Our
study so far has led us to suggest that a beacon and even a blueprint for democracy in Oromia
may be found in the kind of society that Oromos maintained in the past and have preserved in
various forms into the present. The GADA system is a key since it has been the predominant
organizational form in Oromo society.

We shall consider only a simplified version of the actual system, so that we may focus on
some important questions. In the Gadaa system, the critical functions of the tribe are
structured through five age grades, called the Dabella, Folie, Kondala, Luba, and Yuba.

Each male in the society moves through the age-grade system, spending a period of 8
consecutive years in each grade. Since there are five grades, it takes an individual 40 years
to pass through the system. The key feature of this age-grade system is that a man enters the
lowest grade at the moment his father retires from the highest grade. In other words, a son
enters the system exactly 40 years after his father enters.

To illustrate this scheme, suppose your father enters the lowest grade when he is
13 years old and that you are born when he is 30 years old. Then your father retires from the
system when he is 53 40+ 13 years old. At that time, you will enter the system. Your age
will be 53 30= 23.

To continue this example, suppose that you have two sons, one who is born when
you are 35 and the other when you are 45. You will leave the system at age 63. Your two
sons will enter the system at the same time, although their ages will be different. The
elder will be 28 years old and the younger will be 18 years old. They will move through
the system together, entering the successive grades at the same time, and retiring in the
same year.

The calendar years of entrance into the Gadaa system of all the male descendants of
a man is then determined once we know the year the man himself entered. If a man enters
the lowest grade in the year 2015, all his sons enter in the year 2055, even if the man
dies before the date of his retirement. It is also possible that a son may enter the system
before he is born! To see how this may happen, suppose that the man who entered the
system in 2015 was very young. Then it is quite conceivable that he has a son who is born
in 2065. In such a case, it is assumed that the son entered the lowest (Dabella) grade in
2055. At his birth then, the son is considered to be a member of the Folie grade and will
advance to the Konda grade in 2061. This son would retire from the grade system in 2095
at the age of 30.

This age-grade system, as we have described it so far, poses no essential problems for
the Oromo society. What makes the system interesting to study is that the roles of a male
in the tribe depend entirely on which of the five grades he is occupying and not on his age,
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wisdom, or strength. Two members of the Luba grade, for example, have the same rights
and responsibilities, even if one is 7 years old and the other 47.

What are the particular roles assigned to the males in each grade? The anthropologist
George Peter Murdock [1959] gives a concise description:

During the first grade . . . males are forbidden to have sex relations and they wander about
begging food, which is always termed “milk” from married women. This is strongly suggestive
of the behavior of infants. During the second grade they become initiated into sexual life but
without forming stable relationships, and they engage in masked processions and behave
generally in an irresponsible manner suggestive of adolescence. In the third grade they serve as
warriors and are permitted to marry. Military valor is encouraged in some tribes . . . by
requiring the taking of the genitals of a slain enemy as a trophy to qualify for full participation
in the activities of the next, or ruling, grade. When an age-set enters the fourth, or Luba, grade,
its members take over all important administrative, judicial, and priestly offices in the tribe and
run its affairs for eight years. . . . The chief of the age-set, elected when it occupied the second
grade, now becomes the high chief of the tribe. Another man becomes speaker of the general
assembly. Others assume various administrative and judicial offices—chief priest, finance
minister, and so on. During the last, or Yuba, grade, these men relinquish their posts and
become “guardians,” serving the new officials in a purely advisory capacity.

Murdock’s description indicates that the system may have been based, in its origin,
on the maturity levels and abilities that corresponded with chronological age—that is, when
the age-grade system began, the lower grade was made up entirely of children, while the
highest grade was composed of the tribe’s elders. As we have seen from our examples,
however, in succeeding generations, the relationship between a man’s age and the grade he
occupies may be very complex.
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FIGURE 12.1 Oromo cer-
emony of laying down of
spears to settle a murder
case. Herbert S. Lewis,
photographer; used by
permission of University of
Wisconsin at Madison.
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Since the rules of the age-grade system permit a young man to occupy a high grade,
while an older man may be restricted to the activities allowed to members of a lower grade,
tensions can easily arise in the tribe. Another anthropologist, Hans Hoffmann [1965], studied
this system with the use of mathematical models. He raised the fundamental problem:

It is evident that the stability of Galla communities is threatened by the arbitrary interval of 40
years that is interposed between generations. Since this interval is often greater than the actual
chronological difference between generations, the ages of some of the people in the grades may
become progressively greater. This can result in humiliation and incongruity. An old man,
entering the first grade, would be required to abstain from sexual activity and to wander
around with its youthful members begging food. Further, if he should die before attaining the
higher grades, important governmental offices may go unfilled.

The fact that it is possible for a man to “enter” the age-grade system before his actual
birth leads to a similar kind of difficulty. He may reach the middle grades of the system at too
early a chronological age. He may not be equipped to fulfill the military or ruling functions
with any competence. By the time he has the physical strength, talents, and experience to
occupy these roles with distinction, he has graduated to the highest grade, where his services
are no longer available to the tribe. Thus, the society may be seriously weakened, because it
does not have access to the skills of its members at the time it needs them.

“It is curious fact,” writes A. H. J. Prins [1953], “peculiar to the Galla institution, that
the physical age of those who occupy simultaneously one and the same grade varies so
widely, even from young children to fairly old men. . . . Viewed from the institutional
angle, what it comes to is that most members of any grade fail to accomplish what is
socially expected of them. The grade is supposed to exist because of the expected execution
of a delegated task which regards more or less the real ages of the participants, but owing to
factual circumstances widely differing from those reflected in the implicit charter, the
grades, especially the lower ones, seem to have become an institutional (or even ‘func-
tional’) failure. This failure has to be attributed to the composition of the personnel.”

If there is too high a proportion of males in the society who are “out of phase” with
the roles of the age-grade system, it will be difficult to maintain both a strong community
and the age-grade system.

Since every community must place a high premium on its own survival, we may well
ask if the age-grade system can continue unchanged over a period of many generations.
Does the system possess stability as a component of the culture? Must it change to relieve
the tensions we have described? Or will the differences between the 40-year intervals
and the gaps between successive generations somehow “smooth out” over the years so that
these tensions are essentially absent?

Hoffmann developed two models to study these questions. The first [1965] is a rel-
atively simple deterministic model, while the second [1971] is a more sophisticated
probabilistic one that makes use of Markov chains.

III. A Deterministic Model
To formulate a mathematical model, we must make some careful definitions and assumptions
about the phenomena we hope to study. To investigate whether the age-grade system
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possesses stability, Hoffmann [1965] first had to make precise the idea of a stable system. He
proposed the following:

DEFINITION A stable system is one that tends to maintain a realistic relationship
between age and role behavior.

For his deterministic model, Hoffmann investigated an axiom about sufficient con-
ditions for a system to be stable.

AXIOM 1 A realistic relationship between age and role behavior can be maintained if,
between any arbitrary number of generations, the ages at which an ancestor and his
distant offspring entered the first grade are equal.

This axiom provides the means for translating our verbal discussions about stability
into mathematics. Note that the condition for stability is an equality between numbers. We
can make this more transparent by introducing some notation.

For the ith generation, we let Ai denote the age at which a man enters the first grade.
Thus, A1 gives the age of the first man of interest when he enters the lowest grade, A2 the
age of his son, A3 the age of his grandson, and so on. For simplicity, we will assume that
each man has exactly one son.

By Pi, we will denote the age of the man in the ith generation when his son is born.
In terms of this notation, we have two ways of writing the age of the man in the first

generation at his retirement from the age-grade system. On the one hand, since he enters the
system at age A1 and remains in it for 40 years, he retires at age A1 + 40. On the other hand,
since his son enters at the time the father retires, the father’s age at retirement is also given
by P1 +A2. Thus, we have the basic relationship,

A1 + 40=P1 +A2 1

which we may rewrite as

A2 =A1 + 40−P1 2

If we require that a man and his son enter the age-grade system at the same age, then we are
insisting that A1 =A2. Substituting this equality into Eq. (2) yields

40−P1 = 0

or

P1 = 40.

The basic relationship stated in Eq. (2) holds for every pair of father and son; thus, we have

Ai+1 =Ai + 40−Pi 3
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In particular, this gives us

A3 = A2 + 40−P2

= A1 + 40−P1 + 40−P2

= A1 + 2 40 − P1 +P2

4

and

A4 = A3 + 40−P3

= A1 + 2 40 − P1 +P2 + 40−P3

= A1 + 3 40 − P1 +P2 +P3

5

A simple induction argument shows that

An+1 =A1 + n 40 − P1 +P2 +⋯+Pn 6

We have seen that a man and his son will enter the age-grade system at the same age exactly
if the son is born when his father is 40 years old. From Eq. (4), we may conclude that a man
and his grandson will enter the age-grade system at the same age—that is, A3 =A1 exactly if

P1 +P2 = 80 7

or

P1 +P2

2
= 40 8

This last equation asserts that the average age of parenthood of the first two gen-
erations must be 40 if the man and his grandson are to enter the system at the same age.

Now, Axiom 1 asserts that stability is maintained if the ages of entry of a man and his
distant descendant are the same. If n denotes a large, arbitrary number of generations, then
this condition is expressed by the equality

An+1 =A1 9

Substituting this equality into Eq. (6) gives

A1 =A1 + 40n− P1 +P2 +⋯+Pn 10

or

40n=P1 +P2 +⋯+Pn 11

so that

P1 +P2 +⋯+Pn

n
= 40 12
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Now the number on the left-hand side of Eq. (12) is simply the average of the
numbers P1, P2,…,Pn. We may then conclude from this deterministic model that the age-
grade system of the Gadaa will be stable if, over a large number of generations, the average
age at which a man becomes a father is 40.

This deterministic model has the advantage that the predicted condition for
stability—average age of 40 for parenthood—can be readily checked by examining
accurate census data for the tribe.

This model has a number of important limitations, however. It deals only with one-
dimensional father-son links and ignores the branching of descent lines representing sib-
lings. In other words, the model assumes that a man has only one son when, in fact, many
men have several sons. Of course, some men have no sons, and this shows another
weakness of the model. The model transforms every given family into points of future time
when it may, in fact, no longer exist.

Other aspects of this model and possible refinements and improvements of it will be
presented in the exercises. In the next section, we will examine Hoffmann’s probabilistic
model for the question of cultural stability of the age-grade system.

IV. A Probabilistic Model
The stability of the Oromo age-grade system is threatened by the possibilities of disparities
between chronological ages and assigned cultural roles. To promote stability, it is desirable
that the lower grades consist largely of adolescents. What is crucial is not the absolute
number of members of different ages in a particular grade, but the relative numbers. If most
candidates for initiation into the lower grades are youthful, then there will be little tension in
the system and we may expect it to continue to function largely unchanged for a number of
generations. We can predict the level of tension that is likely to arise in the future if we
know the ages of the males at the time they enter the age-grade system.

For computational simplicity, we will consider three age categories, or states, for the
age at the time of initiation into the lowest grade:

S1: ages 13 19

S2: ages 20 29

S3: ages 30 or over

The vector x1, x2, x3 will represent the proportion of males in each state. For example, if
there are 100 men about to be initiated into the age-grade system with 25 in S1, 55 in S2, and
20 in S3, we will represent this by the vector

25 100, 55 100, 20 100 = .25, .55, .20 13

If the Gadaa system is to survive, the set of males about to enter the grade system should
consist largely of younger men. The state S1 should contain a relatively large proportion of
the set while S3 should include a relatively smaller fraction. As new generations enter the
system, there should not be a significant drift from S1 to S3.

To determine the shifts from one state Si to another Sj in successive generations, we
determine for each male about to enter the system, the age of his father when the father
entered the system.
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Using Hoffmann’s example, suppose that we examine a set of 240 males and record
for each his state and his father’s state at the time of initiation. The data are conveniently
displayed in a matrix in which the rows correspond to the father’s state and the columns to
the son’s state:

Son’s state at time of initiation

S1 S2 S3
Father’s S1

state at time S2
of initiation S3

10 25 30

55 60 35

5 15 5

We see from this matrix that the largest group (60) were in their twenties when they
were initiated and so were their fathers. There were only five males who were initiated after
the age of 30, but whose sons were initiated in their teens.

As noted above, our concern is not so much with absolute numbers, but with pro-
portions. If we examine the 65 fathers who were initiated into the age-grade system as
teenagers, we see that 10/65 of them had sons who were initiated as teenagers, 25/65 had
sons initiated in their twenties, and 30/65 had sons initiated after the age of 30. We compute
similar fractions for the fathers in states S2 and S3 and obtain the matrix

S1 S2 S3
S1
S2
S3

10 65 25 65 30 65

55 150 60 150 35 50

5 25 15 25 5 25

S1 S2 S3
S1
S2
S3

2 13 5 13 6 13

11 30 12 30 7 30

1 5 3 5 1 5

or, in decimal notation,

p

S1 S2 S3
S1
S2
S3

154 384 462

367 4 233

2 6 2

Now it is possible to regard the entries in the matrix as probabilities. Thus, the
probability that a father in state S2 has a son in state S3 is given as .233. Hoffmann considers
this matrix a transition matrix from one generation to the next and notices that if we assume
that this matrix remains constant, then we can study the age-grade system using the tools of
Markov chain analysis.

For example, if our initial distribution of states is given by the vector

p 0 = .25, .55, .20

then the distribution of states after one generation is

p 1 =p 0 P= .28, .44, .28
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After a single generation, there will be a slightly higher proportion of sons in S3 than there
were sons a generation ago. If this trend continues, the stability of the age-grade system is
threatened.

Let’s see what happens to the distribution after two generations. It will be given by
the vector p 2 where

p 2 = p 1 P= p 0 P P=p 0 P2 = .27, .46, .27

It is easy to see that the drift from S1 to S3 evidenced after one generation has not
continued.

In a similar fashion, we can compute the distribution of states after three generations,
four generations, and so on. It is more interesting at this point, however, to determine the
long-range behavior of the distribution vector. All the entries of the transition matrix P are
positive, so we are dealing with a regular Markov process. The long-term distribution of
states is then given by the unique fixed-point stochastic vector w of P. This is the vector
w= w1, w2, w3 with the properties that w=wP and w1 +w2 +w3 = 1. Using the methods
of Chapter 11 and Appendix II, we find that the components of w are

w1 =
663
2518

= .263

w2 =
1140
2518

= .453

w3 =
715
2518

= .284

If our process is a Markov chain, then the proportion of males in the three states will tend
toward S1 = .263, S2 = .453, S3 = .284. Hoffmann notes that these values are not radically
different from the initial vector .25, .55, .20 so that the system may be considered stable.

V. Criticisms of the Models
In what sense is Hoffmann correct in claiming that the mathematical model predicts that the
age-grade system is stable? In the first place, the long-term behavior of the distribution is
close to the distribution of the initial vector. If the society was able to tolerate the distri-
bution of states when the system began, it will be able to tolerate distributions just as well in
later generations. Even if the initial distribution vector was quite different from w, there is
still reason to conclude the system is stable. The age-grade system is most threatened if
the proportion of older men in the lower grades continues to increase. The calculation of the
limiting vector w shows that this proportion will remain, in the long run, under 30 percent.
Whether the society can tolerate that high a proportion in the lowest age group is a question
that can be decided only by more careful observation of the Gallas.

The discussion of the particular numbers obtained in Hoffmann’s example is not
central to a criticism of his approach. It should be pointed out that the data he used were
not obtained by an actual observation or census of the Oromo people, but were chosen
arbitrarily. Hoffmann wished to demonstrate how Markov chains could be used to study a
problem of cultural stability. The entries of the transition matrix were chosen to represent
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a not unreasonable situation for which no bias toward or away from stability was imme-
diately apparent.

The critical assumption in Hoffmann’s model is that the process is a Markov one—that
is, that the transition matrix remains constant from generation to generation over many years.
How reasonable is this assumption? Are the transition probabilities going to be the same for a
generation of fathers that suffered through a drought or were decimated by illness or war as
they are for a generation that has known plentiful harvest, good health, and peace? If one
generation produces a set of males, most of whom enter the lowest grade at an advanced age,
will the next generation try to adjust its birth rates to compensate for this condition?

Hoffmann’s response to these criticisms is that there is value in the Markov chain
approach even if there is no reason to believe that the transition matrix is constant [1971]:
“If we are unwilling to postulate the invariance of the transition matrix, it is still possible to
use the model as a decision procedure. The limiting vector of an observed transition matrix
is readily calculated. Then one can state: ‘This pattern of transitions is/is not compatible
with the stability of the . . . system.’”

If we are willing, on the other hand, to postulate that the transition matrix remains
constant, we can ask some important questions about Hoffmann’s Markov chain model. In
our early discussions about the age-grade system, we noted that it is quite conceivable that
many males will enter the lowest grade before adolescence. This group is omitted entirely
from Hoffmann’s model. For completeness, he could have included a state S0 corresponding
to those who were initiated before the age of 13. If this state is included, then the transition
matrix becomes a 4× 4 array. If it is a regular matrix, then the theory of Chapter 10 still holds
and a limiting vector w can be computed, although the calculations are more tedious.

In the exercises and suggested projects, you will be asked to explore further some
possible modifications of this probabilistic model.

VI. Hans Hoffmann
Hans Hoffmann’s work in anthropology ranged from field studies of Eskimo hunters and the
cultures of the Amazon River basin to new theoretical developments in mathematical anthro-
pology.Healso conductedethnographic research among amental hospital population receiving
new psychiatric drugs, and he served as a consultant on a project attempting a mathematical
analysis of children’s games. Hoffman developed a strong interest in maritime anthropology,
studying how to apply mathematics to technical aspects of navigation and boat design.

Hoffmann was born in Koblenz, Germany, in 1929, but received his professional
education in the United States. He did his undergraduate work at Cornell University where
he was a mathematics major who devoted substantial time also to the fields of physics,
astronomy, anthropology, and Chinese literature. He received his doctorate in anthropology
from Yale University in 1957 for a thesis on cultural homogeneity among the Attawapsikat
Cree. The field data for this study, which was supervised by an anthropologist and a
psychologist, were gathered by Hoffmann and his wife Betty in James Bay, Canada.

Interest in the hunters of the northern forest led Hoffmann to the field work among the
Eskimos and Crees in the mid-1950s. Among the unpublished material Hoffmann collected
are reminiscences and ethnographic comments by his Cree informant gathered while
Hoffmann observed his life in camp and accompanied him on hunting expeditions.

The Amazon River basin has also held a long-term fascination for Hoffmann. “This
has led,” he wrote, “to three field trips to the Shipibo of the Ucayali river in Eastern Peru.
I am particularly interested in contemporary changes in technology and their effects on the
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continuity of Amazonian cultures. This research is illuminated by an independent interest in
lowland archeology. Several of my studies in mathematical anthropology are based on my
Amazonian data. Conversely, mathematical culture theory has supplied an analytical
framework for making field observations.”

Hoffmann’s developed pioneering mathematical models in theoretical anthropology.
He published papers on deterministic, stochastic, and game theory models of cultural
systems, material culture in a four-dimensional world, linear programming approaches to
“cultural intensity,” and an extensive survey of mathematical systems and their possible
application to anthropological problems.

In a chapter for the Biennial Review of Anthropology, Hoffmann [1969] described the
role of mathematical models:

Although human imagination is unbounded, our unaided ability to experience it is limited.
Experiencing requires tools, and as these become developed, wider realms of imagination can be
made one’s own. We can imagine differences in the length of objects, but need a tool—the natural
numbers—to experience them. We can imagine an infinity of numbers beyond the integers and
their inverses, but need a tool—Cantor’s diagonal proof—to experience their existence. For this
reason, tools are the essence of culture; whether physical or mental, they permit man to expe-
rience wider ranges of his universe . . . . Mathematics is a tool that enables man to understand
and control an immense number of events and processes in the physical world. Mathematics, in
particular, is a tool that penetrates realms of imagination hopelessly beyond the experience of a
toolless mind. Moreover, once mathematical tools have been developed, they often reverse their
effect and enlarge not only one’s experience but also one’s imagination.

Hoffmann taught briefly at the University of Oklahoma, University of Arkansas, and
Cornell, before moving to the State University of New York at Binghamton in 1961. “From
a long-range point of view,” he said in the 1970s, “I do expect to return to empirical
investigations when the mathematical issues that have intrigued me have been at least
looked into. While mathematics is an exhilarating world to explore, it cannot really compete
with the Amazon. Most likely I will combine a long-standing interest in the construction
and sailing of small boats with that in the life of Indian traders on the Amazon tributar-
ies. . . . I look forward to returning to the Amazon when the ages of my children make
extensive field work feasible once more.”
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Hans Hoffmann and two of his children in early 1970s.
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His colleague Daniel Strouthes noted that

Beginning in the early 1980s Hoffmann spent many summers in the Chesapeake Bay region,
studying the waterways and the boats designed to fish them in the 19th century. He also
purchased and sailed a Pacific-style multihull boat to broaden his knowledge of traditional
Pacific voyaging. His maritime anthropology research resulted in his teaching 5 courses on the
subject, and he thus single-handedly made Binghamton’s maritime anthropology training the
most extensive available at an inland U.S. university, and perhaps the most technologically
oriented anywhere in the world.

Hoffmann’s personal interests and love of anthropology were inseparable. He was an avid
outdoorsman who combined his bicycling, hiking, cross-country skiing and gliding with his
professional work. For example, his bicycling and hiking of the Erie Canal resulted in the
introduction of a section on canals into his Technology andMaterial Culture course, and his long
experience as a glider pilot led to his 1989 articleGliding in L3: Decisions, Decisions,which used
symbolic logic to describe decision-making processes of glider pilots. Hoffmann was an inde-
fatigable researcher, possessed of an active mind that was alwaysmoving in new directions, and it
was his students who were always the first and most significant beneficiaries of his work.

Hans Hoffman died suddenly at his home in Vestal, New York on March 8, 1997.

EXERC I S E S

II. The Gadaa System

1. Meyer entered the age-grade system at the age of 15
and his son Frank was born when Meyer was 35
years old. Frank became the father of Michael at age
39. Michael’s sons Eli and Alexander were born
when he was aged 25 and 31, respectively. How old
will Eli and Alexander be when they retire from the
system?

2. Is it possible for a man to be born directly into the
highest grade? Is it possible for him to be born after his
“retirement” from the age-grade system?

III. A Deterministic Model

3. Prove Eq. (6) by mathematical induction.

4. What is the relation of An+1 and A1 if the average age
of parenthood of the intervening n generations is less
than 40 years? greater than 40 years?

5. How do the results of the deterministic model change
if the length of time of an individual in the age-grade
system is k years, instead of 40 years?

6. What would you estimate the life expectancy of an
Ethiopian tribesman to have been in the 18th and

19th centuries? Is it likely that the average of parent-
hood could have been 40?

7. Note that the rules of the age grades do not allow a
man to marry until he has been in the system for at
least 16 years. What effect does this have on the
average age of parenthood?

8. How would you modify the deterministic model to
allow for the fact that some men have no sons, while
others have more than one?

9. If the society is undergoing exponential or logistic
population growth, will this affect the stability of the
age-grade system?

10. Prins argued that “the functioning of the system of age-
grades of the Galla . . . requires birth regulation as one
of its basic institutional elements.”

(a) Show that the results of Hoffmann’s deterministic
model indicate that this is not a necessary condi-
tion for stability.

(b) Prins claimed that restricting procreation to a man’s
last 12 years in the system would be the ideal way to
achieve stability. In what sense, if any, is this true?
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IV. A Probabilistic Model

11. Using Hoffmann’s transition matrix P, calculate p 1 ,
p 2 , and p 3 if

(a) p 0 = 1, 0, 0

(b) p 0 = 1 3, 1 3, 1 3

(c) p 0 = 0, 3 4, 1 4

(d) p 0 = p, q, 1 p q

12. Repeat Exercise 11 with the transition matrix

p

S1 S2 S3
S1
S2
S3

6 3 41

1 8 1

1 2 7

13. Repeat Exercise 11 if every entry in the transition
matrix is 1/3.

14. Find the unique fixed point stochastic vector for
(a) the matrix P of Exercise 12,

(b) the matrix of Exercise 13.
Are these stable systems?

15. Add a fourth state S0 for those who entered the system
before age 13, assume that p 0 = .1, .2, .3, .4 and that
the transition matrix is

S1 S2 S3 S4
S1
S2
S3
S4

5 3 15 05

2 6 15 05

0 2 7 1

0 05 15 8

(a) Compute p 1 and p 2

(b) Is the transition matrix regular? If so, find its
unique fixed-point stochastic vector. Does it give
rise to a stable system?

16. Is it conceivable that the transition matrix might not be
regular? What are the consequences of this for the
model?

SUGGES T ED PRO J ECTS

1. What are the effects on the stability of the age-grade
system if one or more of the following modifications
are made?

(a) A son enters the system at his father’s death if his
father dies before retirement.

(b) The eldest son enters exactly 40 years after his
father does, but younger sons must wait until they
are the same age as their older brother was when
he was initiated.

(c) A son enters 40 years after his father does or at
the age of 10, whichever event takes place later;
thus, no one enters before the age of 10.

Can the deterministic and probabilistic models of this
chapter be changed to incorporate these variations?
Are new models necessary?

2. Discuss the practical problems of determining the
entries of the transition matrix from observations and
census data. Can you determine, in the absence of such
information, bounds for the sizes of the entries of the
transition matrix? Are all transition matrices whose
entries satisfy these bounds necessarily regular?

3. Prins discusses age-grade systems among the Kipsigis
and Kikuyus of Kenya as well as the Oromos of
Ethiopia. Develop mathematical models for these age-
grade systems. Do these systems have problems of
stability?

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
13

Paired-Associate Learning

The mind is slow to unlearn what it has been long in learning.

—Seneca

I. The Learning Problem
The study of learning has been a basic concern of psychology for more than a century. There is
a vast literature of books and articles developing different theories or presenting the results of
learning experiments involving human and animal subjects. In his chapter, we will examine a
very simple model of a particular kind of learning situation. The model was developed by
Gordon Bower (and independently by R. R. Bush and F. A. Mosteller) around 1960 in the
early days of mathematical learning theory. Mathematical model building for learning
processes has had a rich and varied history during the past 50 years; the current “state of the art”
has advanced quite far beyond the material we will study. Bower’s work is worth examining
for us because it shows how a number of predictions can be deduced from a simple model
and because it illustrates an actual use of the absorbing Markov chains studied in Chapter 11.

Bower examined a learning problem exemplified by a task familiar to most students.
Suppose you are studying for a vocabulary test in your Swahili course. You must be able to
translate into Swahili a prescribed list of 25 English words. This learning situation demands
the following:

1. You must learn the Swahili words. This includes proper pronunciation and spelling.

2. You must learn to match the correct Swahili word to the appropriate English word.

Bower’s model of “paired-associate” learning (PAL) is concerned with the second
task, the associative “hook-up” of the relevant responses to their appropriate stimulus
members. Paired-associate learning was invented by Mary Whiton Calkins in 1894.
Calkins (1863–1930) established the first research laboratory in psychology at a liberal
arts college, Wellesley College. She was the first female president of both the American
Psychological Association (APA) in 1905, and the American Philosophical Association
in 1918.

To describe the learning situation more carefully, suppose that the experimenter
determines a set of ordered pairs s, r where s is chosen from a finite set S, called the stimulus
set, and r is selected from a finite collection R, labeled the response set. An element s is shown
to a subject and she tries to give the corresponding r. The subject, in other words, is trying to
find the appropriate value f x of a function when she is told the domain value x.
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In the example of the foreign language word list, the set S consists of 25 English
words and the set R of 25 Swahili words. The function f for this example is one-to-one, but
it need not have this property in general.

When the subject is first presented with a stimulus, she can only guess what the
appropriate response is supposed to be. After she guesses, the experimenter tells her what
the correct response should have been. This is the first point in the experiment at which
learning may occur.

If there are K elements in the set S, then a trial is defined as one cycle of presentation
of each of the K items, the order of appearance of the items being randomized over suc-
cessive trials. After the first trial, the subject may either guess again or give the correct
response because she has learned it from the result of a previous trial.

Each subject in the experiment responds to each element of S on the first trial. The order
of presentation of the stimulus elements is scrambled, and the subject is asked again. This
procedure is repeated until the subject responds correctly to all elements of S on two conse-
cutive trials. It is then assumed that the subject has completed the learning task. In theory, the
experiment for a single subject could last for indefinitely many trials, but in practice,
the learning task is chosen so that it is completed by all subjects by the 20th trial.

Data is collected from the experiment by recording each correct response by a 0 and
each incorrect response by a 1. If we fix our attention on a single element of S, then the
subject generates a sequence

x1, x2,…, xn,…

of 0s and 1s. To repeat, the number xi is 0 if the subject made the correct response to the
particular stimulus s when presented with it on the ith trial, and it is a 1 if there was an
incorrect response on the ith trial.

“Stripped to its barest essentials,” Bower [1961] explains, “the job for a theory of PAL is to
describe and account for the general characteristics of these sequences. The best job of
description, of course, would be to reproduce the original sequences. Theories, as economic
abstractions, do not perform this task but they can provide general descriptions (e.g., the trial
number of the second success) about a sample of sequences allegedly generated under the same
process laws. Obviously models that deliver predictions about many different aspects of such
sequences are preferable to less tractable models, since each prediction provides an oppor-
tunity to test the adequacy of the model. In turn, the number of predictions derivable in closed
form from a model reflects to a large extent the simplicity of the assumptions used to represent
the process under consideration. The assumptions of the model to be presented appear to
achieve almost maximal simplicity for a model about learning; accordingly, it is possible
to derive in closed form an extensive number of predictions (theorems) referring to properties
of the response sequences obtained from the learning subject.”

II. The Model
A. Axioms of the Model

Bower’s model assumes at the start that each stimulus item in the list of paired associates
may be represented by exactly one element from a set S and that the correct response to that
stimulus item becomes associated in an all-or-none fashion. He also assumes that the
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subject knows the elements of the response set before the experiment begins; thus, the
model can concentrate on the second associative aspect of the learning problem as dis-
cussed in Section I.

The process of associating elements in S with elements in R is governed, according to
the model, by five basic axioms:

AXIOM 1 On each presentation of an item from the set S, only two states, C and U, are
possible for the subject with respect to this item. If the subject is in state C for that item,
then she knows the correct response and will give it. If the subject is in state U for that
item, then she does not know the proper response and she guesses an element from the
permitted set of responses.

If the subject knows the proper response, we say she is in the conditioned state C;
otherwise, she is in the unconditioned state U.

AXIOM 2 At the beginning of the experiment, the subject is in state U for each item in S.

AXIOM 3 The state C is an absorbing state; if an item has become conditioned, then
continued study of the same correct response will ensure that the item remains
conditioned.

AXIOM 4 If the subject is in state U immediately preceding any trial, then the transition
probability moving from U to C on the next trial is a positive constant c, which is the
same for each trial, each item, and each subject.

AXIOM 5 If the subject is in state U, then the probability that she guesses the correct
response is 1

N where N is the number of elements in the set R.

These axioms contain a number of simplifying assumptions about how humans learn,
some of which may seem startlingly naive to you. Does it indeed seem reasonable to assume
that there is a transition probability c that does not vary from person to person? Even for a
single subject, is it not likely that the chances of becoming conditioned to an item would
depend on the nature of the item?

The assumption (Axiom 5) that a subject in state U chooses from the response set
with equiprobability also seems suspect. While she may not have learned, for example, to
associate the Swahili word twiga with the English word giraffe, the subject may know that
the correct response is one of three or four Swahili words from the total list of 25. In other
words, she may be guessing at random not from the set R, but from some smaller subset R′.
Also, if she has become conditioned to associate, say, the Swahili simba with the English
lion, then she will not respond with simba when asked to translate giraffe. Thus, as more
items become conditioned, the probability of a correct guess should increase.

Several responses to these criticisms of the axioms are possible. We shall see how
Bower designed a specific learning situation in which some of these objections cannot arise.
More important, however, every mathematical model contains simplifying assumptions.
Whether these simplifications are reasonable ones to make can only be judged after the
predictions of the model are compared with observations of the real-world system that is
being modeled. In Section III, we will make these comparisons. Let’s examine now what
we can deduce from the set of axioms.
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The words “state” and “transition probabilities” are used in the statements of the
axioms deliberately. They indicate that we mean to use Markov chains to study the paired-
associate learning situation. Axioms 1, 3, and 4 assert that the learning process is
an absorbing Markov chain. From these axioms, we can construct the transition matrix,
which describes the movement from state to state in successive trials for a given item.

The transition matrix has the form

C U

P=
C

U

1 0

c 1− c

where the rows give the state prior to the start of one trial and the columns give the state
prior to the start of the next trial.

From Axiom 2, the initial probability vector is

p 0 = 0, 1

because the subject does not know at the outset how the items have been associated.
The model has a single parameter, c, which is the likelihood that an unconditioned

item will become conditioned as the result of a reinforced trial (evoking the correct
response). The effect of successive reinforced trials is to provide repeated opportunities for
the item to become conditioned.

From a subject’s response to the stimulus on a particular trial, we cannot always assert
which state is being occupied. A correct response is certain if the subject is in state C, but it
is also possible that the subject was in state U and made a lucky guess. If, however,
the subject makes an incorrect response on the trial, then the subject must have been in the
unconditioned case. This fact makes it possible to prove a number of theorems about
the model.

B. Predictions of the Model

Bower derives a large number of predictions about the learning process from his Markov
chain model. We will list some of them here and give proofs of a few.

It is possible to deduce from the model the following:

A. The average number of trials before learning the item

B. The probability qn, of an error on the nth trial—in fact, this is really an infinite
number of predictions: q1,q2, . . .

C. The average number, u1 of errors before learning an item

D. The probability of a run of k consecutive errors k = 1, 2, 3, . . . that start on the nth
trial for n= 1, 2, 3, . . . )

E. The expected value of rk , where rk represents the number of error runs of length k
(k consecutive errors followed by a correct response)
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F. The expected value of R where R= r1 + r2 +⋯, the total number of error runs

G. The probability distribution of T , the total number of errors on each item—that is,
we deduce Pr T = k for k= 0, 1, 2, . . . (note that the expected value of T is
EV T = u1)

H. The expected value of ck, n, where ck, n is the number of times that an error on trial n
is followed by an error k trials later

I. The expected values ck of the “autocorrelations” of xn and xn+ k over all trials of the
experiment—that is,

ck =EV
∞

n=1

xn xn + k =
∞

n=1

EV ck, n .

For instance, c2 is the average number of times errors occur two trials apart.

J. The average number of alternations of successes and failures

K. The average number of errors before the kth success, k = 1, 2, . . .

L. The proportion of items for which there are no errors following the kth success for
k = 1, 2, . . .

M. The probability distribution for the number of errors between the kth and the k+m th
success, for all positive integers k and m

N. The probability distribution of the number of successes between adjacent errors

C. Deriving the Predictions

In this section, we will show how some of the predictions A – N may be deduced from
the model.

We begin by writing the transition matrix P in the standard form (Chapter 11, IV):

Absorbing
States

Transient
States

Absorbing States
Transient States

I 0

R Q

In this case, we obtain

1 0

c

C

C

U
P =

U

1–c

so thatQ is the 1× 1 matrix 1 c . Thus, I Q= 1 1 c = c. Hence, the fundamental
matrix is

N = I Q 1 =
1
c
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The following conclusions are immediate:

1. Since every such Markov process eventually reaches an absorbing state, every
subject will eventually learn every item;

2. The average number of trials per item that a subject is in the unconditioned state is
1
c
.

In this way, we have derived prediction (A):

THEOREM 1 The average number of trials before learning the item will be
1
c
.

Our next task will be to show that the probability qn of an error on the nth trial of
an item is given by

qn = 1− c n−1 1−
1
N

This result is true essentially for two reasons. First, the subject must fail to be condi-
tioned on each of the first n 1 trials. On each trial, this happens with probability
1 c. Second, the subject must guess incorrectly on the nth trial; according to Axiom 5,
this happens with probability 1 1

N .
In order to give a more rigorous proof, we need to introduce a little extra notation.
We define Cn to be the event that the subject is in state C immediately prior to the

response on the nth trial and Un the event that she is in state U at that time. These are
mutually exclusive events, so we have

Pr Cn + Pr Un = 1

Axiom 3 gives us the result that Pr C1 = 0 and Pr U1 = 1. The axioms of the model
also give us

Pr xn = 1 Cn = 0 and Pr xn = 1 Un = 1
1
N 1

In the notation of Markov chains we have p 0 = Pr C1 , Pr U1

p 1 = Pr C2 , Pr U2 = p 0 P

. . .

p n− 1 = Pr Cn , Pr Un = p 0 Pn− 1

p n = Pr Cn+ 1 , Pr Un+ 1 =p 0 Pn

. . .
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Ordinary matrix multiplication and simplification shows that

p2 =
1 0

c 1− c

1 0

c 1− c
=

1 0

c+ c 1− c 1− c 2

=
1 0

1− 1− c 2 1− c 2

A simple induction argument then leads to the conclusion that

Pk =
1 0

1− 1− c k 1− c k k = 1, 2,… 2

With k set equal to n 1, we obtain

Pr Cn , Pr Un =p 0 Pn− 1 = 0, 1 Pn− 1 = 1− 1− c n− 1, 1− c n− 1 3
so that

Pr Cn = 1− 1− c n− 1 and Pr Un = 1− c n− 1 4

We have enough machinery now to establish prediction (B). ⋄
THEOREM 2 The probability of an error on the nth trial is given by

1 c n 1 1
1
N

Proof of Theorem 2 The probability of an error on the nth trial can be represented as
Pr xn = 1 . Since the subject was in one of the mutually exclusive states C or U before
the nth trial began, we have

Pr xn = 1 =Pr xn = 1∩Un + Pr xn = 1∩Cn

= xn = 1 Un Pr Un + Pr xn = 1 Cn Pr Cn

where the second equality comes from elementary results about conditional probabil-
ities (Chapter 10, II).

Now we make use of Eqs. (1) and (4) to write

Pr xn = 1 = 1−
1
N

1− c n− 1 + 0 1− 1− c n− 1

the desired result.
Our next deduction from the axioms gives a result that is useful in determining

the value of the parameter c in experimental situations. ⋄
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THEOREM 3 The expected total number of errors, u1, before learning an item is

1− 1
N

c

To obtain this result, we first introduce a new random variable. Let TM denote
the total number of errors made by a subject on a particular item in the first
M trials. Since xn = 1 if the subject makes an error on the nth trial and is 0 otherwise,
we have

TM = x1 + x2 +⋯+ xM

in other words, TM is itself the sum of M random variables. We want to compute the
expected value of TM . It is clear that the expected value of TM will be related to
the expected values of the xis. It turns out that this relationship is a particularly
simple one. ⋄
LEMMA Let R1 and R2 be two random variables defined on the same finite set E,
which has probability measure Pr. Then EV R1 +R2 =EV R1 +EV R2 .

Proof of Lemma

EV R1 +R2 =
x inE

R1 +R2 x Pr x

=
x inE

R1 x +R2 x Pr x

=
x inE

R1 x Pr x +R2 x Pr x

=
x inE

R1 x Pr x +
x inE

R2 x Pr x

= EV R1 +EV R2

An easy induction argument establishes the corollary. ⋄

Corollary The expected value of a finite sum of random variables is the sum of their
expected values. ⋄

We can use the corollary to begin to compute the expected value of TM :

EV TM = EV x1 + x2 +⋯+ xM

= EV x1 +EV x2 +⋯+EV xM

The computation of the expected value of an xi is easy:

EV xi = 1Pr xi = 1 + 0Pr xi = 0

= Pr xi = 1
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= 1− 1
N 1− c n− 1, by Theorem 2.

Putting these results together, we have

EV TM = 1−
1
N

1− c 0 + 1−
1
N

1− c 1 +⋯+ 1−
1
N

1− c M−1

= 1−
1
N

1− c 0 + 1− c 1 +⋯+ 1− c M − 1

Now the expression in square brackets is the sum of the first M terms of a geometric
progression with first term 1 and common ratio 1 c . Thus,

EV TM = 1
1
N

1− 1− c M

1− 1− c
= 1

1
N

1− 1− c M

c
5

We find the expected number of total errors that will be made before an item is
learned by letting M→∞ in Eq. (5) so that 1 c M → 0. This establishes the statement of
Theorem 3.

Finally, we will derive some results on the extent to which an error on a given trial
tends to be followed by an error some number of trials later. Let ck, n denote the product

ck, n = xn · xn+k

This product has value 1 exactly when the subject makes errors on the nth trial and on the
n+ k th trial; otherwise it is 0. The expected value of ck,n is then given by

EV ck, n = Pr xn+k = 1∩ xn = 1

= Pr xn+k = 1 xn = 1 Pr xn = 1

= Pr xn+k = 1 xn = 1 1−
1
N

1− c n− 1

To find the conditional probability in this equation, we examine how an error occurs
on the n+ k th trial. It must be the case that conditioning fails during each of the k
trials after the nth one and also that the subject guesses incorrectly on the n+ k th trial.
Thus, we have

Pr xn+k = 1 xn = 1 = 1− c k 1−
1
N

We find then that

EV ck, n = 1− c k 1−
1
N

1−
1
N

1− c n− 1

The average value of the “autocorrelation” of xn and xn+ k over all trials is

ck =EV
∞

n=1

xn xn+ k =
∞

n=1

EV ck, n =
∞

n=1

1−
1
N

2

1− c k 1− c n−1
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so that

ck = 1−
1
N

2

1− c k
∞

n=1

1− c n−1

This last sum is an infinite geometric progression with initial term 1 and common ratio

1 c . The sum equals
1

1− 1− c
=

1
c
. Hence, we have

ck =
1− c k 1− 1

N
2

c

This gives us the predictions H and I promised in the preceding section. In this
derivation, we have used infinite sums rather recklessly. The arguments can be made rig-
orous by restricting ourselves first to finite sums and then employing a limiting process. The
procedure is much the same as in the proof of Theorem 3. The reader is encouraged to
supply the details.

By arguments similar to the ones of this section (some easier, others more complex),
we can deduce formulas for the other predictions A – N of the model. You will do this in
the Exercises.

Now that we have good number of predictions of how subjects would behave in a
paired-associate learning situation if the axioms are correct, we can turn to the task of
comparing them with real-world observations.

III. Testing the Model
Bower compared the predictions of his model with the results obtained in an experiment
involving 29 subjects. He presented each subject with a list of 10 pairs of consonant letters;
these pairs constituted the stimuli. The subject had to learn to associate each pair with either
the integer 1 or the integer 2. For each subject, five of the pairs were selected at random to
be associated with 1; the correct response for the other five pairs then was 2. The experiment
continued until the subject was able to complete two consecutive cycles of all 10 pairs. The
letters were written on cards and the cards were shuffled between trials to randomize the
order of presentation of the stimuli.

Since “1” is the correct response to five different stimuli, the subject cannot discard
any element in the response set even after becoming conditioned to some of the stimulus
items. Also, as there are only two possible responses, the subject has to guess—when
guessing is necessary—from the full response set. Note how the design of the experiment
deals with some of the objections we raised earlier about the simplicity of the axioms.

Bower observed that the average number of errors per item made by his subjects was
1.45. Since N = 2 in this experiment, Theorem 2 gives a predicted average of 1 2c errors.
Equating the predicted value with observed one gives c= 1 2.9= .345. This estimate of c
will be fixed throughout the remaining discussion of the data.

A major feature of interest to psychologists in experiments like Bower’s is the
“learning curve.” This is a graph of the percentage of incorrect responses as a function of
the number of trials. To obtain the observed learning curve, we plot the proportion of wrong
responses versus the number of trials and then connect these points with a smooth curve. The
theoretical learning curve is derived from the model and is the graph of qn as a function of n.
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Fig. 13.1 is from Bower’s paper [1961] and it shows how closely the predicted
learning curve fits the observed one.

Another graphic example of howwell themodel fits the observed data is provided by the
distributionofT , the total number of errors per item.Bower’sMarkov chainmodel predicts that

Pr T = k =

b

N
for k = 0

b 1− b k

1− c
for k≥ 1

where b is the constant

b=
c

1−
1− c

n

For c= .345 and N = 2, we have b= .513, so the model predicts

Pr T = k =

.256 for k = 0

.513 .487 k

.655
for k≥ 1

The graphs of predicted and d observed distributions of T are shown in Fig. 13.2.
Bower made a number of other comparisons of the data collected from his actual

experiment with the predictions of his model. Some of these are collected in Table 13.1.
Since the observed value of the average number of errors per item was used to cal-

culate c, we automatically get perfect agreement for the first statistic. It is rather remarkable
that the other 21 pairs of numbers are so close together in value.

One final comparison of Bower’s model with experimentally observed data may be of
interest. According to the axioms of the model, if the subject makes a mistake on the nth trial,
then the item was not conditioned prior to the start of that trial. The subject was in state U
when the nth trial began, just as when the first trial started. The model asserts that the degree

FIGURE 13.1 The prob-
ability of an incorrect
response over successive
trials of the experiment.
Taken from Bower
(1961), with permission.
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Table 13.1 Comparison of model’s prediction and observed data

Statistic Prediction of model Observed data

1. Average number of errors/item 1.45 1.45

2. Standard deviation (SD) of (1) 1.44 1.37

3. Average number of errors before first success .749 .785

4. SD of (3) .98 1.08

5. Average number of errors between first and second success .361 .350

6. SD of (5) .76 .72

7. Average number of errors before second success 1.11 1.13

8. SD of (7) 1.10 1.01

9. Average number of successes between errors .488 .540

10. SD of (9) .72 .83

11. Average trial of last error 2.18 2.33

12. SD of (11) 2.40 2.47

13. Total error runs .973 .966

14. Error runs of length 1 .655 .645

15. Error runs of length 2 .215 .221

16. Error runs of length 3 .070 .058

17. Error runs of length 4 .023 .024

Autocorrelation of errors:

18. One trial apart c1 .479 .486

19. Two trials apart c2 .310 .292

20. Three trials apart c3 .201 .187

21. Alternations of success and failure 1.45 1.143

22. Probability of a success following an error .672 .666
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FIGURE 13.2 Distribution of T , the total
number of errors per item.
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of the subject’s associative connection with that item and the correct response has not
effectively changed since the experiment started. In terms of predicting the subject’s future
behavior on this item, we get the same results whether or not we neglect the first n 1 trials.

In particular, we may consider the average number of errors that follow an error on

trial n. According to Bower’s model, this number is the constant u1 1 c = 1 c
1− 1

N

c
,

which is independent of n. This prediction is in sharp contrast to the prediction of the “linear
model” of learning. The linear model predicts that the number of errors expected following
an error on trial n should be a decreasing function of n, since associative strength is assumed
to increase steadily with the number of preceding reinforced trials.

To test which, if either, prediction was correct, Bower used the data from the 29
subjects of the experiment we have described, along with data from 47 other subjects
involve in similar learning experiments. The results, shown in Fig. 13.3, show that Bower’s
model is much closer to the observed data.

In summary, then, a simple model seems to predict quite well the results of learning in
a simple paired-associated task. As Bower [1961] concludes,

“The fact that the . . . model gives an adequate quantitative account of these paired-associate
data satisfies one important requisite of a scientific theory, that of being close to the data. If, in
addition, the theory is mathematically tractable in that numerous consequences are easily
derived in closed form, then indeed we are in a fortunate position. The main task of this paper
has been to show that the . . . model is mathematically tractable. . . . This property of the
model is due to the extreme simplicity of its assumptions about the association process. One
might effectively argue that the present model nearly achieves the absolute minimum in
assumptions for a workable theory of learning.

“Once one has demonstrated the predictive validity of a model for a limited class
of experimental situations, there remains the task of characterizing more generally
those experimental arrangements to which the model may be expected to apply. . . . We
explicitly restricted the model to the S–R association process and have used simplified
experimental situations in which response learning was precluded. Within this restricted
domain of paired-associate learning, the model has proved extremely useful in investigating the
effects on learning of variations in the number of response alternatives and in the reinforcement

FIGURE 13.3 Average
number of errors follow-
ing an error on trial n. 1
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conditions prevailing during learning. . . . Ultimately, one would like to have a set of com-
bination axioms whereby the assumptions about S–R association and response learning may be
combined for predicting results in those experimental situations involving the concurrent
operation of these two processes.”

IV. Historical and Biographical Notes
A. Mary Whiton Calkins

The story of Mary Whiton Calkins is one of triumph over American sexism, especially
prejudice against women in higher education. Denied a doctoral degree from Harvard
University because of her gender, Calkins went on to a distinguished career in psychology
and philosophy, ultimately serving as the first female president of both the American
Psychological Association and the American Philosophical Association.

Calkins was born March 30, 1863, in Hartford Connecticut, the oldest of five children.
Calkins’s parents reared their family with an international and cosmopolitan focus, speaking
only German to themwhen they were very young and taking frequent trips to Europe so their
children would also become fluent in French. At age 17, Calkins moved to Massachusetts
when her father, a prominent Protestant clergyman, accepted a position in Newton.

Mary Calkins entered Smith College with sophomore standing, took a year off school
after her sister died to study on her own, and returned to receive her undergraduate degree in
1885. After graduation, she spent 16 months traveling abroad with family and then returned
to Massachusetts where she worked for three years as a tutor in Greek at Wellesley College.
At this time, the field of psychology was emerging from an area within philosophy to an
independent discipline of its own, a development accelerated by William James’s monu-
mental Principles of Psychology, first published in 1890. Wellesley’s philosophy depart-
ment chair asked Calkins whether she would be willing to develop and teach a new course
in psychology. She agreed, provided she was given a year to learn more about the subject.

Calkins decided she would be best off studying at Harvard with James and with
Josiah Royce, the eminent American philosopher. They both agreed to take her on as a
graduate student, but Harvard President Charles William Eliot initially refused to let her
attend, as he did not believe men and women should study together in the same room.
Royce, James, Wellesley College President Helen Shafer, and Wolcott Calkins, Mary’s
father, all appealed the decision and Eliot relented. Mary could take regular classes along
with the men, but Eliot stipulated that she could not officially register as a student.

WhenMary showed up for her classes with James, she discovered that none of the men
who had previously registered showed up. As she reported in an autobiographical essay,

I began the serious study of psychology with William James. Most unhappily for them and most
fortunately for me the other members of his seminary in psychology dropped away in the early
weeks of the fall of 1890; and James and I were left . . . quite literally at either side of a
library fire. The Principles of Psychology was warm from the press; and my absorbed study of
those brilliant, erudite, and provocative volumes, as interpreted by their writer, was my
introduction to psychology. What I gained from the written page, and even more from tête-à-tête
discussion was, it seems to me as I look back upon it, beyond all else, a vivid sense of the
concreteness of psychology and of the immediate reality of “finite individual minds” with their
“thoughts and feelings.”
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Calkins completed a Ph.D. under the tutelage of her Harvard mentors, who staged an
unofficial thesis defense wherein she was examined by five faculty luminaries in psy-
chology and philosophy. They found her work worthy of a degree with honors, but the
Harvard administration refused to confer a doctorate on a woman. Although she later
received honorary degrees from institutions such as Columbia and Smith, Harvard never
awarded her the recognition her work deserved.

To deepen her background in experiment psychology, Calkins also worked with
Clark University’s Edmund Sanford. Sanford also provided some assistance to Calkins
when she set up a psychology laboratory at Wellesley College, the first such lab at a liberal
arts college. Calkins pursued an active teaching and research career. She created and
developed paired-associate learning as a technique to study human memory. In 1896, she
published a description of her experiments on the task of associating colors with numbers,
examining the effect of such factors as the vividness of exposure or the length of time a
color was exposed to the subject. She also devoted considerable effort to the study of the
concept self, ultimately concluding that it could be precisely defined but was “a totality,
a one of many characters . . . a unique being in the sense that I am I and you are you. . . .”
Sigmund Freud cited Calkins’s work on dreams as an influence on his theory of dreams.
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Mary Whiton Calkins (right) and her psychology laboratory at Smith College.

Calkins was nationally and internationally recognized as an outstanding psychologist
and philosopher. In a 1903 survey, she was named in the top dozen of American psy-
chologists. She published more than 100 articles and four more extended volumes. Among
her writings in philosophy, two book stand out: The Good Man and the Good: An Intro-
duction to Ethics and The Persistent Problems of Philosophy: An Introduction to Meta-
physics through the Study of Modern Systems. Calkins retired from Wellesley in 1929. She
died on February 26, 1930.

Spurred in part by her own experience as a victim of gender bias, Calkins decried
prejudice whether she found it in published research or observed it in every day life. She
was active in the Consumer’s League and the American Civil Liberties Union and advo-
cated for equality for women. In 1902, Calkins was offered a Radcliffe Ph.D. degree, which
she declined on principle. Believing that work done at Harvard should be recognized by a
Harvard degree regardless of whether the recipient was a man or woman, she declined the
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Radcliffe offer. Throughout her career, Calkins registered opposition to differentiation
between the sexes based on the erroneous assumption of inherent differences in mental
abilities.

A major political issue for women during Calkin’s lifetime was suffrage, the right to
vote, which was not extended to all women in the United States until the passage of the
19th Amendment to the Constitution. Speaking before the National Suffrage Convention in
Baltimore, Calkins said

“The student trained to reach decisions in the light of logic and of history will be disposed to
recognize that, in a democratic country, governed as this is by the suffrage of its citizens, and
given over as this is to the principle and practice of educating women, a distinction based on
difference of sex is artificial and illogical.”

B. Gordon H. Bower

Gordon Howard Bower is a distinguished cognitive psychologist specializing in experi-
mental studies of human memory, language comprehension, emotion, and behavior mod-
ification. He spent most of his professional career at Stanford University from which he
retired as Albert Ray Lang Professor Emeritus of Psychology in 2005.

Born was born in the small town of Scio, Ohio, during the Great Depression, in 1932.
Inspired by the movie The Lou Gehrig Story, Gordon resolved at the age of 8 to become a
professional baseball player. By 11, he played on local semi-professional baseball teams.
As a young man, he helped out in his father’s general store and worked on several local
farms. A talented baseball and basketball player, Bower received an athletic scholarship to
attend Western Reserve University. He gave up the opportunity for a professional baseball
career so that he could pursue his interest in psychology.

After graduating fromWestern Reserve in 1954, Bower spent a year at the University
of Minnesota studying the philosophy of science under a Woodrow Wilson Fellowship. He
left the Midwest to continue his graduate program at Yale University, where he was
awarded his doctorate in psychology in 1959.
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In 1957, Bower won a fellowship to attend a summer workshop on mathematical
learning theory at Stanford. There he met many of the contributors to the burgeoning field
of mathematical psychology. While attending that workshop, Bower so impressed the
Stanford faculty that he was offered a job before he had finished his Ph.D. thesis at Yale.

Bower’s research and teaching interests have centered on conditioning, learning,
human memory, mathematical models, and computer simulation of memory processes. He
has written nearly 250 technical articles and four books.

The quality and significance of Bower’s research has been recognized by many
honors, including elections to the prestigious National Academy of Sciences and the
American Academy of Arts and Sciences. In 2007, President George W. Bush awarded
Bower the National Medal of Science, the nation’s highest science award. The White House
cited Bower “for his unparalleled contributions to cognitive and mathematical psychology,
for his lucid analyses of remembering and reasoning and for his important service to
psychology and to American science.”

As a teacher, Bower urged his students to be active readers of the research literature,
imagining ways they can contribute to the field. He encouraged students to follow their own
interests, but to try to be at the forefront of new developments.

“Students are my treasures,” Bower says. “I get great satisfaction from their
accomplishments.”

The preface to a festschrift in Bower’s honor fittingly concludes:

Gordon never fulfilled his early dream of pitching a no-hitter at Yankee stadium. . . . How-
ever, in his chosen career of psychology, where he went up to bat time after time against a
broad and diverse lineup of the most challenging problems in learning and memory, Gordon hit
a string of home runs worthy of his childhood idol, Lou Gehrig.
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President George W. Bush presents the National Medal of Science to Gordon Bower.

EXERC I S E S

1. Let SM = 1+ r + r2 +⋯+ rM 1 where r is a real num-
ber and M is a positive integer.

(a) Show that SM r SM = 1 rM so that SM = 1− rM

1− r ,
if r≠ 1.

(b) If r < 1, show that S= lim
M→∞

SM =
1

1− r
; in this

case, we say S= 1+ r+ r2⋯+

(c) Find the value of a+ ar+ ar2 +⋯ where r < 1
and a is a constant.
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(d) What happens to these sums in the cases
(i) r > 1

(ii) r = 1

(iii) r = 1

2. What are the predictions of Bower’s model if
(a) c= 0

(b) c= 1
Do either of these cases have relevance for

human learning?

3. Investigate the consequence of Bower’s model if the
initial vector is p 0 = 1

2 ,
1
2 . How might this initial

vector occur in an experimental situation?

4. Prove, by induction on k, that the kth power of the
transition matrix of the Bower model can be written in
the form

Pk =
1 0

1− 1− c k 1− c k

for all k= 1, 2, 3, . . . [Hint. It is sufficient to check
only the entries in the second column; why?]

5. Prove the corollary to the Lemma of Section II.

6. A mathematically rigorous derivation of the formula
for ck can be given. Define

c m
k =EV

m

n=1

xn xn + k and ck = lim
m→∞

c m
k

(a) Show that c m
k = 1− 1

N

2
1− c k 1− 1− c m

c .

(b) Compute lim
m→∞

c m
k .

7. Show that EV
∞

n= 1
nxn = u1

c .

8. Show that EV
∞

n= 1

xn
n = 1− 1

N
1− c log

1
c .

9. (a) Prove that the formula for P T = k in Section III is
correct.

(b) Show that EV T = u1.

(c) Show that Var T = u1 + 1 2c u1
2.

10. Define uj by uj =
∞

n=1
xnxn+ 1xn+ 2 . . . xn+ j− 1 for

j= 1, 2,….
Under what conditions is xnxn+ 1xn+ 2 . . . xn+ j− 1

zero?

11. For the sequence of labeled responses
1111100110001101000 . . . (all the rest zeros), show that

(a) u1 = 10

(b) u2 = 6

(c) u3 = 3

(d) u4 = 2

(e) u5 = 1

(f) r1 = 1

(g) r2 = 2

(h) r3 = r4 = 0

(i) r5 = 1

(j) R= 4

12. Show that the following relations hold true for the
example of Exercise 11:
(a) rj = uj 2uj+ 1 + uj+ 2

(b) R= u1 u2

13. Prove that the relations of Exercise 12 hold true for all
sequences of labeled responses.

14. (a) Prove that

Pr xn+ i = 1 xn = 1, xn+ 1 = 1, . . . , xn+ i− 1 = 1

= Pr xn+ i = 1 xn+ i− 1 = 1

(b) Show that Pr xn+ 1 = 1 xn = 1 = 1− c 1− 1
N .

15. Let a= 1 c 1 1
N . Show that

(a) EV uj = u1aj 1

(b) EV R = u1 1 a

(c) EV rj =R 1 a aj 1

16. Let An be the random variable An = 1− xn+ 1 xn+ 1 +
xn 1− xn+ 1 .

(a) Show that An = 1, if xn = 1 and xn+ 1 = 0.

(b) Show that An = 1 if xn = 0 and xn+ 1 = 1.

(c) Show that An = 0 if xn = xn+ 1.

17. Let A=
∞

n=1
An, where An is as defined in Exercise 16.

(a) Show that A counts the number of alternations of
successes and failures.

(b) Evaluate the expected value of A, and show that

EV A = u1 c+
2 1− c

N
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(c) What is EV A if N = 2? Does the result make any
intuitive sense to you?

18. Show that g, the probability that the first success

occurs by guessing, is given by g= 1
N + 1 1

N

1 c 1
N + 1 1

N
2
1 c 2 1

N +⋯+ = 1
N 1− a .

19. Let J be the random variable that is the number of
errors before the first success. Show that

Pr J = i =

1
N

for i= 0

1− 1 N 1− α αi− 1 for i≥ 1

20. Show that the quantity b in the formula for Pr T= k is
the probability that no errors occur following a correct
guess.

21. If p1 denotes the probability that no error follows the
first correct response, show that p1 = 1 1 b N.

22. Let W be the random variable that is the number of the
trial on which the last error occurs.

(a) Show that

Pr W = k =

b

N
for k= 0

b 1− 1 N 1− c k − 1 for k≥ 1

(b) Show that EV W = bu1
c .

23. Some authors define the learning curve to be the graph
of the proportion of correct responses as a function of
the number of trials. Using this definition, sketch the
learning curve predicted by the Bower model, using
c= .345.

24. Does the design of Bower’s experiment answer all the
objections about the simplicity of the axioms? Which
objections do you believe are most significant?

25. Compute EV xnxn+ kxn+ 2k .

26. Compute Pr xn = 0 xn+ k = 1 .

27. Find the probability that the subject is in state C by
trial n+ k given that the last error occurred on trial n.

SUGGESTED PRO J ECTS

1. In the text and exercises formulas for some—but not
all—of the predictions A – N of the Bower model
are given. Discover and prove formulas for the
remaining predictions.

2. Formulate and analyze a mathematical model for the
following paired-associate learning situation. The
experiment will be exactly the same as Bower’s except
that whenever a subject gives a response, the experi-
menter tells her only if the response is correct or
incorrect. He does not tell her what the correct
response is if she gives an incorrect one. Thus, there is
much less frequent reinforcement of the connection
between a stimulus element and its correct response.
Which axioms of Bower’s model would you retain?
Which ones need modification? Compare the predic-
tions of your model with those of Bower’s.

3. The “linear model” for PAL is briefly mentioned in
Section III. Find out what the assumptions and con-
clusion of this model are. Which predictions agree with
those of the Bower model? In what learning situations
would it be a more relevant model? Begin with the
paper of Robert Bush and Saul Sternberg [1959] (see
References) or the early chapters of Frank Restle and
James G. Greeno [1970].

4. At the beginning this chapter, we divided the paired-
associate learning task into two steps. Bower’s model
is concerned with the second part of the learning
problem. Formulate a model for the learning process
corresponding to the first step. Do Markov chains seem
an appropriate modeling tool for this problem?

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
14

Epidemics

Swords and lances, arrows, machine guns, and even high explosives

have had far less power over the fate of nations than the typhus louse,

the plague flea, and the yellow-fever mosquito.

—Hans Zinsser

I. Introduction
A. Epidemics and History

The period of Greek history from the end of the Persian Wars to the death of Alexander the
Great (roughly 480 to 325 B.C.) was critical to the development of Western civilization.
The creative achievements of the Greeks of this time in art, literature, philosophy, science,
mathematics, and political science exerted an influence on Western cultural history
unequaled by any other people.

Foremost among the Greek communities of 2,500 years ago was the city-state of
Athens. No other state rivaled the extent of Athens’s empire or its wealth, power, and
intellectual and cultural activity, and none possessed so pure a democracy. The “Golden
Age” of Athens coincided closely with the reign of Pericles, the most dominating per-
sonality of his time, who rose to power in 469 B.C. while still in his early thirties. The
Golden Age began to tarnish, however, with the outbreak of the Peloponnesian War in 431
B.C. The war, which lasted a quarter-century, was essentially a series of military struggles
between Athens and Sparta, the other predominant city-state. Athens was primarily a sea
power with a strong navy, but it had a weak army compared to the Spartans, who had a
strong army but no major fleet of ships. Pericles’s strategy was to withdraw the population
of the surrounding area into Athens, thus making his state invulnerable to land attack, and
then to raid the coasts of his enemy.

The strategy worked well during the first year of the war, and the defeat of Sparta
seemed inevitable. But the Athenian plan of bringing large numbers of people into the
fortified city area had disastrous and unforeseen consequences. Overcrowding and
unsanitary conditions provided an ideal setting for the spread of disease. In 430 B.C., an
epidemic devastated Athens. The disease, whose exact nature is still unknown, was virulent
and highly contagious. Between 30% and 60% of the Athenians died within six to eight
days of contracting the illness. Many of those who survived the high fevers, violent coughs,
and distressing vomiting of the disease fell victim to other medical complications.
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Even those who lived on were often scarred by the epidemic and left with blindness,
deformed arms or legs, and amnesia.

The contemporary Greek historian Thucydides, whose History of the Pelo-
ponnesian War is a classic of Western literature, provides a vivid account of the illness
and its aftereffects: “Physicians, in ignorance of the nature of the disease, sought to
apply remedies, but it was in vain, and they themselves were among the first victims,
because they often came into contact with it. No human art was of any avail, and as to
supplications in temples, inquiries of oracles and the like, they were utterly useless, and
at last men were overpowered by the calamity and gave them all up. . . . The general
character of the malady no words can describe, and the fury with which it fastened upon
each sufferer was too much for human nature to endure.” Many of the dead were left
unburied, and birds and animals that preyed on the corpses became infected and spread
the disease even further. Many Athenians committed suicide to escape the pain and
suffering of the infection.

When it appeared that the epidemic had at last ended, Pericles sent his fleet to capture
the Spartan-held stronghold at Potidaea. The ships had barely reached the sea when the
plague broke out among the crews with such ferocity that they were forced to return to
Athens. There were fresh outbreaks in 429 and 428 B.C., and Pericles himself fell victim.
After his death, Athens never again found a leader of his stature and wisdom.

The plague of Athens was instrumental to the disintegration of the Athenian empire.
The destruction of the fighting power of the navy and the disastrous reduction in population
at home prevented Athens from achieving a swift victory over Sparta. The war dragged on
for years, bringing eventual defeat for the Athenians.

Perhaps worse than the loss of life was the demoralization of the city-state that the
plague brought in its wake. The descent of a highly civilized state into the depths of cruelty
and desperation is one of the major themes of Thucydides’s history. He records [1942] the
lawlessness that swept through Athens:

Men who had hitherto concealed what they took pleasure in, now grew bolder. For seeing
the sudden change—how the rich died in a moment, and those who had nothing immediately
inherited their property—they reflected that life and riches were alike transitory, and they
resolved to enjoy themselves while they could, and to think only of pleasure. Who would be
willing to sacrifice himself to the law of honor when he knew not whether he would ever live
to be held in honor? The pleasure of the moment and any sort of thing which conduced to it
took the place both of honor and of expediency. No fear of Gods or law of man deterred a
criminal. Those who saw all perishing alike thought that the worship or neglect of the Gods
made no difference. For offences against human law no punishment was to be feared; no
one would live long enough to be called to account. Already a far heavier sentence had been
passed and was hanging over a man’s head; before that fell, why should he not take a little
pleasure?

The Athenian plague is perhaps the earliest for which we have a detailed account of
the influence of epidemics upon historical events. It is, however, but one of many
disastrous situations. In the 14th century, an estimated 25 million deaths, in a population
of 100 million Europeans, were attributed to an epidemic of bubonic plague. In 1520 the
Aztecs suffered an epidemic of smallpox that resulted in the death of half their population
of 3.5 million. When measles first came to the Fiji Islands in 1875 as a result of a trip to
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Australia by the King of Fiji and his son, it caused the death of 40,000 people in a
population of 150,000. In the three-year period from 1918 to 1921, there were an esti-
mated 25 million cases of typhus in the Soviet Union and about one in ten victims died
from the disease. In a worldwide epidemic of influenza in 1919, more than 20 million
persons perished from the illness and subsequent attacks of pneumonia. The possibility
that a similar strain of influenza virus might attack the United States in 1976 led the
government to plan for the vaccination of the entire nation of more than 200 million
people.

In the late 20th century, the AIDS epidemic caused worldwide alarm. AIDS
(acquired immune deficiency syndrome) is a collection of symptoms and infections
resulting from damage to the immune system caused by the human immunodeficiency virus
(HIV). Late stages of the condition leave individuals prone to opportunistic infections and
tumors. One of the most destructive epidemics in recorded history, AIDS has killed more
25 million people since 1981. In 2005 alone, AIDS claimed an estimated 2.4 3.3 million
lives, of which more than 570,000 were children. Experts predict that the number of people
with HIV will rise to 60 million by 2015.

Although treatments for AIDS and HIV exist to slow the progression of the virus,
there is no known cure. Close to 40 million people are currently afflicted with AIDS. The
disease has been particularly severe in sub-Saharan Africa, accounting for 70 percent of all
AIDS deaths in 2011. In 2007, the U.S. president’s adviser on AIDS, Dr. Anthony Fauci,
reported that “[f]or every one person that you put in therapy, six new people get infected.
So we’re losing that game, the numbers game.”

Between April 2009 and May 2010, the H1N1 influenza virus triggered a global
epidemic of “swine flu.” World Health Organization officials estimated the death toll at
284,500; other researchers concluded the number who died might have been more than
half a million, as many victims without access to health facilities went uncounted. In
summer 2013, health officials raised concerns about a possibly emerging new pandemic
labeled Middle East Respiratory Syndrome (MERS). The MERS virus is a coronavirus,
the same types that caused SARS. What is alarming is the fatality rate from MERS
for the first 50 confirmed cases. Thirty of these patients, 60%, have died. The SARS
epidemic of 2002 03 had a fatality rate of 10%; an avian influenza virus originating in
China had a 25% rate. MERS apparently also has an incubation period of 9 to 12 days,
leaving an extended period during which people can spread the disease without realizing
that they are sick.

These examples, among hundreds of other similar ones, indicate clearly that
epidemics are major public health problems requiring careful study and prompt action to
protect the citizenry. In this chapter, we will present some simple mathematical models
of the spread of infectious diseases. These models will serve as an introduction to the
rapidly growing field of mathematical epidemiology in which mathematicians and
biologists are working together to gain a better understanding of the spread and control
of epidemics. “The real stimulus,” writes Norman Bailey [1975], an internationally
renowned leader in this field, “comes from the need to be able to influence in a rational
way public health decision-making on the control of serious diseases that affect many
hundreds of millions of people in the world today. When mathematical modeling is
directed towards theoretical problems, which if solved would have practical implications
for the control or eradication of disease, then it can be both intellectually satisfying and
socially valuable.”
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In discussing his work on mathematical models of epidemics, the physicist Ronald
Mickens addressed one of the advantages of models:

There are reasons why you want mathematical models. One is that if you have a good math-
ematical model, you can do things to the model that you can’t do to a human being. For
example, you might want to investigate various strategies for giving a very effective measles
vaccine. . . . But we know that measles has not been eliminated, and one reason is that, you
have to vaccinate effectively ninety-five percent of all the susceptibles. . . . It’s impossible to
vaccinate ninety-five percent. . . . Well, there are parents who don’t want their kids vaccinated
because of the very, very, very low probability that something bad may happen to them. There
are others who won’t do it because of religious reasons. . . . But the mere existence of a
strategy doesn’t mean that you can carry it out. It may be unethical, at least for our society, and
so one of the things you do with these models is to look at various kinds of strategies and then
you can hand this off to somebody in public policy, and they can decide well, we can’t do that
because the society would not allow this to happen.

In this chapter, we will present some of the features of infectious diseases that ought
to be incorporated into realistic mathematical models, develop several deterministic models
and a stochastic model and discuss their relationships, and conclude with a brief sketch of
the development of mathematical epidemiology. We also present variations of the classic
models for the spread of infectious diseases that are being used to model the dissemination
of rumors, the persistence of urban legends, and the dynamics of such problems as problem
drinking, spousal abuse, and eating disorders.

B. Some Features of Epidemics

The spread of an infectious disease among a population can be a complicated process with
many possible variations. Consider first a single individual who may be infected by some
contagious pathogenic agent. The organism may enter his body through the bite of a flea
(as in bubonic plague) or mosquito (yellow fever), through intimate personal contact with
another infected person (HIV), by airborne agents spread by coughing or sneezing
(pneumonia), or by drinking contaminated water (typhoid fever).

After initial infection, there may be a latent period during which the individual
exhibits no symptoms of the disease and cannot transmit it to others. The latent period is
followed by an infectious period when he can pass on the illness. These two periods may be
overlapped by an incubation period: the time between initial infection and first appearance
of physical symptoms. Thus, an individual may be transmitting a disease to others during a
period when he and others are unaware that he is sick. This is characteristic of some dis-
eases, such as chickenpox and measles, now common mainly among younger children.

Once the symptoms appear, the affected individual may continue to be an active
transmitter, especially if the disease is a mild one such as a cold or minor respiratory
infection. On the other hand, the individual may be withdrawn from the general population
temporarily (by quarantine or hospitalization, for example) or permanently (through death).
The chances of recovery or death vary from day to day during the various stages of the
illness, as do the chances that the individual will convey the infection to previously
unaffected people.
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If the individual recovers from the disease, there are still many possible scenarios.
A permanent immunity to the disease may be acquired so that there is never again sus-
ceptibility to the symptoms even if there is reinfection. The immunity may be of such a
nature that the individual can no longer even transmit the disease to others, or he may
become a carrier: a person who can spread the illness but who is otherwise unaffected by it.
The immunity may be temporary so that there is no susceptibility to the disease again for
many months or years (tetanus), or there may be no immunity at all: the so-called “English
sweating sickness” that ravaged Western Europe in the late 15th and early 16th
centuries attacked some individuals two or more times in brief succession after they had
recovered from an initial bout of the disease’s associated tremors, fever, cardiac pain,
vomiting, severe headache, and stupor.

As an epidemic spreads through a local community, city, nation, or continent, the
number of unaffected members becomes reduced. In due course of time, the epidemic may
appear to end, as no new cases of the disease are observed. In an early paper in the history of
mathematical models of epidemics, two Edinburgh researchers, William O. Kermack and
Anderson G. McKendrick [1927], posed the fundamental goal of such models. “One of the
most important problems in epidemiology,” they wrote, “is to ascertain whether this ter-
mination occurs only when no susceptible individuals are left, or whether the interplay of
the various factors on infectivity, recovery and mortality, may result in termination, whilst
many susceptible individuals are still present in the unaffected population.”

If it can be shown that a particular epidemic will end when only a small proportion of
the potentially susceptible members of the community have been affected, then there may
be little cause for panic or widespread emergency public-health measures. Conversely, it is
important to know early in the growth of an epidemic of a disease with a high mortality rate
that large numbers of the population may become victims.

Even when a number of simplifying assumptions are made, mathematical models of
epidemics tend to be quite complex and require advanced analytic and probabilistic tech-
niques to solve. Even some of the simpler models give rise to mathematical problems that
have yet to be solved. While waiting for the mathematicians to solve these problems,
modelers must resort to approximate results or computer simulations (see Chapter 15) to
derive their predictions. Because of the technical mathematical difficulties posed by many
models, this chapter will concentrate only on some very simple models of epidemics. Even
though the models are simple, they do yield qualitative results that are consistent with
observations and that are helpful to biologists and public health officials.

II. Deterministic Models
A. Basic Assumptions

In studying a community subject to a possible epidemic, it is convenient to partition the
population into four mutually exclusive subgroups:

1. The susceptibles (S), those persons who are currently uninfected, but may become
infected

2. The latently infected (L), those who are currently infected, but not yet capable of
transmitting the disease to others
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3. The infectives (I), those who are currently infected and capable of spreading the
infection

4. The removeds (R), those persons who have had the disease and are dead, or who have
recovered and are permanently immune, or who are isolated until death, recovery, or
permanent immunity occur

The numbers of persons, S, L, I, and R, in each category change with time. We will
study mathematical models that attempt to discover how these numbers fluctuate with
respect to time, denoted as usual by t, and with respect to each other.

Since the course of most epidemics is usually short (a few weeks or months) com-
pared to the normal life span of an individual, a reasonable simplifying assumption is that
the population of the community remains constant—except, of course, as it is lowered by
deaths due to the epidemic disease itself. Suppose, then, that there are no births, no deaths
from other causes, and no immigration or emigration during the course of the epidemic.
This initial assumption is stated mathematically as the following axiom:

AXIOM 1 There is positive constant N such that S(t)+L(t)+ I(t)+R(t)=N for all t.
For the simplification of some formulas, this equation is frequently written as

S+L+ I+R=N 1

The second assumption is also one that is basic to almost all mathematical models of
epidemics: the rate of change of the susceptible population is proportional to the rate of
contact between susceptibles and infectives. If the amount of human interaction is great,
the epidemic spreads more quickly. History records the rapid spread of many diseases in
crowded cities or army or refugee camps, while showing that epidemics move more
slowly through isolated rural areas with lower population densities. For simple models, it
is usually assumed that the rate of contact is directly proportional to the population of
susceptibles and infectives. In mathematical terms, the second basic assumption is the
following:

AXIOM 2 There is a positive constant β such that

dS dt= S′(t)= − βI(t)S(t) for all t. 2

The constant β is called the infection rate. Note that S t is always negative (or
possibly zero), since the number of persons who have not yet caught the disease, S , can
only decrease with time.

There is one final assumption that is common to the models we present in this chapter.
We suppose that the disease being investigated has a latency period that is negligibly
short—that is, an individual can transmit the disease essentially as soon as he is infected.
Typhus fever presents such a possibility. Typhus is often spread from person to person
through the bite of a hair louse. A louse carrying the disease may leave the body of a person
it has just bitten and move on to a nearby person at any moment. In the language of the
variables of the deterministic models, we have this axiom:

AXIOM 3 L(t)= 0 for all t.
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B. A Simple Epidemic Model

This section investigates a deterministic model of a simple epidemic. In addition to Axioms
1 3, we make one further simplification. We assume that there is no removal from the
population; the population of removeds remains at 0. In a human population, such an
assumption might be justified for an illness such as a mild cold epidemic in a college
dormitory. None of the affected students dies, acquires permanent immunity, or is sick
enough to be isolated. The assumption is commonly valid also in many cases of disease in
animal or plant population, where dead or diseased members in a natural environment are
not removed. Formally stated, the assumption is

AXIOM 4 R(t)= 0 for all t.

Using the tools of elementary calculus, we can easily analyze a mathematical model
for an epidemic satisfying Axioms 1 4. This model is sometimes called an SI model since
it involves susceptibles and infectives only. Axioms 1, 3, and 4 give the basic relation
between susceptibles and infectives:

S+ I =N 3

For convenience, assume the epidemic starts at time t= 0 with a single infected person, so
the initial conditions are

I 0 = I0 = 1 and S 0 = S0 =N − 1 4

The analysis of this simple epidemic begins by using Eq. (3) to rewrite Axiom 2 as the
differential equation

dI

dt
=

d N − S

dt
= −

dS

dt
= βIS= βI N − I 5

so that the number of infectives is governed by the differential equation

dI

dt
= βIS= βI N − I , I 0 = 1 6

Eq. (6) is a differential equation for logistic growth. We studied such equations
extensively in Chapter 3. They are solved by separating the variables (I and t in this case)
and integrating using a partial fraction decomposition. Recall that we are using log for the
natural logarithm.

∫
dI

I N − I
dt= ∫ βdt

or

∫
1
I
+

1
N − I

dt= ∫ βNdt
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so that

log I − log N − I = βNt + constant

which may be written in the equivalent form

I

N − I
=KeβNt 7

where the constant K is found, using Eq. (4), to be 1
N − 1. Eq. (7) may then be rewritten as

I t =
N

1+ N − 1 e−βNt
8

Since β is positive, it is apparent from Eq. (8) that

lim
t→∞

I t =N 9

Thus, the model predicts that everyone in the population will eventually contract the dis-
ease. Since S+ I =N, we have S=N − I, or

S t =N − I t =
N N − 1

eβNt + N − 1
=

N

1+ eβNt
N − 1

10

The graphs of S and I as functions of t are given in Figs. 14.1 and 14.2 for the case
N = 1001 and β= .003. According to this model, if a single infective person enters a
community of 1,000 susceptibles, then at the end of four time units, only about six healthy
people will be left. The decline in the number of susceptibles is also represented in
Table 14.1.

The data collected in an epidemic often consists in the number of new cases of
the disease reported each day or each week. The rate at which new cases arise is the

FIGURE 14.1 The graph
of S t as a function of t
for the simple determin-
istic model, with
N = 1001 and β= .003.
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derivative of I with respect to time t. From Eq. (8), this rate can be computed explicitly
as a function of t:

I t =
dI

dt
=

N2 N − 1 βe−βNt

1+ N−1 e−βNt 2 11

The graph of I t as a function of t is called the epidemic curve. The epidemic curve for
N = 1001 and β= .003 is shown in Fig. 14.3. At the start of the epidemic t= 0 , the
derivative has value

I 0 =
N2 N − 1 β

1+ N−1 2 = β N − 1 12

Assuming that β has been computed using time measured in weekly units, the particular
epidemic of Fig. 14.3 would begin with about three cases per week. Table 14.2 shows
additional numerical data on the values of I′ t .

1000

500

0
0 1.25

Infectives

2.50 3.75 5.00

t

I

FIGURE 14.2 The graph of I t as a function of t for the
simple deterministic model, with N = 1001 and β= .003.

Table 14.1 Decline in the number of susceptibles for
selected times in the simple epidemic with N = 1001 and
β = .003. The number S(t ) is computed from Eq. (10).

Time t Susceptibles S t

0 1,000.0

.5 996.5

1 981.2

1.5 918.0

2 712.0

2.5 354.8

3 109.1

3.5 26.6

4 6.0

4.5 1.4
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The maximum value for the rate of new cases occurs at the maximum height of the
epidemic curve. The time at which this maximum occurs represents a critical moment in the
history of the epidemic: it is spreading most rapidly at this instant, and the consequent
demand for medical services and personnel may be at its peak. To find the maximum value
of I′ t , consider its derivative

I″ t =
N − 1 N3β2e−βNt

1+ N−1 e−βNt 3 N − 1 e−βNt − 1 13

Now the factor inside the first square brackets in Eq. (13) remains positive for all
values of t. Thus, the sign of the second derivative I″ t depends on the sign of the
remaining factor

N − 1
eβNt

− 1 14

FIGURE 14.3 The epi-
demic curve for the sim-
ple deterministic model,
with N = 1001 and
β= .003.
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Table 14.2 Fluctuations in the rate of new cases as
measured by I′(t), using Eq. (11) with N = 1001 and β = .003.
The values of I′(t) have been rounded to the nearest integer.

Time t Rate of New Cases, I′(t )

0 3

0.5 13

1 58

1.5 229

2 617

2.5 688

3 292

3.5 78

4 18

4.5 4
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This factor is positive when t= 0 and tends toward − 1 as t gets large. (Why?) This implies
that the epidemic curve reaches its maximum height when this factor is zero. This occurs
when

eβNt = N − 1 15

that is

tmax =
log N − 1

βN
16

At this moment, the rate of new infections is

I′ tmax =
N2β

4
17

and the number of infected individuals is

I tmax =
N

2
18

The graph of the epidemic curve of Fig. 14.3 appears to be symmetric about the vertical
line through tmax (with N = 1001 and β= .003, the value of tmax is about 2.3). The apparent
symmetry is real and holds in general for the simple epidemic model; see Exercise 6.

Note finally from Eq. (16) that the smaller the value of β is, the longer it takes the
epidemic curve to reach its peak. Thus, the model shows that the more densely crowded a
population is, the faster will an epidemic spread through the community.

Although this simple model has a number of interesting results consistent with real-
world observations, it makes one prediction that rarely is correct in actual epidemics. The
model asserts that before the epidemic runs its course everyone will contract the illness. In
the real world, the epidemic ends—in the sense that no new infectives are seen—while
there are still many susceptibles in the population. In the next section, we will turn to a
model that is consistent with this observation, but first we will examine a discrete version of
the simpler model.

C. A Discrete Version of the Simple Epidemic Model

Real-world data on epidemics is collected at discrete time intervals, usually every day,
week, or month depending on the nature and severity of the disease. It’s useful then to
examine the discrete dynamical version of the simple epidemic model.

If Sk , Ik, Lk, Rk denote the number of susceptibles, infectives, latents, and removeds,
respectively, at the start of the kth time interval, then the axioms of the continuous simple
model become, in the discrete case:

DISCRETE AXIOM 1: There is a positive constant N such that Sk +Lk + Ik +Rk =N
for all k≥ 0.
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DISCRETE AXIOM 2: There is a positive constant β such that Sk+1 −Sk = − βIkSk
for all k≥ 0.

DISCRETE AXIOM 3: Lk = 0 for all k≥ 0.

DISCRETE AXIOM 4: Rk = 0 for all k≥ 0.

As a consequence of these axioms, we have Sk + Ik =N so that Sk =N − Ik and thus,

Ik+1 − Ik = N − Sk+1 − N − Sk = Sk − Sk+1 = βIkSk = βIk N − Ik

and hence,

Ik+1 = Ik + βIk N − Ik .

We need to make one important modification in this last equation, since the right-hand side
could exceed N for some value of k, but the population of infectives can never be larger than
the total population. Thus, we modify our final relationship to get the central equation of our
discrete model:

Ik+1 =minimum Ik + βIk N− Ik , N

I0 = initial number of infectives

It turns out that there are two cases to consider, depending on the size of β. If β≤ 1 N,
then some positive fraction of susceptibles remains in the population at every period.
The infective population will approach N from below in the limit. In this case,
Ik+1 = Ik + βIk N − Ik for all k.

If β> 1 N, then after a finite number of time periods, everyone is infected. At some
value of k, we will have minimum Ik + βIk N − Ik , N =N.

To prove these claims, consider the function f x = x+ βx N − x , the graph of
which is a parabola, opening downward. (See Figs. 14.4 or 14.5.) Note that

FIGURE 14.4 The graph
of f x = x+ βx N − x , in
the case β≤ 1 N.

0

f(x*)

N
(N,N)

Nx* 1/β
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f N =N + βN N −N =N and that f 1 β = 1 β+ β 1 β N − 1 β = 1 β+N −

1 β=N. The maximum value of f occurs at the average of 1 β and N.
Observe also that f Ik = Ik + βIk N − Ik .

Case 1: β≤ 1 N

In this case, Nβ≤ 1, or, equivalently, N ≤ 1 β.
Consider any x with 0< x <N. Because f is increasing on 0, N , we have

f x < f N =N. Since the graph of f is concave down, we also have
f x > x . Thus, for any x in 0, N , we have x < f x <N.

If 0< I0 <N, then Ik+1 =minimum Ik + βIk N − Ik , N =minimum f Ik ,
N = f Ik for all k. In summary, if βN ≤ 1, then Ik + βIk N − Ik is always less
than N, so Ik+1 always remains below N. Some positive fraction of susceptibles
remains in the population at every period.

Case 2: β> 1 N

In this case, βN > 1, or, equivalently, N > 1 β. See Fig. 14.5.
Since f is concave down, the line joining two points on the graph of f lies

below the graph of the curve. Since the line between 0, f 0 = 0, 0 and
1 β, f 1 β = 1 β, N has equation y= βNx, we have f x > βN x for any
x between 0 and 1 β. Moreover, since f is increasing on 0,1 β , we will also
have f x < f 1 β =N for such an x .

Hence, if 0< x0 < 1 β, then x1 = f x0 > βN x0 and x2 = f x1 > βN x1 > βN 2x0,
x3 = f x2 > βN x2 > βN 3x0, and, in general, xt = f xt−1 βN tx0.

Since βN > 1, the powers βN t grow arbitrarily large as t increases. Thus, there will
be a smallest positive integer T such that

βN Tx0 1 β βN T+1x0 xT+1

0

f(x*)

N

y
y = βNx

Nx* x1/β FIGURE 14.5 The graph of f x = x+ βx N − x , in the case β≤ 1 N.

II. Deterministic Models 419



With I0 = x0, we would then have

IT+2 =minimum IT+1 + βIT+1 N − IT+1 , N =N

and hence Ik =N for all k≥ T + 2.
In summary, if βN > 1—that is, β is sufficiently large—then after a finite number of

time periods, everyone is infected.
In Fig. 14.6, we show the results of two typical runs of the discrete version of the

simple epidemic model. In the first, we picked a small value of β so that βN < 1. In the
second, we made β sufficiently large that βN > 1.

D. A More General Epidemic Model

Description of the SIR Model
The simple epidemic model just studied assumes that once an individual becomes an
infective, he remains one from then on. Thus, the population of infectives can only increase.
In this section, we examine a model in which the subgroup of infectives is increased by the
introduction of formerly susceptible persons and is decreased by the removal of some
individuals who either die from the disease, recover from it and acquire permanent
immunity, or are isolated from the remaining population during the course of their illness.
In place of Axiom 4, this more general model assumes that individuals are removed from
the infective class at a rate that is proportional to the number of infectives—that is, there is a
constant removal rate per person. In mathematical terms, the new axiom is as follows:

AXIOM 4* There is a positive constant r such that R′(t)= rI(t) for all t.

The constant r is called the removal rate, and the ratio p= r β is the relative
removal rate.

FIGURE 14.6 Two dis-
crete time versions of the
simple epidemic model.
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Epidemic researchers use the term SIR model for one that incorporates Axiom 4*.
For a model satisfying Axioms 1, 2, 3, and 4*, we have

I =N − S−R 19

so that

dI

dt
= 0−

dS

dt
−

dR

dt
= βIS− rI 20

Assuming that the epidemic starts in a community of N persons with a positive number I0 of
infectives and with S0 =N − I0 susceptibles, the mathematical model is the system of dif-
ferential equations

dS

dt
= − βSI, β> 0 21 1

dI

dt
= βSI − rI, r > 0 21 2

dR

dt
= rI 21 3

with initial conditions

S 0 = S0, I 0 = I0 > 0, R 0 =R0 = 0

and the relation

S t + I t +R t =N for all t≥ 0

In the rest of this section, we shall explore many of the conclusions that can be
derived from this model.

Qualitative Behavior of R, S, and I
Since r is positive and I is nonnegative, dR dt = rI is always nonnegative, so R is a
monotonic nondecreasing function of t. In fact, R is a strictly increasing function except at
the time the number of infectives drops to zero.

Since β> 0 and S and I are nonnegative, we have dS dt≤ 0 for all t. Thus, the number
of susceptibles is a monotonic nonincreasing function: the population of susceptibles can
only decrease as time goes on.

Write the rate of change of infectives as dI dt = I βS− r . The sign of this rate then
depends on the sign of βS− r . The number of infectives can increase only at times when
dI dt is positive—that is, at times when

S>
r

β
= p 22
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In particular, if the initial population level of susceptibles, S0, is below the relative removal
rate p, then there is no epidemic. The number of infectives is always less than the original
number I0 and decreases as time goes on. The disease dies out as infected individuals are
being removed (by recovery or death) at a faster rate than they are becoming sources of
further infection. This is what epidemiologists term a threshold phenomenon. There is a
critical value that the initial susceptible population must exceed for there to be an epidemic.
For example, if a sufficiently high percentage of the population has been successfully
vaccinated against the disease, then there will be no epidemic. Alternatively, holding the
susceptible population fixed, infection can spread only if the relative removal rate is suf-
ficiently small: an epidemic can be halted by increasing the relative removal rate p.

Limits of R, S, and I
The numbers of removeds, susceptibles, and infectives must always lie between 0 and N,
the total size of the community. The function R t is bounded above by N and is mono-
tonically nondecreasing, so the number of removeds reaches a limit as time goes on—that
is, limt→∞ R t exists. Denote this number by R∞. Thus,

lim
t→∞

R t =R∞ ≤N 23

Similarly S t is a nonincreasing function of t that must remain greater than or equal
to 0, so it has a limit also as t increases. There is a nonnegative number S∞ such that

lim
t→∞

S t = S∞ ≥ 0 24

Consider the limiting value for the number of infectives. From Eq. (19),

lim
t→∞

I t = lim
t→∞

N − S t −R t =N − lim
t→∞

S t − lim
t→∞

R t =N − S∞ −R∞ 25

Let I∞ denote this limiting value.
Note that the number R∞

N is the proportion of the population that eventually has the
disease. It provides a convenient measure of the intensity of the epidemic.

Relation of R and S
The relationship between the number of susceptibles and the number of removeds during
the course of the epidemic becomes more apparent if we use Eqs. (21.1) and (21.3) to write

dS

dR
= −

βSI

rI
= −

β

r
S= −

1
p
S 26

which is a relation that holds whenever there are still infectives in the population. The
differential equation (26) is easily solved to obtain

S= S0e
−1 p R 27
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Since R t ≤R∞ ≤N for all t, we have e −1 p R ≥ e −1 p N so that

S t ≥ S0e −1 p N , for all t 28

Since the right-hand side of Eq. (28) is a strictly positive number, we have

S∞ = lim
t→∞

S t > 0 29

Here is a crucial prediction of this model: there will always be some people (S∞ of them) in
the community who escape the disease. The epidemic will die out, but not because there
aren’t susceptible individuals left.

Relation of S and I
Examine next the relationship between the number of susceptibles and the number of
infectives during the epidemic. Eqs. (21.1) and (21.2) define an autonomous system of
differential equations (see Chapter 4) for which the only critical points lie on the line I = 0.
We are interested in orbits of the system that lie in the first quadrant of the S,I -plane. From
the two equations, we have

dI

dS
=

I βS− r

− βSI
= − 1+

r

βS
= − 1+

p

S
30

whenever I ≠ 0.
Separating the variables in the differential Eq. (30) and integrating yields

∫ 1dI = ∫ − 1+
p

S
dS 31

so that

I = − S+ p logS+C 32

where C is a constant. At time t= 0, there are I0 infectives and S0 susceptibles so that

C= I0 + S0 − p logS0 =N − p logS0 33

This value of C gives

I =N − S+ p log
S

S0
34

Thus, the orbits for solutions of the autonomous system lie along the curve with equation
I = g S =N − S+ p log S S0 . Since g S0 = I0 > 0 and limS→0+ g S = −∞, the curve
crosses the line I = 0 at some positive value of S less than S0. Since the only critical points
for the system lie on the line I = 0, the orbit must approach S∞,0 as t increases. Thus,
I∞ = 0.
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The orbit is traced out from right to left as t increases since S is a nonincreasing
function of time. From Eq. (30), we have, for g S =N − S+ plog S S0 ,

g″ S =
d2I

dS2
= −

p

S2
35

which is always negative. Thus, the graph of I as a function of S is concave down and
reaches its maximum when dI dS= 0. From Eq. (30), this happens when S= p. The relation
between I and S is shown in Fig. 14.7. The initial state of the population is represented by
the point S0, I0 on this curve. If this point falls to the left of the line S= p, then no
epidemic occurs: I t shrinks monotonically toward zero. On the other hand, if S0 > p, then
the number of infectives increases initially until S passes below p after which the number of
infectives again falls toward zero.

Finding S
To locate S∞, more precisely, note that Eq. (25) gives S∞ =N −R∞ − I∞, but we have just
seen that I∞ = 0, so that

S∞ =N −R∞ 36

The relation between S and R given by Eq. (27) is

S t = S0e
−1 p R t 27

and if we let t→∞ in Eq. (27), we have

S∞ = S0e
−1 p R∞ 37

FIGURE 14.7 The graph
of I =N − S+ plog S S0
with N = 1000, p= 500,
S0 = 950. Here S∞ is
about 186, and the
maximum value of I is
about 179.
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Combining this relationship with Eq. (36) produces

S∞ = S0e
−1 p N−S∞ 38

so that S∞ is a solution of the equation

S0e
−1 p N−x

− x= 0 39

Unfortunately, we cannot solve this equation analytically for x as an explicit function
of S0, p, and N, but we can show that there is a unique positive solution, and we
can approximate its value to any desired accuracy. Toward these ends, define the
function

f x = S0e
−1 p N−x

− x for x≥ 0.

Note that

f 0 = S0e
1 p N > 0

while

f N = S0 −N < 0

Since f is a continuous function of x, the Intermediate Value Theorem of elementary cal-
culus asserts that there is at least one number x between 0 and N for which f x = 0.
Hence, there is at least one positive root of the equation.

Consider next the derivative of f :

f ′ x =
S0
p
e −1 p N−x

− 1=
f x + x

p
− 1

so that

f ′ x =
f x + x

p
− 1=

0+ x

p
− 1=

x

p
− 1

Since x = S∞ < p, f ′ x < 0. If there are two or more roots, then Rolle’s Theorem guar-
antees there is a point between the roots at which the derivative is 0. But the derivative is
negative at both roots and the second derivative f ″ x = S0 1 p 2e −1 p N−x is always
positive, so the derivative must always be negative between the roots. This contradiction
shows that there cannot be more than one root.
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The preceding discussion establishes the fundamental theorem for this general epi-
demic model:

THEOREM (THRESHOLD THEOREM OF EPIDEMIOLOGY) If S0 < r β,
then I t goes monotonically to zero. If S0 > r β, then the number of infectives
increases as t increases and then tends monotonically to zero. The limit of S t as t→∞
exists and is the unique positive root of the equation

S0e
β
r N−x

− x= 0.

Approximation of S∞

This last equation cannot be solved for x in closed form, but various methods are available
to approximate its value. We discuss a particularly simple one, based on the Intermediate
Value Theorem, here.

The Bisection Technique.
Suppose we have a continuous function defined on the closed interval 0, N with the
property that f 0 > 0 and f N < 0. By the Intermediate Value Theorem, there is a root of
the equation f x = 0 somewhere on this interval of length of N. Split this interval into two
equal parts, subintervals 0, N 2 and N 2, N . If f N 2 < 0, then there is a root between 0
and N 2 while if f N 2 > 0, there is a root between N 2 and N. In either case, we have
narrowed the search for a root to an interval of length N 2. By examining the midpoint of
this interval in the same manner, we can narrow the search down to an interval of length
N 22. Continuing this process k times produces an interval of length N 2k, which contains
a root of f x = 0. By choosing k sufficiently large, we can find a numerical value for the
root to a desired degree of accuracy.

As an example, consider a population of 1,001 individuals with a single infective at
time 0. With β= .001 and r= .9, this “bisection” process requires 10 steps to obtain a value
of S∞ equal to 799, which is accurate to the nearest integer. In such an epidemic, about 80%
of the population would not be affected by the disease.

Relation between R and t
Note that we have not derived explicit solutions of the differential equations of (21.1)
(21.3) in the form of functions of time. In this section, we will find an approximate solution
for R t . We concentrate on the number of removeds, since it is frequently not possible to
determine when an individual is first infected, but it is usually easier to observe when he has
been removed.

Rewrite Eq. (21.3), dR dt = rI as

dR dt= r N − S−R 40

which, by Eq. (27), can be represented as

dR dt = r N −R− S0e
−1 p R 41
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This is a single differential equation in the variables R and t, with initial condition R 0 = 0.
Although an exact solution of this equation is possible, at least in parametric terms, the
necessary work is rather complicated. We will illustrate an approximate approach that
yields a number of interesting properties and is typical of the way some analytic models are
studied.

A Taylor series approximation for the exponential function ex is given by choosing an
initial string of terms from the series

ex = 1+ x+
x2

2
+

x3

3
+⋯+

xk

k
+⋯

Approximating the function with the first three terms gives

ex ∼ 1+ x+
x2

2

and with x= − 1 p R, this yields in place of Eq. (41),

dR

dt
∼ r N −R− S0 1−

R

p
+

R2

2p2
42

Ultimately when the epidemic ends, dR dt= 0. If the original infective population is very
small, so that the number of initial susceptibles is close to the total population, we have
So ∼N, so that dR dt= 0 and R=R∞ and

r S0 −R∞ − S0 +
S0R∞

p
−

S0R2
∞

2p2
∼ 0

which occurs when

R∞ ∼ 2p 1−
p

S0
43

This expression gives an approximate measure of the total number of people who have
contracted the disease. Since an epidemic occurs only if S0 > p, let v be the positive number
S0 − p, so that So = p+ v. Then Eq. (43) can be written

R∞ ∼
2pv
p+ v

44

If v is small in comparison to p, then p p+ v is nearly 1, and R∞ ∼ 2v. In other words, the
total size of the epidemic is about 2v cases. The initial population of susceptibles, p+ v, is
thus reduced to p+ v− 2v= p− v. The susceptible population is eventually about as far
below the threshold as it was originally above it.

This last observation, as well as the Threshold Theorem, was discovered by Kermack
and McKendrick in 1927. A more precise version of this threshold result is possible by an
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exact solution of the differential equation (41), but the epidemiological implications are
quite similar. In addition to the results presented here, Kermack and McKendrick compared
their predicted results to an actual epidemic, an outbreak of plague in Bombay in 1905 06.
This comparison is shown in Fig. 14.8. The vertical axis represents the number of deaths per
week and the horizontal units of measure is time in weeks. Since almost all cases terminated
fatally, the vertical component is approximately dR dr.

E. A Discrete Version of the More General Epidemic Model

We discuss very briefly in this section two discrete analogues of the general epidemic
model. We encourage you to explore these discrete models in more detail.

First, the most straightforward translation of the Kermack-McKendrick model to a
discrete version is the dynamical system

Sk+1 − Sk = − βSkIk 45 1

Ik+1 − Ik = βSkIk − rIk 45 2

Rk+1 −Rk = rIk 45 3

where β and r are suitably chosen proportionality constants. With these difference equa-
tions, it is possible that the number of infectives could exceed the total population N and the
number of susceptibles could become negative. To avoid such complications, we modify
the first two equations so they have the form

Sk+1 = maximum 0, Sk + βSkIk 46

Ik+1 = Ik − rIk + minimum Sk , βSkIk with 0< r < 1 47

FIGURE 14.8 Kermack
and McKendrick’s com-
parison of the predicted
curve of dR dt as a
function of t and data on
the number of deaths
from plague (solid dots)
in Bombay over the peri-
od of December 17, 1905,
to July 21, 1906. The
calculated curve con-
forms roughly to
observed figures.
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Frank De Hoog, Joseph Gani and David Gates [1979] study this model in detail and
derive an analogue of the Kermack-McKendrick Theorem.

Second, to study influenza epidemics in England and Wales, Clive Spicer [1979]
developed a discrete model using a variable Yk, the number of newly infective individuals at
period k, and also considering pj, the proportion of the new infectives on any given day k
who remained in the population j days later. A Russian scientist O. V. Baroyan had esti-
mated empirically the values of pj obtaining the following values:

J 0 1 2 3 4 5 6

pj 1.0 0.9 0.55 0.3 0.15 0.05 0

From this table, we see, for example, that two days after becoming infective, only 55%
of these individuals are still infective. No person remains infective for more than five days.

The epidemic begins with S0 susceptibles and Y0 new infectives at day 0. The
equations for the discrete model are

Sk+1 − Sk = − Yk+1

Yk+1 = βSk

Ik =
k

j= 0

pjYk−j = p0Yk + p1Yk−1 + p2Yk−2 +⋯+ pkY0

Rk+1 = Ik − Ik+1 − Yk+1

Table 14.3 shows the relations for the first several days of an epidemic between the number
of susceptibles, new cases, and total number of infectives.

In Fig. 14.9, we show the number of infectives for the first 30 days of an epidemic that
begins with 50 infectives in a population of 1,000.

Table 14.3 The Progress of an Influenza Epidemic

k Total Number of Infectives Ik Susceptibles Sk New Cases Yk

0 I0 =p0Y0 S0 Y0

1 I1 =p0Y1 +p1Y0 S1 =S0 −Y1 Y1 = βS0Y0

2 I2 =p0Y2 +p1Y1 +p2Y0 S2 =S1 −Y2 Y2 = βS1Y1

3 I3 =p0Y3 +p1Y2 +p2Y1 +p3Y0 S3 =S2 −Y3 Y3 = βS2Y2

. . . .

. . . .

. . . .

k
Ik =

k

j=0
pjYk−j =p0Yk +p1Yk−1 +p2Yk−2 + . . . +pkY0

Sk =Sk−1 −Yk Yk = βSk−1Yk−1
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F. Rumors

Variations of mathematical models proven effective in the study of traditional epidemics
also aid our understanding the transmission and spread of other phenomena that resemble,
at least in some respects, infections.

We’ll look at three variants of the epidemic model that have been developed to gain
insight into the spread of rumors, the persistence of urban myths, and the problem of
problem drinking. Each makes use of a central assumption of the epidemic models.

The inclusion of the term SI in the differential equations for dS dt and dI dt is often
justified by an appeal to the Law of Mass Action. According to this law, when one pop-
ulation group’s size is affected by interaction with another population group, a first attempt
to measure effectively the intensity of that interaction can usually be modeled by the fre-
quency of contacts between the groups. That frequency is jointly proportional to the two
populations: the product of the sizes of the two disjoint groups gives the number of distinct
possible meetings. Not only did we see the Law of Mass Action employed in the epidemic
models we have studied so far, but we also saw the central role in played in the Predator-
Prey and Competitive Hunter models of Chapter 4.

The Law of Mass Action also finds its way into our models of the rumors, urban
legends, and problem drinking.

G. Rumors

A rumor is an unverified account or explanation of events circulating from person to person
and pertaining to an object, event, or issue of public concern. Rumors may be true or false,
but they generally spread rapidly by word of mouth. One person tells a second person, who
in turn passes on the content to a third, and the chain continues . . .

FIGURE 14.9 An
instance of the Spicer
model, with S0 = 950,
I0 = 50, and β= .03
showing the number of
infectives for the first 30
days of the epidemic.
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We consider a community that we partition into three distinct groups. The first are
those who have not yet heard the rumor; they are some times called the “ignorants”; we’ll
use x (for “unawares” or “unknowers” since x is often used as a symbol for an unknown) to
denote how many there are. The second group are those who are actively spreading the
rumors, the gossips or “spreaders” of the juicy story. We’ll use variable y (for “yenta,”
the Yiddish word for gossiper). The final group are the people who know the rumor, but
have stopped spreading it. These individuals are often described as “stiflers” or “squel-
chers.” We’ll denote the size of this group by z (for “zappers”).

Now the variables x, y, and z change over time t; we want to model their dynamic
behavior. We assume that a rumor is propagated through the population by contact between
unawares and yentas, following the Law of Mass Action. More specifically, we’ll assume
that whenever a yenta meets another person, the gossiper attempts to “infect the mind” of
the other by relating the rumor. The other person might be an unaware, a yenta or a stifler.
In the first case, the unaware is transformed into a spreader. In the other cases, one or both of
the people learns that the rumor is known and so decides to stop telling it.

The number of distinct possible meetings between unawares and yentas is xy and
between yentas and zappers is yz. The number of distinct possible meetings of a pair of
yentas is y y− 1

2 . When an unaware meets a yenta, the outcome is one fewer unaware and one
more yenta. When a yenta encounters a zapper, the result is one fewer yenta and one more
zapper, but when two yentas stop to talk, the conversation ends with two fewer yentas and
two more zappers.

For simplicity, we will assume the size of the population is fixed and that initially
there are N people who do not know the rumor and there is one person spreading it. The
total population has size N + 1.

Our model is a linked system of differential equations whose two principal rela-
tionships are mathematical representations of our verbal assumptions:

dx dt= −1 xy

dy dt= +1 xy+ −2
y y− 1

2
+ −1 yz= y x− y+ 1− z . 48

with initial conditions x 0 =N, y 0 = 1
Since x+ y+ z=N + 1 for all time t, we have x− y+ 1− z= 2x−N. Thus, we can

write our pair of differential equations as

dx dt = −xy 49 1

dy dt= y 2x−N 49 2

From this pair of equations, we obtain

dy

dx
=

dy

dt
dx

dt

=
y 2x−N

−xy
= −2+

N

x
50
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The solution to the differential equation

dy

dx
= −2+

N

x
51

with initial condition y= 1 when x=N is

2x t + y t +N ln
N

x t
= 2N + 1 for all t> 0 52

Let UN denote the long-term proportion of the population that never hears the rumor—that

is, UN = limt→∞
x t
N . Then Eq. (52) and the fact that limt→∞ y t = 0 gives us

2UN − lnUN = 2+
1
N

53

As the overall population N + 1 increases, limN→∞ UN =U satisfies

2U − lnU = 2 or 2 1−U + lnU = 0 54

You can think of the value of U as the long-term proportion of a very large population who
never hear the rumor. There are two solutions of this equation: U = 1 and U ∼ .2032. With
the given initial condition, x is always decreasing, so we cannot haveU = 1. Thus, under the
assumptions of our model, if the population is large, then about 20% of the people will
never learn the rumor.

Note that if we write Eq. (51) as dy
dx = 2 − 1+ N 2

x , then it has essentially the same
structure as Eq. (30) of the more general deterministic epidemic model dIdS = − 1+ p

S with
a relative removal rate of N 2. Thus, we can use the techniques we applied to Eq. (30) to
gain further insight into the rumor model.

H. Persistence of Urban Legends

You’ve probably heard at least one of these stories:

• “Giant albino alligators live deep in the sewers under New York city; they’re des-
cendants of small, pet gators city residents picked up while touristing in Florida and
then flushed down their toilets when the animals became too difficult to handle in a
Manhattan apartment.”

• “Soft bubble gum has a secret ingredient that keeps it chewy: spider eggs.”

• “Cats can suck the air out of babies. A registered nurse says that cats get in the bed
with babies and lick their mouths and then suck the air out of them and the babies die.”

• “A man was on a business trip alone, and went out to a bar one night to have a cocktail.
He woke up the next morning in an unfamiliar hotel room with severe pain in his lower
back. He was taken to the emergency room, where doctors determined that, unknown
to him, he had undergone major surgery the night before. One of his kidneys had been
removed, cleanly and professionally. He was the victim of a crime ring that drugs
out-of-town visitors, surgically removes organs from their bodies, and sells the organs
on the black market.”
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These stories are all examples of “Urban Legends” or “Urban Myths”: a special class
of rumors that are false, but persistent short tales spread classically by word of mouth but
now more frequently by email. Sociologist Andrew Noymer noted that persistence is “what
sets urban legends apart from rumors more generally, which may disappear almost as soon
as they arise.” Noymer [2001] developed several mathematical approaches based on epi-
demic models to examine how urban legends may become entrenched and continue in
circulation for long periods, even though there may be skeptics who actively try to convince
others that the legends are untrue. We will examine here one variation of Noymer’s models.
Our model is conceptually the same as his, but Noymer casts it in terms of partial differ-
ential equations; we will use a system of discrete difference equations with each step
corresponding to a new week.

Noymer notes a strong analogy between epidemic models and rumor diffusion
models. Taking measles as a representative infectious disease, Noymer points out that

Measles is highly contagious, and is spread by infected-to-susceptible contact. . . . Rumors are
also highly contagious: what differentiates rumors from other pieces of information is that the
possessor of a rumor has an irresistible urge to tell others . . .

“Belief in a rumor and desire to spread the rumor are here taken to be identical, though
in practice belief may persist even after the burning desire to spread a new rumor wanes. The
contact spread of pathogens and the contact spread of rumors is analogous . . .

“In two respects, the measles-rumors analogy breaks down. Measles has a latent period
which is unlike most rumors; with rumors there is no distinction between infection and con-
tagiousness. Measles involves recovery (or death) within a few weeks of initial infection,
whereas some rumors may be believed for years. These differences are easy to deal with from
the modeling perspective.”

In building his models, Noymer begins by adding a fourth state to the classic three-
state SIR Kermack-McKendrick model. The new state is made up of those who do not
understand the urban legend. These are very young babies and children. They have
immunity from transmission of the rumor. Borrowing from the medical literature that often
designates this group as those “protected by maternal antibodies,” Noymer denotes this
population of toddlers as M.

Fig. 14.10 shows the flow of individuals through the states of the model. Movement
through the states depends not only on time but also the age of individuals; hence,
Noymer’s models are described as “age-structured” ones.

Births

Toddler (M) Susceptible (S) Contagious (C)

Immune (Z)

Deaths

k(age)

𝛿(age)

𝜆(t) 𝜐

FIGURE 14.10 Flow diagram of Noymer
model.
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Toddlers may move from the immune state into the susceptible state, but the rate of
movement depends on the age of the toddlers. Noymer posits that children below the age of
three years (156 weeks) are too young to comprehend the urban legend. Thus, we can
model the change in population of toddlers as

Mk+1 −Mk =Births− δ age Mk

where

δ age =
0 if age< 156

.0064 if age≥ 156

55

Note that .0064= 1 156.
Once in the Susceptible S state, a certain fraction may become contagious by the

usual Law of Mass Action factor, but another fraction may become so skeptical that they
will not believe a rumor. Noymer assumes that between the ages of 3 and 6, there is rapid
recruitment into the contagious state, but after 6 some children are “savvy enough” and
“will not believe everything they are told.”

The change in the susceptible population from one week to the next is then given by

Sk+1 − Sk = δ age Mk − k age Sk −
λ

N
SkCk

where

k age =
0 if age< 312

.0014 if age≥ 312

56

and λ is a per-capita transmission rate.
Finally, we examine the change in population of those spreading the urban legend and

those who have recovered from the belief that it might be true. We assume that there is some
constant recovery rate υ per person so that

Ck+1 −Ck =
λ

N
SkCk − υCk 57

and

Zk+1 − Zk = k age Sk + υCk −Deaths 58

Noymer assumes a population of fixed size N where the number of births per week equals
the number of deaths. He also assumes for simplicity that the population is in equilibrium as
far as age structure is concerned.

Fig. 14.11 and Fig 14.12 show the results of a typical run of the model. Here the
parameter values are υ= 0.04 week and λ= .20208 week. The population size was fixed at
100,000 with 100 births and 100 deaths per week. We began with only three contagious
individuals and 1,000 susceptibles.

Note that there is a major growth in the contagious population when our large initial
group of toddlers turns 3 years old. Although most of them have become skeptics by their
late teens, enough remain believers in the legend that they can infect the next generations of
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toddlers when they become susceptibles. There is a second and then a third spurt, so we see
recurrent waves of activity as the urban legend is passed on and persists over a long period
of time.

One weakness of this model is the assumption of a constant rate υ of “recovery.” A
constant rate makes more sense for a disease such as measles than for belief in an urban
legend. “After all,” Noymer argues, “if someone believes a rumor in the first place, why
should she spontaneously stop believing the rumor?”

For our second model, we incorporate Noymer’s suggestion: “Suppose instead that
the rumor is believed indefinitely until it is challenged through contact with skeptics.”With
this assumption, conversion from contagious to skeptic is proportional to the number of
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FIGURE 14.12 Fluctuations in the susceptible population over time
in Noymer’s model.
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FIGURE 14.11 Persistence of an urban legend for Noymer’s
model.
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interactions between the these two groups. Once again, we’ll use the Law of Mass Action to
replace Eq. (57) with

Ck+1 −Ck =
λ

N
SkCk −

γ

N
CkZk 59

For ease in testing different assumptions about the relative success of convincing a sus-
ceptible to believe and convincing a believer to turn skeptical, we rewrite this last
equation as

Ck+1 −Ck =
λ

N
SkCk −

qλ

N
CkZk 60

The second model incorporates Noymer’s idea that “skeptics transmit their immunity to the
contagious in the same fashion that the contagious transmit the rumor to the susceptible.”

To summarize, our second model is the system of difference equations

Mk+1 −Mk = births− δ age Mk 61

Sk+1 − Sk = δ age Mk − κ age Sk −
λ

N
SkCk 62

Ck+1 −Ck =
λ

N
SkCk −

qλ

N
CkZk 63

Zk+1 − Zk = κ age Sk +
qλ

N
CkZk. − deaths 64

Noymer investigates two qualitatively different cases for the second model. In the first,
those believing the rumor are fairly ready to change their mind q= 0.3 and in the second,
“those believing the rumor are loath to be skeptical” q= 0.01 .

Fig. 14.13 shows graphs of the proportion of the population that remains infected
under these two choices for q. In the case q= 0.01, there is an initial rapid increase to
over 30% of the population, then a gradual decline to a level remaining constant at about
5%. When q= 0.3 and rumor believers are more ready to change their belief, we see

FIGURE 14.13 Noymer’s
skeptic model showing
proportion of the popula-
tion that is “infected”
over a long time period.
The dotted curve corre-
sponds to q= 0.01 and
the solid curve is the case
q= 0.3.
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that not as many people believe the rumor at any one time, but there are short-term bumps in
the numbers at 10 20-year gaps.

I. Problem Drinking

As we have seen, epidemiological models can be used to study the dynamics of the
transmission of infectious diseases, short-lived rumors, and urban legends. Modelers have
also used variations on these approaches to examine social and behavioral processes such as
violence, eating disorders, and drug addictions.

Fabio Sánchez and his colleagues [2007] employed an epidemic-type model to
examine the dynamics of drinking alcoholic beverages. As they observe,

There are clearly differences in the generation of addictive behaviors and the transmission
of infectious diseases. However, the fact remains that the acquisition of both can be
modeled . . . as the likely result of contacts between individuals in given environments. For
example, the development of alcohol use among young people and the influence of ‘supportive
environments’ on the development and maintenance of heavy drinking, alcohol abuse,
dependence and problems among adults, are predicated upon the combined effects of social
influence and access to alcohol. Thus, additional understanding of the dynamics of drinking
behaviors may result from the use of a perspective that models drinking as the result of contacts
of susceptibles with individuals in distinct drinking states.”

Sánchez et al. model problem drinking as an acquired state that is the result of fre-
quent or intense interaction between individuals in three drinking states. They partition a
fixed-sized population of size N into three groups: the occasional and moderate drinkers
who function in the role of susceptibles, the problem drinkers or instigators who promote a
culture of drinking, and the temporarily recovered. The variables S, I, and R in this model
refer to the percentage of individuals in each of these groups. Thus, S+ I +R= 1. We are
assuming that the time scale of interest is short enough that the overall population size does
not change significantly. New community members join the population as moderate
drinkers and mix at random with the remainder of the population.

Fig. 14.14 shows a flow model for the dynamics of this model. New susceptibles join
the environment at a constant rate. Some of these leave the environment, and others may be
transformed into problem drinkers. Some of the problem drinkers also leave the environ-
ment while others may become temporarily recovered. Some of the temporarily recovered
also leave the scene, but some can relapse into problem drinkers.

𝛽

𝜙

𝜌

𝜇𝜇𝜇

𝜇

S I R

FIGURE 14.14 Flow diagram of the Sánchez model for the conta-
gious drinking problem.
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The differential equations for our model are

dS

dt
= μ− βSI − μS 65 1

dI

dt
= βSI + ρRI − μ+ϕ I 65 2

dR

dt
=ϕI − ρRI − μR 65 3

S+ I +R= 1 65 4

Two features distinguish the Sánchez model from the SIR model we examined earlier in this
chapter. The major difference is that movement into the R group need not be permanent; the
instigators may well corrupt a temporarily recovered person and cause him to relapse into a
problem drinker. The other difference is the assumption that individuals may leave the
system from any state.

Our analysis of this model begins by considering the situation in which there is no
significant drinking issue—that is, problem drinkers are so rare that their numbers are
insignificant, and no recovery treatments are available, so the R state is not present.

Epidemiologists use the term Basic Reproductive Number for the expected (average)
number of new infectious cases in a completely susceptible population produced directly by
a single case during its entire period of infectiousness. When the Basic Reproductive
Number is 1, each case only reproduces itself so the number of cases stays steady, neither
growing nor shrinking. A higher Basic Reproductive Number represents a more trans-
missible disease, one that can more broadly spread in the population.

Let ℜ0 =
β
μ the product of the transmission rate β and the average time, 1

μ, an indi-
vidual remains a problem drinker. Thenℜ0 is the number of secondary cases generated by a
typical problem drinker in the no significant drinking environment. It is the Basic Repro-
ductive Number in this environment.

In the absence of the R state, the equation for the rate of change of I in our model
becomes

dI

dt
= βSI − μI = I βS− μ 66

Ifℜ0 =
β
μ < 1, then β< μ, and since S is the proportion of susceptibles in the population, we

have 0< S< 1, so that βS< β< μ, and hence βS− μ< 0, so I will decline to 0 as t→∞. On
the other hand, ifℜ0 > 1, then even the introduction of a single problem drinker will cause I
to approach some positive value I as time advances.

In the model with recovery, a problem drinker remains one for an average time of 1
μ+φ

but still has the transmission rate β so the basic reproductive number with recovery, ℜϕ is
β

μ+φ. The epidemic will not necessarily die out ifℜϕ < 1 but ifℜϕ > 1, there will be a long-

term persistent population of problem drinkers.
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We introduce one more threshold here, ℜρ =
ρ

μ+φ, which measures the average
number of temporarily recovered individuals a single problem drinker causes to relapse.
The number ℜρ may be called the “Basic Reproductive Number with Treatment.”

We continue our analysis, as we did for the Richardson arms race model and the
interactive species models, by examining equilibrium points, the points at which all the time
derivatives are simultaneously zero. One such point is S, I, R = 1.0, 0.0, 0.0 . We want
to determine when there are critical points S , I , R that have all components positive.
Such a critical point would be a solution where problem drinking may become established.

We’ll begin with the condition that dS dt = 0:

μ− βSI − μS= 0

which we may rewrite as

S=
μ

βI + μ
.

If we examine the condition dI dt= 0, then we can obtain another relation between S and I
at equilibrium:

βSI + ρRI − μ+ϕ I = 0

or

βS+ ρR− μ+ϕ I = 0

but at a positive equilibrium point, I > 0, so

βS+ ρR− μ+ϕ = 0

but S+ I +R is always equal to 1, so

βS+ ρ 1− S− I − μ+ϕ = 0.

If we solve this equation for S in terms of I, we find

S=
μ+φ− ρ+ ρI

β− ρ
.

Thus, at equilibrium, we would have

μ

βI + μ
= S=

μ+φ− ρ+ ρI

β− ρ

so

μ β− ρ = μ+φ− ρ+ ρI βI + μ .
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Multiplying out and collecting terms results in

ρβ I2 − ρ β− μ − β μ+φ I + μ2 + μφ− μβ = 0

which we may rewrite, after some algebraic manipulation, as

I2 − 1−
μ

β
−

μ+φ

ρ
I +

μ

β

μ+φ

ρ
−

β

ρ
= 0.

Using our symbols for the basic reproductive numbers, we may write this quadratic
equation as

I2 − 1− 1 ℜ0 − 1 ℜρ I + 1 ℜ0 1 ℜρ − β ρ = 0.

Now this quadratic equation has the form

I2 −BI +C= 0

where B= 1− 1 ℜ0 − 1 ℜρ and C= 1 ℜ0 1 ℜρ − β μ .
The quadratic equation has two distinct roots between 0 and 1 whenever 0<B< 1,

C> 0, and B2
− 4C> 0. [See Exercise 46.]

Let’s see when these inequalities hold:

C> 0: C is the product of two factors. The first one, 1 ℜ0, is positive, so C is positive

exactly when 1 ℜρ − β ρ = μ+φ
ρ −

β
ρ = μ+φ− β

ρ > 0, which occurs only when

μ+φ> β—that is, β
μ+φ < 1. But β

μ+φ =ℜϕ. Thus, C> 0 whenever ℜϕ < 1.

B2
− 4C> 0: If the discriminant of the quadratic equation is positive, then we must have

ℜρ > 1 and 0<ℜc <ℜϕ < 1 where

ℜc =
ρ

β

1

1+ 1
ℜ0

− 2
1
ℜ0

−
μ

ρ

Sánchez et al. investigated four separate “thresholds” affecting the qualitative behavior of
the model. Table 14.4 describes these thresholds.

Table 14.4 Description of Threshold Conditions

Thresholds Description

ℜ0 Number of secondary cases generated by a “typical” problem drinker
in a nondrinking population

ℜϕ Basic reproductive number with recovery

ℜρ Number of secondary cases generated by a “typical” problem drinker
in a population of temporarily recovered individuals

ℜc Critical value to where drinking communities can be under control
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Figs. 14.15 and 14.16 display two different scenarios for solutions of the system of
differential equations presented in Eqs. (65.1) (65.4) showing the evolution of the pro-
portion of the population that are serious drinkers over an extended time period. The
parameter values in both cases are μ= .0000548, β= 0.19, ϕ= 0.2, and ρ= 0.21. Fig. 14.14
shows the situation in which the initial conditions are so = 0.97, do = .03, and ro = 0. Fig.
14.15 is the case in which so = .99, do = 0.01, and r0 = 0. In both cases there is an initial drop
in the problem drinkers. In the second case, in which there is smaller initial proportion of
problem drinkers, their population dies out over time. If their initial population is slightly
higher (3% vs. 1%), an initial descent ultimately reverses and the long-term proportion
tends to a level higher than at the start.

In a subsequent paper, Ariel Cintróán-Arias, Fabio Sánchez, and others review this
model and present more sophisticated probabilistic models using stochastic processes and
Markov Chains; see Cintróán-Arias [2009] for details.

J. The Mickens Model: Square Root Dynamics

In formulating a mathematical model of the spread of a communicable disease, we must
consider the rate at which uninfected persons acquire the illness. There must be some
form of contact between a susceptible and an infective that leads to the transmission of

.05
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0
0.1 500

% Problem Drinkers

1000 1500 2000
Days

FIGURE 14.15 A sufficiently high initial population of
problem drinkers can, after an initial decline, ultimately
climb to a stable level larger than at the beginning of the
epidemic.
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% Problem Drinkers
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FIGURE 14.16 The problem drinker population can be
reduced to 0 if it is not too high initially.
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the disease. Not every contact results in passing the disease, but the more contacts there
are, the more likely it is that a previously healthy person will contract the illness. The
total number of contacts between susceptibles and infectives will be an important
quantity. The quantity of contacts should depend on the population S of susceptibles and
the population I of infectives. If both S and I are large, the number of contacts will be
large. If S and I are small, there will be few contacts and fewer opportunities for the
passage of the disease.

The classic SIR model (often called the Kermack-McKendrick model) we studied
earlier in this chapter incorporates the Law of Mass Action to measure the number of
contacts. That principle states that the number of contacts is jointly proportional to the two
populations—that is, there is a positive constant β< 1 such that the rate of transmission is
βSI. But there are other quantities involving S and I that grow as both S and I increase.
One such measure replaces the product of the populations with product of their square
roots—that is, the rate of transmission is β S I.

In this section, we will investigate a model, due to Ronald Mickens, that uses this
idea. The Mickens [2012] model is the system of differential equations

dS

dt
= − β S I, β> 0 75 1

dI

dt
= β S I − r I, r> 0 75 2

dR

dt
= r I 75 3

with initial conditions

S 0 = S0, I 0 = I0 > 0, R 0 =R0 = 0

and the relation

S t + I t +R t =N for all t≥ 0.

We shall see that the Mickens model exhibits much of the same qualitative behavior as the
classic SIR model. It satisfies a Threshold Theorem, for example. It also makes a more
realistic prediction about the long-term behavior of the infective population in the case in
which are no susceptibles (see Exercise 50). Most important, perhaps, it is possible to find
explicit solutions for I, S, and R in terms of elementary functions of t, a feature that the
classic model lacked.

Since the susceptible and infective populations can’t be negative, the first observation
we make is that Eq. (75.1) implies that S is always decreasing and Eq. (75.3) implies that R

is always increasing. From Eq. (75.2), we see that the dI dt is positive only for S> r2

β2
so

that the infective population is on the increase whenever S exceeds r2

β2
and is decreasing as a

function of time when the number of susceptibles drops below r2

β2
.
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Let’s examine first the relationship between S and I. From Eqs. (75.1) and (75.2),
we have

dI

dS
=

β S I − r I

− β S I
= −

β

β

I

I

S− r
β

S
=

r
β − S

S
=

r

β
S−

1
2 − 1 76

Separating the variables and integrating yields

∫ 1dI = ∫
r

β
S−

1
2 − 1 dS

and hence

I = 2
r

β
S

1
2 − S+C= 2

r

β
S− S+C 77

for some constant C. Letting the positive constant r β= k, we see that the number of
infectives I is a function of the number of susceptibles S of the form

I = f S = 2k S− S+C 78

The derivatives of this function are

f ′ S =
k

S
− 1 and f ″ S =

− k

2S
3
2

79

Since the second derivative is negative, the graph of I as a function of S will be concave
down with a maximum value where the first derivative is zero. Now f ′ S = 0 when

S= k2 = r2

β2
. Furthermore, f ′ S > 0 when S< r2

β2
and f ′ S < 0 when S> r2

β2
. In the Mickens

model, S is always decreasing. Thus, if S0 exceeds r2

β2
, as S decreases, I will initially increase.

When S drops below r2

β2
and keeps decreasing, I will decrease. Thus, we have a Threshold

Theorem for the Mickens model: There will be an epidemic if and only the initial popu-

lation of susceptibles exceeds r2

β2
.

Fig. 14.17 shows two typical trajectories. The initial conditions S#, I# do not lead to
an epidemic while the initial conditions S##, I## do. The symbols S#∞ and S##∞ denote the
remaining susceptible populations at the end of the disease spreading process—that is,
S∞ = limt→∞ S t .

Returning to our solution, Eq. (77), of the differential equation for dI dS,

I = 2
r

β
S− S+C

we can evaluate the constant C by using the initial numbers of infectives and susceptibles at
time t = 0:

I0 = 2
r

β
S0 − S0 +C so C= I0 + S0 − 2

r

β
S0 80
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and hence

I t + S t − 2
r

β
S t = I0 + S0 − 2

r

β
S0 81

As we have seen, the parameter r2

β2
plays a key role in analyzing the dynamics of the Mickens

model. We will use S* to denote r2

β2
. Thus, we can write the first-integral equation as

I t + S t − 2 S S t = I0 + S0 − 2 S S0 82

Our condition for the existence of an epidemic is S0 > S —that is, the ratio R0 = S0 S must
exceed 1. The ratio R0 is called the basic reproduction number. Note that the disease will
die out if 0<R0 < 1 while an epidemic will occur if R0 > 1. We can interpret R0 as the
number of additional infections induced into a susceptible population by a single infected
individual.

Suppose we do have S0 > S , so an epidemic does occur. What is the largest number
Imax of infective people we will ever see? As we noted above, I reaches its maximum value

when S= r2

β2
= S . Substituting into Eq. (82), we have

Imax + S − 2 S S = I0 + S0 − 2 S S0

or

Imax = I0 + S0 − 2 S S0 + S = I0 + S0− S
2

83

FIGURE 14.17 Trajecto-
ries for the Mickens
model in the S− I plane.
Here β= .03, r= .3 and
I0 = 11. The lower curve
represents the trajectory if
S0 = 80 and the upper
curve corresponds to
S0 = 200. In the latter
case, there is an epidemic
as the number of infec-
tives initially increases. In
the former case, there is
no epidemic; the number
of infectives strictly
decreases at all times.
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When the epidemic has run its course, there will be no more infectives—that is,
I∞ = limt→∞ I t = 0. We can use this fact and the solution to our differential equation for
dI dS to determine how many susceptibles never succumbed to the disease, the number
remaining when the epidemic is over. We seek S∞ = limt→∞ S t . We know that
S∞ < S < S0. Substituting I∞ = 0 and S∞ into our solution,

I t + S t − 2 S S t = I0 + S0 − 2 S S0

we have

0+ S∞ − 2 S S∞ = I0 + S0 − 2 S S0 =C 84

If we let x= S∞, then

x2 − 2 S x−C= 0 85

The solution of this quadratic equation is

x=
2 S ± 4S + 4C

2
= S ± S +C 86

and therefore,

S∞ = x2 = S ± 2 S S +C+ S +C= 2S +C± 2 S S +C 87

Recall that C= I0 + S0 − 2 r
β S0 = I0 + S0 − 2 S S0 so that our formula for S∞ becomes

S∞ = x2 = 2S + I0 + S0 − 2 S S0 ± 2 S S + I0 + S0 − 2 S S0 88

Some algebraic manipulations on this last formula yield a more compact represen-
tation as

S∞ = S 1−
S0
S
−1

2

+
I0
S

2

89

where we keep the root of the quadratic equation that gives a value of S∞ below S and
S0. The total number of susceptibles who contracted the disease, Sill, is given by
Sill = S0 − S∞, and the number of individuals who were ever infected is Itotal = I0 +
Sill = I0 + S0 − S∞.

Example 1

For our model with β= .03, r = .3, S0 = 225, and I0 = 11, we have S = 100 and Imax = 11+
15−10 2 = 36.
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One of the nicest features of the Mickens model is that it is possible to obtain exact
solutions of the differential equations so that we will have explicit formulas for S, I, and R
as functions of t. The technique is to make a change of variables to get an equivalent system
of linear differential equations.

To begin, let u= S= S
1
2 and v= I = I

1
2. Then

du

dt
=
1
2
S
−1
2
dS

dt
=

1
2

1

S
− β S I = −

β

2
I = −

β

2
v= − bv 90

where b= β
2.

A similar computation shows

dv

dt
= bu− s 91

where s= r 2.
Thus, our new system is the pair of linear differential equations

u′ t =
du

dt
= − bv v′ t =

dv

dt
= bu− s 92

From this linked pair of equations, we can obtain separate second-order linear differential
equations for u and v:

u″= u′ ′= − bv ′= − bv′= − b bu− s = − b2u+ bs

so

u″+ b2u= bs 93

A similar calculation shows that v″= − b2v, so that v″+ b2v= 0. Thus, we have two sec-
ond-order linear equations

u″+ b2u= bs v″+ b2v= 0 94

The initial conditions for these equations are easily computed as

u 0 = u0 = S0 u′ 0 = − b I0
v 0 = v0 = I0 v′ 0 = b S0 − s

Example 2

For our model with β= .03, r = .3, S0 = 225, I0 = 11, and S =100, we have S∞ = 16,
Sill =209, and Itotal = 220.
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We can solve each equation independently of the other. Standard techniques (see Appendix
V) yield the solutions

u t = S0 −
s

b
cos bt − Iosin bt +

s

b
95

v t = I0cos bt + S0 −
s

b
sin bt 96

Recalling that that v= I and u= S, it is tempting to set I = v2 and S= u2, but this would
not be quite correct. Fig. 14.18 shows the graph of a typical v2. Note that it has oscillations
that a true function for the infective population would not have. We know that if S0 < S ,
then I t monotonically decreases to zero, and when S0 > S , the function I t initially
increases to a positive maximum before it declines to zero. When the infective population
reaches 0, it remains there forever more. There is a time tc at which I tc = 0 with I t = 0 for
all t≥ tc.

This problem is easily addressed. Note first that the function, which is identically 0, is
also a solution to the differential equation dI

dt = β S I − r I. If we construct a piecewise
function for I t that is equal to v t 2 up to t= tc and equal 0 thereafter, then I t will be
solution to our differential equation. Similarly, we can let S t be equal to u t 2 up to t = tc
and equal to S∞ after.

All we have left to do is compute the value tc where v tc = 0. Now v tc = 0 when

S0 − s
b sin btc = − I0cos btc so that tan btc = sin btc

cos btc
= − I0

S0 − s
b

.

Thus, tan π − btc = I0
S0 − s

b

and π − btc = arctan I0
S0 − s

b

, which yields

tc =
1
b

π − arctan
I0

S0 − s
b

97
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FIGURE 14.18 Oscillations in the graph of v2 t that
can’t occur in a real epidemic.
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To summarize: our explicit solutions to the Mickens model are

I t =
v t 2 0≤ t≤ tc

0 t> tc
and S t =

u t 2 0≤ t≤ tc

S∞ t > tc
98

In Fig. 14.19, we show graphs of I(t) and S(t) as defined by Eq. (98) for typical values of the
parameters.

We see that qualitative predictions of the Mickens model are similar to those of the
classic Kermack-McKendrick SIR model while providing exact solutions of the differential
equations. As Mickens observes the square root approach also provides two additional
insights into the modeling process:

First, many sets of equations can provide the same qualitative features of a phenomena; sec-
ond, in general, there are few a priori explicit rules that can be applied to restrict the structure
of mathematical models. In other words, mathematical modeling is hard and thought must be
put into deciding just what are the fundamental issues and concepts, and how they should be
translated into the equations that will then be investigated.
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FIGURE 14.19 Results of the Mickens model showing the number of infectives and susceptibles
over time.

Example 3

For our continuing model with β= .03, r = .3, S0 = 225, I0 =11, S = 100, and S∞ = 16, we
have tc = 170.394.
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The Kermack-McKendrick and Mickens models both have the form

dS

dt
= − βSαIα, β> 0

dI

dt
= βSαIα − rIα, r> 0

dR

dt
= rIα

for some constant α. Mickens uses α=½ instead of α= 1 as in the classic SIR model. I
encourage you to experiment with other choices of α to see how the qualitative behavior of
the dynamics of the model depends on α.

III. A Probabilistic Approach
A. A Stochastic Model of Simple Epidemics

In earlier chapters, there were several discussions of the weaknesses of the deterministic
approach in models involving social or life sciences and the consequent need for proba-
bilistic models. In addition to those general arguments, there are several that are particularly
appropriate for models of epidemics. One of the fundamental assumptions of the deter-
ministic models presented in Section II concerned the rate at which the susceptible popu-
lation is reduced as an infectious disease spreads through a community. We assumed that
the rate of change was proportional to the number of contacts between the susceptible and
infective subpopulations and, further, that this number was proportional to the sizes of these
two subgroups. In mathematical terms, we had the equation dS dt= − βS t I t in the
classic SIR model and dS dt = − β S t I t in the Mickens approach. This axiom
presumes that there is a homogeneous mixing of the members of the community. This is not
a realistic presumption if the community is large enough to contain significant subgroups of
different ages, interests, occupations, and geographical locations. The axiom is more likely
to be accurate for a small group, such as recruits in an army camp or students living in a
dormitory. But the smaller the group size, the less reasonable is a deterministic approach,
since this approach is based on the hope that statistical fluctuations in behavior “smooth
out” for large groups. These fluctuations are important in the study of small groups. The
element of probability is of considerable importance here and should be incorporated into
the mathematical model.

Even if our interest in the model is focused on the average number or expected value
of susceptibles or infectives, a probabilistic approach is required. For, although with some
population processes (such as the pure birth model of Chapter 10) the expected value was
identical to the corresponding deterministic prediction, this is not always true of epidemic
processes.

In this section we will develop a probabilistic version of the simple epidemic model
of Section II.B. In the simple model, R t = 0 and S t =N − I t for all t, so it is sufficient
to investigate the function I t . The probabilistic model does not predict a precise value for
I t for each time t. Instead the model gives a set of probability distributions for I t —that
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is, the model yields for each t and each nonnegative integer m, a probability—denoted
pm t —that there are exactly m infectives at time t:

pm t =Pr I t =m 99

Note first that the number of infectives cannot exceed the total population N of the com-
munity at any time so that

pm t = 0 for all t if m≥N + 1 100

The function I t can then be thought of as a random variable that takes on possible values
0,1, 2, . . . , N. The simple epidemic model assumes that precisely one person in the com-
munity is an infective when the epidemic begins at time 0. Thus,

pm t =
1 if m= 1

0 if m≠ 1
101

The probabilistic model of a simple epidemic is developed in the same spirit as the
model for a pure-birth process presented in Chapter 10. The particular assumptions are
these:

Assumption 1 A susceptible individual is infected when he comes into contact with an
infective person.

Assumption 2 Once an individual is infected, he remains an infective for the remaining
time.

Assumption 3 The probability that there is exactly one contact between a susceptible and
an infective in a particular very short period of time is proportional to the number of
susceptibles, the number of infectives, and the length of the time interval. In other terms,
there is a positive constant β such that

Pr(Exactly one contact in time interval t, t+Δt = βI t S t Δt= βI t N − I t Δt
since there are no removeds in the simple model.

Assumption 4 The probability of more than one contact between susceptibles and infec-
tives in a very short time period is negligibly small.

These assumptions are used to determine the probability of m infectives at time
t +Δt, the number pm t+Δt . There are three distinct and mutually exclusive ways that the
community can have precisely m infectives at such a moment:

Event (A) There were exactly m infectives at time t and there was no contact between
susceptibles and infectives during the period t, t+Δt .

Event (B) There were exactly m− 1 infectives at time t and there was precisely one
susceptible-infective contact in t, t +Δt .

Event (C) There were less than m− 1 infectives at time t and there was more than one
infective-susceptible contact in t, t +Δt .
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By Assumption 4, the event (C) has negligible probability and can be ignored if Δt is
very small. Thus,

pm t+Δt =Pr A + Pr B 102

Now

Pr B =Pr 1 contact and I t =m− 1

=Pr 1 contact I t =m− 1 Pr I t =m− 1

= β m− 1 N − m− 1 Δtpm−1 t

by Assumption 3.
The probability of event (A) is computed similarly:

Pr A = Pr 0 contacts and I t =m

= Pr 0 contacts I t =m Pr I t =m

= 1− Pr 1 contact I t =m Pr I t =m

= 1− βm N −m Δt pm t .

These equations yield the basic relationship

pm t+Δt = 1− βm N −m Δt pm t + β m− 1 N −m+ 1 Δtpm−1 t 103

which may be rewritten as

pm t+Δt − pm t

Δt
= − βm N −m pm t + β m− 1 N −m+ 1 pm−1 t 104

Now let Δt→0 in Eq. (50) and obtain, as a limit, the differential equation

dpm t

dt
= − βm N −m pm t + β m− 1 N −m+ 1 pm−1 t 105

Our probabilistic model consists of this collection of differential equations, one each for
m= 1, 2, . . . , N together with the initial conditions of Eq. (101).

B. Deductions from the Model

Examine the differential Eq. (105) first in the case m= 1. The equation takes the form

dp1 t

dt
= − β1 N − 1 p1 t + β 1− 1 N − 1+ 1 p0 t = − β N − 1 p1 t 106

which has the solution

p1 t = e−β N−1 t 107
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The first prediction of this model is that there is always a positive probability that the
epidemic does not spread beyond the original infective person—but that this probability
decreases exponentially toward zero as time continues. This prediction follows from the
fact that β N − 1 is a positive constant and from knowledge of the exponential function
e−β N−l t.

Next consider the case m= 2. The differential Eq. (105) then has the form

dp2 t

dt
= − β 2 N − 2 p2 t + β 2− 1 N − 2+ 1 p1 t

= − 2β N − 2 p2 t + β N − 1 e−β N−1 t

108

so that

dp2 t

dt
+ 2β N − 2 p2 t = β N − 1 e−β N−1 t 109

Eq. (109) is a first-order linear differential equation. It can be solved directly (see Appendix
V) by making use of an integrating factor. In this case, the factor is e2β N−2 t and the solution
is found, using p2 0 = 0, to be

p2 t =
N − 1
N − 3

1− e−β N−3 t e−β N−1 t 110

This procedure can be continued to find p3 t as the solution of the differential equation
obtained by setting m= 3 in Eq. (105) and making use of the explicit form of p2 t together
with the initial condition p3 0 = 0. The corresponding differential equation is

dp3 t

dt
= − 3β N − 3 p3 t + 2β N − 2 1− e−β N−3 t e−β N−1 t

and the solution is

p3 t =
N − 1 N − 2

N − 3 N − 4 N − 5
N − 5 − 2 N − 4 e−β N−3 t + N − 3 e−2β N−4 t

eβ N−1 t
111

In theory, we could continue in this fashion to obtain p4 t , p5 t , . . . , pN t as explicit
functions of t. The computations become formidable very quickly, however, and this is not
an efficient procedure if N is moderately large. A more sophisticated mathematical tech-
nique permits a direct computation of the complex formula for pm t where m is any integer
between 1 and N; the details can be found in Chapter 5 of Norman Bailey’s The Mathe-
matical Theory of Epidemics (see References).

C. A Comparison of Deterministic and Probabilistic Models

In the discussion of the pure-birth process in Chapter 10, we noted that the expected value
of the population as given by the probabilistic model coincided exactly with the predicted
value from the deterministic model. For models of epidemics, the expected values are, in
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general, different from the solutions of the corresponding deterministic differential equa-
tions. We shall illustrate this for the models of a simple epidemic.

For each time t, the number of infectives is a random variable taking on values
1, 2, . . . , N with probabilities given by pm t , m= 1, 2, . . . , N. The expected value of the
number of infectives is

φ t =
N

m= 1

mpm t 112

The deterministic model predicts that the number of infectives at time t is given by the
formula

I t =
N

1+ N − 1 e−βNt
8

In this section we will show that the two functions φ t and I t are not identical. There are
a number of ways of doing this. One method would be to calculate pm t as an explicit
function of t for each m and then use these to obtain an analytical description of φ t . As
already noted, this approach leads to considerable computational difficulties. An alternative
approach is to find some time t at which φ and I exhibit different properties. We will adopt
this approach and show in particular that φ″ 0 and I″ 0 are different numbers.

Note first that the deterministic model gives

I′ t = βI t N − I t

so that

I″ t = β I′ t N − I t + I t − I′ t

= βI′ t N − 2I t

These equations give

I 0 = 1

I′ 0 = β N − 1

and

I″ 0 = ββ N − 1 N − 2 = β2 N − 1 N − 2

Since pm 0 = 0 ifm≠ 1 and p1 0 = 1, we have φ 0 = 1. Thus, φ 0 = I 0 . Examining the
fundamental differential equation for the probabilistic model of a simple epidemic,

dpm t

dt
= − βm N −m pm t + β m− 1 N −m+ 1 pm−1 t 105

we find that

p′1 0 = − β1 N − 1 p1 0 + β 0 N − 1+ 1 p0 0 = − β N − 1 113
while
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p′2 0 = − β2 N − 2 p2 0 + β 2− 1 N − 2+ 1 p1 0 = β N − 1 114

and

p′m 0 = 0 for all m≥ 3 115

Now we can calculate the derivative of the expected value:

φ′ t =
dφ

dt
=

d

dt

N

m= 1

mpm t =
N

m= 1

d

dt
mpm t =

N

m= 1

mp′m t

= p′1 t + 2p′2 t + 3p′3 t +⋯+Np′N t

116

Evaluation of the derivative at time t= 0 gives

φ′ 0 = p′1 0 + 2p′2 0 + 3p′3 0 +⋯+Np′N 0

= − β N − 1 + 2β N − 1 + 3 0 + 4 0 +⋯+N 0

= β N − 1

117

So far we have succeeded in showing that φ and I agree to the extent that φ 0 = I 0 and
φ′ 0 = I′ 0 . Finally, we evaluate φ″ 0 . First, compute the expression for φ″ t :

φ″ t =
dϕ′

dt
=

N

m= 1

mp″m t 118

Now

φ″m t =
dφ″m
dt

=
d

dt
− βm N −m pm t + β m− 1 N −m+ 1 pm−1 t

= − βm N −m p′m t + β m− 1 N −m+ 1 p′m−1 t

119

In evaluating φ″ 0 there will be precisely four nonzero terms in the sum of the right-hand
side of Eq. (118). These will occur when the index m is 1, 2, and 3:

φ″ 0 = 1 − β 1 N − 1 p′1 0 + 2 − β 2 N − 2 p′2 0

+ 2β 1 N − 2+ 1 p′1 0 + 3 β 3− 1 N − 3+ 1 p′2 0

= − β N − 1 − β N − 1 + 2 − 2β N − 2 β N − 1

+ β N − 1 − β N − 1 + 3 2β N − 2 β N − 1

= β2 N − 1 N − 3

120
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Thus, we have I″ 0 = β2 N − 1 N − 2 while φ″ 0 = β2 N − 1 N − 3 so that the
functions I t and φ t are not identical.

Note that the ratio I″ 0 φ″ 0 = N − 2 N − 3 is greater than one, so that the
function I′ t is initially growing at a faster rate that φ′ t . In fact, it can be shown that for
all t > 0, I t is always greater than φ t . Note also that for large values of N, the ratio is
close to 1, so that the graphs of the functions I t and φ t as functions of t will be similar, at
least close to t = 0. The graph of φ t does not exhibit the same symmetry as the graph of
I t , but the times at which both curves reach their maximum values are close together. The
graphs of these functions for N = 11 are shown in Fig. 14.20.

The deterministic model of a simple epidemic offered a direct solution with no great
mathematical difficulty. The probabilistic model of the same simple epidemic involves
considerably greater complication. The development of a probabilistic model for the
general epidemic as discussed in Section II.C is beyond the scope of the mathematics
introduced in this text, as are models that are even more realistic in their assumptions.

IV. Historical and Biographical Notes
A. The Development of Mathematical Epidemiology

In an historical sketch of epidemics written in the early 19th century, a Vermont country
doctor, Joseph A. Gallup [1815], noted that

Epidemic diseases, and their sequelae, occupy a very large portion of the catalogue of human
maladies. No section of the globe is exempt from their ravages, and no society of individuals
has been excused from weeds of mourning by the devastation of these scourges of man. They
follow wherever the footsteps of man lead the way, and his traces are bestrewed with monu-
mental inscriptions of human frailty.
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FIGURE 14.20 Comparison of deterministic (solid) and probabilistic
(dashed line) epidemic curves for a simple epidemic with So = 10, I0 = 1,
and β= .03.
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Records of epidemics appear in the literature of the ancient Greeks, and the Bible
reports epidemics occurring among the Egyptians several thousand years earlier. Statistical
information on the incidence and locality of cases of infectious diseases was first collected
by two Englishmen, the statistician John Graunt (1620 1674) and the political economist
and physician Sir William Petty (1623 1687) during the 17th century.

In 1840, William Farr (1807 1883), another English statistician and commissioner
of the census, published some of his studies on statistical information, which he hoped
would lead to the discovery of empirical laws on the growth and decline of epidemics. By a
detailed examination of the spatial and temporal pattern of outbreaks of cholera, the English
physician John Snow (1813 1858) demonstrated in 1855 that the disease was being spread
by the contamination of water supplies. (Snow is also remembered as the man who
introduced into English surgical practice the use of ether as an anesthetic.) In 1873, William
Budd (1811 1880), established a similar manner for proving the spread of typhoid. Budd,
another English physician, advocated disinfection as a method of preventing the spread of
contagious diseases and recommended measures that stamped out Asiatic cholera and
rinderpest in his country.

A coherent, predictive theory of epidemics requires both the development of suffi-
ciently powerful mathematical techniques and the formation of sufficiently precise
hypotheses about the spread of diseases that are suitable for expression in mathematical
terms. The research achievements of biological scientists, especially those of Louis Pasteur
and Robert Koch in the second half of the 19th century, established the physical bases for
the cause of infectious disease and made possible both the mathematical modeling of
epidemics and, more important, the public health measures that have lessened the chances
of widespread epidemics.

Pasteur (1822 1895), the famous French chemist, is known for discovering that
bacteria were the cause of anthrax, for developing successful vaccines against anthrax and
cholera, and for pioneering treatment of hydrophobia in humans and rabies in dogs. Pasteur
also isolated the bacilli causing two distinct diseases of silkworms and found a method for
preventing the spread of these diseases, thereby saving the French silk industry.

A German physician and bacteriologist, Koch (1843 1910), was the first person to
isolate and obtain a pure culture of the anthrax bacillus, to isolate tubercle bacillus, and to
identify the comma bacillus as the cause of Asiatic cholera. He traveled to South America to
study rinderpest, to India to study bubonic plague and cholera, and to Africa to learn more
about malaria and sleeping sickness. Koch was awarded the 1905 Nobel Prize in physi-
ology and medicine.

The first deterministic model of epidemics appeared in the English medical journal
Lancet in 1906. This model, created by William H. Hamer, stressed the fundamental
assumptions that the continuing spread of an epidemic depends on the number of sus-
ceptibles and the rate of contact between susceptibles and infectives. Hamer’s mathematical
assumptions, in one modified form or another, appear in almost all deterministic and
probabilistic models of epidemics.

Beginning in 1911, Sir Ronald Ross published a series of books and papers devel-
oping a detailed deterministic model of malaria. A British physician born in India in 1857,
Ross began his research into malaria in 1892 and after five years of patient work was able to
piece together the life history of the malarial parasite in mosquitoes. Ross’s work earned
him the 1902 Nobel Prize for physiology and medicine. In addition to his medical and
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mathematical writings, Ross published a novel, was a professor of tropical sanitation, and
was director-in-chief of the Ross Institute and Hospital for Tropical Diseases in London. He
died in 1932.

More elaborate deterministic models were developed by Kermack and McKendrick
in a succession of papers published between 1927 and 1939. Perhaps their most important
discovery was the Threshold Theorem discussed here in Section II.C. This result helped
researchers account for the absence or occurrence of outbreaks of many epidemic diseases.
Although McKendrick is best known for his work on deterministic models, he was also the
first person to publish (in 1926) a probabilistic account of an epidemic process. Other
pioneers in the use of probabilistic models were Major Greenwood in England and Lowell
J. Reed and Wade Hampton Frost in the United States.

There were a number of important advances in mathematical epidemiology in the
1940s and 1950s, including Norman T. J. Bailey’s complete solution of the probabi-
listic model for a simple epidemic (1950). In 1957, Bailey published the first textbook
giving a systematic treatment of the whole field of mathematical modeling of epi-
demics. In a survey article 10 years later, Klaus Dietz noted that since Bailey’s book
appeared, “the contributions to this subject have themselves behaved like an epidemic.”
Bailey more recently wrote a subsequent edition, under the title The Mathematical
Theory of Infectious Diseases, which provides a modern survey of this fast-growing
discipline.

In recent years, mathematicians have developed and analyzed more complicated
models of epidemics using new results about the qualitative behavior of nonlinear ordinary
and partial differential equations and exploiting the power of digital computers to carry out
simulations of systems involving many equations. Other researchers are using insights
gained from the study of models of the spread of infectious diseases to study other dynamic
systems. As we have seen, variations of the basic SIR model can be used to study the spread
of rumors or drinking behavior. The epidemic models have also been starting points to
examine eating disorders such as bulimia (González, 2003), fanatic behavior (Castillo-
Chavez, 2003), and domestic violence (Abdul-Karim, 2012). Even zombies have fallen
victim to mathematical modeling; the 2007 paper by Philip Munz et al. received much
attention in the popular press.

B. Ronald Mickens

Physicist Ronald Elbert Mickens was born in the then deeply segregated city of Petersburg,
Virginia, on February 7, 1943. His maternal grandfather introduced him to science as well
as to Br’er Rabbit stories and folk medicine. By age 8, Mickens knew he wanted to be a
scientist; he ultimately took enough extra summer courses to graduate early from Peabody
High School (originally named “The Colored High School”).

An avid reader as a youth, Mickens reports that he went to the public library daily.
African Americans were restricted to the basement level of the building, which contained
the card catalog of all the books in the building. The librarian often went upstairs to get
books on science, rocketry, and calculus for Mickens. Eventually, Mickens joined a large
group of fellow students who staged a successful demonstration that led to the library’s
racial integration.
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Ronald E. Mickens

At age 17, Mickens entered Fisk University in Nashville, where he focused on
mathematics, physics, and chemistry, ultimately graduating with a bachelor’s degree in
physics and one of the highest grade point averages in history of Fisk, along with Phi Beta
Kappa honors. A recipient of fellowships from the Woodrow Wilson and Danforth foun-
dations, Mickens received his doctoral degree in physics from Vanderbilt University. A
National Science Foundation Postdoctoral Fellowship gave him an opportunity for further
study and research before he returned to Fisk to teach physics. In 1982, Mickens moved to
Clark Atlanta University, where he currently holds the title of Distinguished Fuller E.
Callaway Professor of Physics.

Mickens has conducted research in the areas of complex functions, theoretical ele-
mentary particle physics, mathematical epidemiology, and modeling of nonlinear oscilla-
tions. In addition to scores of journal articles, he has written numerous advanced texts,
including Mathematics and Science, Difference Equations, Applications of Nonstandard
Finite Difference Schemes, Mathematical Methods for the Natural and Engineering Sci-
ences, An Introduction to Nonlinear Oscillations, Oscillations in Planar Dynamic Systems,
and Truly Nonlinear Oscillations: Harmonic Balance, Parameter Expansions, Iteration,
and Averaging Methods.

In addition to research and teaching, Mickens has devoted significant efforts to
open physics to minority students. He serves as historian for the National Society of Black
Physicists. Among his other books are a history, The African American Presence in
Physics, and a biography, Edward Bouchet, The First African-American Doctorate. Both
Fisk and Vanderbilt are located in Nashville, which served as the base of the Student
Nonviolent Coordinating Committee (SNCC), one of the most active organizations in
the civil rights movement of the 1960s. Mickens participated in a number of SNCC-
sponsored events.
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You can learn much more about Mickens’s life and work from an extended (163-
minute) video interview with him available at http://www.idvl.org/sciencemakers/Bio13.
html. At its conclusion, Mickens observes,

I’m having fun, and I’ve had fun for a long time. And I wish that there were more people who
could see intellectual activities as things that can provide them with great joy, with great fun,
and that it also provides you the opportunity to meet all kinds of interesting people, to go to all
kinds of strange and interesting and weird places.

EXERC I S E S

DETERMINISTIC MODEL OF A SIMPLE EPIDEMIC

1. Use the relation dI dt= βI N − I to sketch a graph of
dI dt as a function of I. Can you draw any conclusions
about the model from this graph?

2. Derive Eq. (8) from Eq. (7).

3. Show that Eq. (6) gives I″ t = β2I N − I N − 2I .
Does this result imply that the maximum value of I′ t
necessarily occurs when I =N 2?

4. Show that Eq. (11) can be derived from Eq. (8) and the
relation dI dt= βI N − I without further
differentiation.

5. Discuss how you would obtain a numerical value for β
from observed information concerning the number of
infectives and susceptibles at various times.

6. Show that I′ tmax + a = I′ tmax − a for all α—that is,
verify the claim that the epidemic curve is symmetric
about the vertical line through tmax.

7. Show that S t drops below 1 as soon as t exceeds
2tmax. In what sense does this observation justify the
claim that “the simple epidemic is over by time 2tmax” ?

8. Explain why limt→∞
N − 1
eβNt − 1= − 1

9. Generalize the simple model by allowing β to be a
continuous function, β t , of time t, rather than a
simple constant. In particular, discuss the con-
sequences of the model in each of the following cases:
(a) β t is an increasing function—for example,

β t = t.

(b) β t is a decreasing function—for example,
β t = e−t .

(c) β t is a periodic function—for example,
β t = cos t.

10. Generalize the simple model to situations in which the
size of the total community changes during the course
of the epidemic because of births or from deaths due to
causes other than the infectious disease. In particular,
investigate the simple model if N t is growing
(a) exponentially

(b) logistically

11. Investigate the simple model if 1 0 = I0 is greater than
1. Find analogues of Eqs. (8) and (11) in particular.

12. Sketch the epidemic curve if N = 1000, 10 = 100, and
β= .003. Use the results of Exercise 11.

13. When the early stages of an epidemic are observed,
steps are often taken to prevent its spread. Suppose,
for example, that public health officials administer
vaccines at a constant rate of α inoculations per
time unit. Suppose this program continues until the
entire population is either vaccinated or infected.
The mathematical model in this situation might take
the form

dI dt= βI t N − αt− I t

since N −αt− I t represents the number of
susceptibles.

(a) Why is this a reasonable model?

(b) Show that an epidemic described by this model
ends when t=N α.

(c) What predictions can you make from this model
without solving the differential equation
explicitly?

(d) Can you solve the differential equation?
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Discrete Version of the Simple Model

14. Show that the maximum value of f x = x+ βx N − x
does occur at the average of 1 β and N. Determine that
maximum value.

15. Let Pk = Ik N.

(a) Show that the equation Ik+1 = Ik + βIk N − Ik
becomes Pk+1 =Pk + βPk 1−Pk .

(b) Show that the equation in (a) is the discrete logistic
growth model. Is there a choice of β that leads to
chaos? Recall our discussion in Chapter 3, but
note that 0< β< 1.

16. Formulate and analyze the discrete version of the
model introduced in Exercise 12.

DETERMINISTIC MODEL OF A GENERAL
EPIDEMIC

17. A simpler model than the one discussed in the text is
based on the equations

dS

dt
= − βS0I

dI

dt
= βS0I − rI

dR

dt
= rI

where β and r are again positive constants measuring
the rates at which susceptibles become infected and
infective individuals are removed.

(a) Determine S, I, and R as explicit functions of t if
initial numbers are S0, I0, and R0 =N − S0 − I0.

(b) Prove that if βS0 < r, the disease will not produce
an epidemic.

(c) Discuss what happens in the case βS0 > r.

18. In discussing the limiting behavior of R, S, and I we
made use of a theorem stating that if f t ≤N for all t
and if f is monotonically nondecreasing, then there
exists a number L≤N such that limt→∞ f t =L. Find a
proof of this theorem.

19. Use Eq. (27) to sketch a graph showing the relation
between S and R.

20. Apply the bisection technique to the function
f x = x2 − 2 to find an approximation of 2 accurate
to two decimal places.

21. Apply the bisection technique to Eq. (39) with
S0 = 1000, N = 1001, r= .9, and β= .002 to estimate
S∞, to the nearest integer.

22. Newton’s method is a technique for finding roots of the
equation f x = 0 when f is a differentiable function. It
often is a more efficient technique than the bisection
method. Most calculus texts will contain some dis-
cussion of Newton’s method. Investigate how you
might apply Newton’s method to calculate S∞.

23. Eq. (34) defines I as a continuous function of S:

I = g S =N − S+ plog
S

S0

Show that g S0 > 0 and that g S0
e−N p < 0.

24. Find the exact solution to Eq. (41). See Bailey’s text if
you get stuck.

25. Solve Eq. (41) if a Taylor series approximation for ex

is used when the series is terminated after
(a) One term

(b) Two terms

(c) Four terms

26. Show that the epidemic curve is not symmetric about
any vertical line.

27. Use Eqs. (43) and (44) and the approximation R∞ ∼ 2v
to obtain various estimates for R∞ in the case β= .001,
r= .9, N = 1001, and I0 = 1. Compare results with the
number obtained by using the bisection technique.

28. Repeat Exercise 27 using the data from Exercise 21.

DISCRETE VERSION OF THE MORE GENERAL
EPIDEMIC MODEL

29. Implement the first discrete version of the Kermack-
McKendrick model. Find conditions on the parameters
under which the entire susceptible population becomes
infected in a finite time.

30. In comparing his model with data collected over a 15-
year period, Spicer found that the model yielded a
higher number of infectives than seen in the data. He
concluded that in the early stages of an epidemic, the
actual number of cases is underreported. Is that a
reasonable claim? Explain.

31. Implement the Spicer model with pj = 0.9 j.

(a) How does the graph of the number of infectives
compare with Fig. 14.9?
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(b) Examine the graph of infectives if β = .003 and
β = .3.

(c) How many days does it take for the number of
infectives to drop below 1 for different choices of β?

RUMORS

32. Why is the number of distinct contacts between a pair
of yentas equal to y y− 1

2 ?

33. For our rumor model, show that dz dt= y y− 1+ z

34. Carry out the details of solving dy dx= − 2+N x
with initial conditions y= 1 when x=N to obtain the
result stated in Eq. (52).

35. Let f U = 2 1−U + ln U for U > 0.

(a) Show that f 1 = 0.

(b) By examining the first and second derivatives of f ,
graph the function on the interval (0, 2).

(c) Prove that there is exactly one other positive
number U ≠ 1 for which f U = 0.

(d) Use the bisection technique or other numerical
algorithm to approximate U to three decimal
places.

36. Suppose not every conversation between a gossiper
and another individual contains the rumor, but only in
a certain percentage α of the encounters does the
gossiper attempt to pass on the rumor. How does this
assumption change the equations of our model? How
does it affect the long-term spread of the rumor?

37. A yenta may become a stifler either by vowing never to
pass on a rumor or simply by forgetting the rumor.
Modify our model to add this feature and analyze the
resulting dynamics of the system.

38. (Adapted from Daley and Gani.) A “stifling experi-
ence” occurs when a yenta meets another yenta or a
zapper. In our simple rumor model, we assumed that a
single stifling experience was enough to convert a
yenta into a zapper. In the “k-fold stifling model,” we
assume that a yenta is not converted until the yenta has
had k stifling experiences. Let yi (for i= 1,2, . . . ,k) be
the number of yentas who have had i− 1 stifling
experiences.

(a) Show that y= y1 + y2 +⋯+ yk.

(b) Show that the k-fold stifling model may be
represented by the system of differential equations.

dx dt= − xy

dy1 dt= xy− y1 y− 1+ z

dyi dt= yi−1 − yi y− 1+ z , i= 2, . . . , k

dz dt= yk y− 1+ z

(c) Show that the functions x t , yi t i= 1, . . . , k
satisfy

k + 1 x t + ky1 t + . . . + yk t +N ln N x t

= k + 1 N + k for all t≥ 0

(d) Show that the analogue of U in Eq. (54) is the root
in (0, 1) of k + 1 1−U + lnU = 0.

URBAN LEGENDS

39. Set up the Noymer model and replicate our findings
with software that will generate graphical solutions to
systems of differential equations.

40. The graph in Fig. 14.10 indicates that the first outbreak
of the urban legend rumor is the most intense. In
subsequent outbreaks, the maximum number of
infected individuals is smaller, but the time durations
of the outbreaks appear longer. Can you provide a
verbal explanation for these properties?

41. How far apart are the peaks of the outbreaks? Why?

42. Run the Noymer model with υ= .2 and λ= .0012.

43. How would you modify the Noymer model to keep
track the total number of people who ever believed the
urban legend?

44. Our urban legend model assumed the same recovery
rate held for all contagious individuals. How might the
model be modified to account for “diehards,” indivi-
duals Noymer describes as those “who won’t let the
story rest and who find the occasional recruit, even
after a recent epidemic has wiped out most susceptibles
in the population.” How does the existence of diehards
affect the long-term persistence of the urban legend?

PROBLEM DRINKING

45. Show that the epidemic will not necessarily die out if
ℜϕ < 1, but if ℜϕ > 1, there will be a long-term per-
sistent population of problem drinkers.

46. Let f x = x2 −Bx+C and suppose that B and C are
positive, f ′ 1 > 0, and B2

− 4C> 0.
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(a) Show that f ′ 1 > 0 implies that B< 2 and hence
B 2< 1.

(b) Show that f x = 0 has two distinct roots x1 and x2.
Let x1 be the smaller root.

(c) Show that C> 0 implies that 0< x1 <B 2< 1.

(d) Show that the minimum value of f is negative
and occurs at x=B 2.

(e) Show if that if B< 1, then x2 is also less than 1.

MICKENS MODEL

47. Show that equations of the Mickens model imply that
the total population remains constant. [Hint: Add
them up.]

48. Use the fact that dIdt t=0 = I0 β S0 − r to show that if
an epidemic begins at time t= 0 with a positive num-
ber of infectives, then it can spread if and only if

S0 > r
β

2
.

49. Show that R0 =
β
r

2
S0.

50. Suppose there are no susceptibles in the population but
that there are some number of infectives.

(a) Show that in the Kermack-McKendrick model,
I t = I0e−rt , so that there will always be some
number of infectives. Why is this an unrealistic
prediction?

(b) In contrast to (a), show that in the Mickens model,
the number of infectives becomes 0 at a finite time
t = 2 I0

r . [Hint: Solve the differential equation
dI
dt = − r I.]

51. Carry out the details to show that dv
dt = bu− s.

52. Carry out the details to show that v″= − b2v.

53. Verify that the formulas for the initial conditions are
correct.

54. Verify that the proposed solutions for u and v are
correct by substituting the formulas for u t and v t
into the second-order differential equations.

55. Use the techniques in Appendix V (or from a Linear
Algebra or Differential Equations course) to derive the
solutions of the Mickens model.

56. Find an explicit formula for R t in the Mickens
model.

57. Determine the time tm when the infective population
reaches its maximum value Imax.

58. Find the time when the disease is spreading most
rapidly—that is, when dI dt reaches its maximum
value.

59. Prove that the functions I t and S t as defined by Eq.
(98) are both continuous and differentiable at t= tc.

60. Suppose that the susceptibles, infectives, and removed
have a constant per capita death rate independent of the
diseases and that new susceptibles enter the population
at a constant birth rate.

(a) Show that a reasonable model for an epidemic
under these conditions has the form

dS

dt
= λ− μS− βSαIα

dI

dt
= βSαIα − μ+ r I

dR

dt
= rI − μR

(b) If N t = S t + I t +R t represents the total
population at time t, show that the model in (a)
implies that dN

dt = λ− μN.

(c) If the initial total population is N 0 =N0, use the
differential equation in (b) to show that

N t = λ
μ + N0 −

λ
μ e−μt . What happens to the

population in the long term?

PROBABILISTIC MODEL FOR SIMPLE EPIDEMIC

61. Graph p2 t as a function of t. For what value of t does
it reach a maximum?

62. (a) Carry out the details of determining p3 t and
graph the function.

(b) Determine p4 t and sketch its graph.

63. Show that Eq. (105) is valid for m= 1, although the
derivation given for Eq. (105) does not quite work.

64. Prove that p0 t = 0 for all t for the given model.

65. Work out some details of the model if the initial
population of infectives, I0, is greater than 1.

66. Can φ t be computed using the technique of Exercise
51 of Chapter 10?
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67. What conclusions can you make about the variance of
the number of infectives for the probabilistic model
with I0 = 1?

68. Investigate Bailey’s explicit solution of the probabi-
listic model.

SUGGES T ED PRO J ECTS

1. Modify the deterministic model to allow for a constant,
nonzero infectious period—that is, assume that a
constant number of days must pass between the time a
person becomes infective and the time when he can
transmit the disease to others. Analyze such a model
and interpret the mathematical conclusions.

2. Generalize the deterministic model of Section II.C to
allow for a nonconstant population, N t . In particular,
investigate the model if the population is growing
exponentially or logistically.

3. Formulate a probabilistic version of the deterministic
model of Section II.C and analyze it in the spirit of
Section III.

4. Soper [1929] proposed a mathematical model for the
spread of measles that he believed adequately
explained the recurrence of measles epidemics. Study
his model and some of the corrections and extensions
that have been made to it.

5. Investigate the De Hoog et al. [1979] discrete version of
the Kermack-McKendrick model. Derive the analogue
to the threshold theorem in the continuous case they
found. What features do the continuous and discrete
versions share? How do they differ in the predictions?

6. The myxoma virus causes the disease Myxomatosis in
rabbits. The virus was deliberately introduced into the

United Kingdom and Australia in an effort control
rabbit infestation and population there. A bacteriolo-
gist accidentally introduced the disease in France
when he used the virus to rid his private estate of
rabbits in June 1952. Within two years, 90% of the
wild rabbits in France were dead. Examine Ian W.
Saunders’s discrete version of the general epidemic
model [1980], which he developed to study the
dynamics of the disease in Australia. In his model,
Saunders incorporates a latency period of seven days
during which the rabbit is infected but cannot spread
the disease.

7. Investigate other variations of the Mickens model in
which you replace SαIα by a suitable function f S, I
where f 0, I = 0 and f S, 0 = 0.

8. Mickens [2010] explores the model of Exercise 15 for
a=½. Investigate his treatment of both the original
system of differential equations and their discrete
analogues.

9. Formulate and analyze a probabilistic model for the
spread of rumors. See the discussion in Chapter 5 of
Daley and Gani for suggested approaches.

10. Investigate the application of epidemic models to eat-
ing disorders. Start by working through the paper by
González et al. [2003].

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick

SUGGESTED PROJECTS 463

http://www.wiley.com/college/olinick
http://www.wiley.com/college/olinick


CHAPTER
15

Roulette Wheels and Hospital
Beds: A Computer Simulation
of Operating and Recovery
Room Usage

We are more than half what we are by imitation. The great point is to

choose good models and to study them with care.

—Philip Dormer Stanhope, Earl of Chesterfield

I. Introduction
A. The Need for Simulation

In previous chapters we have seen that we can successfully attack a wide variety of pro-
blems by modeling their essential features with mathematical concepts and then using the
analytical tools of the mathematician to make predictions about a system’s behavior. There
are many problems in the social and physical sciences, however, that do not appear to be
amenable to solution by currently available analytic methods.

The mathematical modeling approach can break down in two essentially different
ways. If we re-examine the basic diagram for model building (Fig. 15.1), we note where the
difficulties may arise.

In the first place, we must translate the important features of the real-world phe-
nomenon into mathematics. But which branch of mathematics do we choose? For some
problems, there seem to exist several different classes of techniques from which we can
choose. A deterministic approach using differential equations may suggest itself, or
perhaps a probabilistic scheme using Markov chains. The history of scientific thought
reveals many instances when a branch of pure mathematics was seized upon as the proper
vehicle for a study of real-world phenomena. To develop his theory of general relativity,
for example, Albert Einstein made use of non-Euclidean geometries, a subject previously
considered by many to be frivolous and entirely lacking in applicable content. For some
real-world systems, however, the complexity and variety of the interactions among the
important variables—as we understand them—do not seem to fit any existing part of
mathematics. In such an instance, the modeler may have to create new mathematical tools.
There is much evidence that many important parts of mathematics were developed to
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provide models for problems in the physical sciences; the same process is occurring in the
social sciences as well. See Chapter 16 on Game Theory for such an example.

A second kind of difficulty occurs in taking the step from mathematical model to
mathematical conclusions. The modeler may believe, for example, that the problem she is
interested in can best be formulated as a question in geometric topology. It may turn out,
however, that the topological question has not yet been settled, but is an unsolved research
problem in mathematics. The work of Isaac Newton provides an example of this sort of
difficulty. In the 17th century, Newton used his celebrated laws of motion and gravita-
tional attraction to formulate a mathematical model for the relative motion of two bodies.
The model was a differential equation requiring 12 integrations to solve explicitly. Newton
worked these out and, taking the bodies to be the sun and a planet in the solar system, he
showed that the model’s predicted behavior of planetary orbits was in precise agreement
with the laws of planetary motion that had been empirically determined by Johann Kepler.
This achievement was one of the great milestones in the history of thought. When Newton
turned to the analysis of the interactions of three bodies (for example, the interaction of
gravitational attractions of the earth, moon, and sun), his laws led to another differential
equation. An explicit solution for this equation required 18 successive integrations.
Newton was unable to carry out the integrations completely. Neither was any other
mathematician, physicist, or astronomer during the next 200 years. Finally, in the late
19th century, Henri Poincaré showed that it was impossible to get an exact solution for
Newton’s equation; further progress on the problem could only be made by approximation
techniques.

Thus, the mathematical modeler may have to wait until new branches of mathematics
are created or unsolved problems in existing branches are resolved before she can obtain a
valid and useful model. In many real-world situations, however, there is a demand that
a “solution” to the problem be found immediately.

In such situations, the modeler will often abandon theoretical formulations for sim-
ulation models. Simulation is a dynamic act of imitation of one or more essential features of
a system. In a simulation we try to copy the behavior of a process where the possible causes
and outcomes are fairly well understood while the relationships among them may be quite
complex and incapable of simple analytic description. In this chapter, we will focus on
discrete-event simulation. Chapter 19 provides an introduction to agent-based simulation.

It is easier to grasp the concept of simulation by examining several examples than by
attempting to present additional definitions.

Real World
Mathematical

Model

Mathematical
Conclusions

(2)

(1)

Real World
Interpretations

FIGURE 15.1 The schematic diagram illustrating
the modeling process.
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B. Examples of Simulation

A company that had been manufacturing elevators for many years decided to produce electric
buses for public transportation. After some preliminary testing, the company built a prototype
electric bus and offered it to the city of San Francisco for a free trial demonstration. Mass
transit officials in the city wanted to know how well the electric bus would perform on a
heavily traveled route that climbs a steep hill. They discussed replacing the gasoline-powered
bus that normally serviced that route with the electric bus for a day so that they might assess
how well the new bus would climb or fail to climb the hill when it was filled with passengers.

The city’s safety officer objected that if the electric bus failed and slid down the hill
out of control, many people could be injured. He suggested that the transit officials simulate
an actual ascent of the hill by loading the electric bus with sandbags whose total weight and
distribution inside the bus would resemble a busload of people. A test run could then be
made with the sandbags. If the bus failed, the social costs of the accident would then be far
less than if the bus were crammed with people.

The suggested test run is a simulation of an actual one. Most of the important features
of an actual run are present in the simulated one. If the bus loaded with sandbags should fail,
then it is likely that the same bus with an equal weight of humans aboard would also fail.
But what if the bus succeeds in making it to the top of the hill and back down again without
incident during the simulation? Is this a guarantee that it will do as well with living cargo?
After all, the people may move around inside the bus while it is moving and may even take
it into their heads to begin rocking the vehicle. The sandbags cannot imitate this behavior.
Even if we feel that the motion of the passengers is not a critical factor, there is still a
question of how many simulated runs we should try before declaring the bus safe. We shall
return to these kinds of objections later in the chapter.

Such a simulation, intended to provide a safe way to test a new form of transportation,
may itself contain unexpected dangers. Simulations can end in tragedy. Here is an excerpt
from a New York Times article describing one:

TRAIN TO KENNEDY DERAILS IN A TEST
A futuristic three-car elevated train, the precursor of a $1.9 billion automated light-rail system
that is expected to carry millions of air travelers a year to and from Kennedy International
Airport, derailed on a curve during a test run to the terminals yesterday, killing its operator,
who was alone on board.

Its speed unknown, the sleek white AirTrain . . . slammed into a concrete retaining wall
25 feet above ground. . . . The force gashed open the front car, which sheared away 150 feet of
the wall and came to a halt with its right side partly overhanging the parapet.

The cause of the crash was not immediately determined, but . . . investigators were
looking into the possibility that 16,000 pounds of concrete ballast—put aboard to simulate a
load of passengers—had shifted on the gentle curve, leading the front end, and then all three
cars, to stray and jump the tracks . . .

Moreover, under the force of the collision, investigators said, tons of the ballast in the
front car slid forward, pinning and fatally injuring the train’s operator.

As a second example of simulation, consider the engineer who first proposed
designing a giant jet aircraft with the engines mounted on the tail of the plane instead of
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under the front wings. The cost of building a prototype plane of the actual size to be
marketed would cost millions of dollars, all of which would be wasted if the plane couldn’t
get off the ground or crashed shortly after takeoff on a test flight. The engineer has the
problem of testing her design without actually building the plane.

A possible solution for her is to construct a small, scaled-down version of the plane
and to test this model in a wind tunnel. The stability of the model aircraft can be tested in a
variety of wind conditions approximating those the full-sized plane might encounter in the
air. If the model plane cracks up every time it is subjected to the equivalent of a 25-knot
wind, perhaps there is something fundamentally wrong in its design. On the other hand, if
the model performs well in the wind-tunnel experiments, the engineer can have more faith
that her idea is a good one. In the experiment, the model plane simulates a real plane and the
wind tunnel simulates actual wind conditions. The experiment has the advantage of being
relatively inexpensive to perform, but it has drawbacks too. The tunnel may not provide a
sufficiently realistic imitation of atmospheric conditions. The model plane is, of course, of a
different size and made of different materials than the plane it is meant to simulate. The full-
sized plane may not necessarily behave in the same fashion as its scaled-down version.
Still, simulation may be the only reasonable, safe, quick, and inexpensive way to test the
plane’s design.

In this chapter, we will examine, in some detail, an example of a computer simulation.
By now you are familiar with the use of the computer as a tool in the analysis of a theoretical
model, principally as a source of high-speed numerical computation. In simulation
experiments, the computer is employed as a substitute for a theoretical model. We define a
set of numerical-valued variables to represent the principal features of the system to be
simulated. Then we formulate a computer program as a set of instructions, representing the
decision rules or laws that determine how the system’s features are to be modified as time
goes on. In principle, this sort of computation can be carried out by hand, using pencil and
paper, but the computer gives us the enormous advantages of speed, tirelessness,
and memory of intermediate results. The details of a particular computer simulation will
be presented in Part V. First, we need to explain the problems we hope to solve by
a simulation.
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FIGURE 15.2 Derailed AirTrain.
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II. The Problems of Interest
Diagnosis and treatment of many medical disorders requires that a patient be hospitalized
for one or more days. One of the major constraints on the service a hospital can render to the
surrounding community is thus the number of hospital beds it has. It often happens that a
person who has a nonemergency medical problem may have to wait several days to be
admitted to the hospital because all its beds are filled.

When this kind of problem begins to affect too many patients of too many of the
doctors on its staff, the hospital administration may plan to construct new hospital facilities
to provide an increase in the number of its beds. If the hospital decides to expand its bed
complement, then it must also consider the increased demands that will be made on other
aspects of its operations. It must determine whether its current medical and nonmedical
facilities are adequate to provide for the larger number of patients who will be in the
hospital each day. The hospital must decide, for example, how many new nurses to hire,
how much new equipment to order, whether to expand the pathology and pharmacy
departments, and so on.

In this chapter, we will examine how simulation techniques can help assess the
increased need for operating-room (OR) and recovery-room (RR) facilities that an
expanded bed complement will produce. This was the problem studied by Homer H.
Schmitz of the Deaconess Hospital in St. Louis, Missouri, and N. K. Kwak of St. Louis
University. Deaconess Hospital was planning to add 144 medical-surgical beds to its
currently existing facilities in the early 1970s. Schmitz and Kwak formulated three primary
questions:

1. How many more surgical procedures will Deaconess Hospital perform because of the
increased bed capacity?

2. How much operating room time and space will the surgical procedures require?

3. How much recovery room time and space will the surgical procedures require?

The first question was answered by a relatively simple extrapolation technique, while
insight into the other problems was gained through a computer simulation.

III. Projecting the Number of Surgical Procedures
Schmitz and Kwak [1972] began their study by collecting information on hospital proce-
dures in effect during the period when the expanded bed complement was still in its
planning stages. An analysis of the hospital’s records for 1970 indicated that 42% of
medical-surgical (MIS) patients actually had surgery. Assuming that the relative propor-
tions of medical and surgical patients would not be affected by an increase in bed com-
plement, it is a simple matter to project that if 144 MIS beds are added, then approximately
60 of them 144× 0.42 will be utilized by patients who have surgery.

A critical factor in estimating the number of surgical procedures that would be per-
formed is the length of stay in the hospital for each patient. This, of course, would depend
on the nature of the surgery. For example, before the expansion, 4.5% of the total number
of surgical procedures performed at the Deaconess Hospital were ophthalmology cases.
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The average length of stay for these cases was 7.4 days. Of the 60 new beds that will be used
by surgical patients, we can estimate that about .045× 60= 2.7 beds will be used by
ophthalmology patients. Imagine that a particular bed is set aside for ophthalmology
patients. An average patient will occupy that bed for 7.4 days. Thus, during the year 49
patients 365 7.4= 49 will be able to be treated for each ophthalmology bed. Since there
will be 2.7 new ophthalmology beds, during the year there will be 132 2.7× 49 new
ophthalmology surgical procedures.

Using the assumptions of full-bed utilization and the same patient mix in the future as
was experienced in the past, Schmitz and Kwak estimated the increases in surgical pro-
cedures for six other major types of surgery in the same way as for the ophthalmology
cases. Their results are presented in Table 15.1.

These extrapolations were based on an actual count of 6,293 surgical procedures
performed in 1970. Adding the projected total of 3,376 new procedures, we arrive at an
estimate of 9,669 projected surgical procedures when the new bed complement is fully
utilized.

The daily surgical load is then determined by dividing the annual number of surgical
procedures by the number of days in the year. Thus, the hospital can expect to have 9669/
365 surgical procedures on an average day. For the simulation procedure, this number is
rounded to the nearest integer, 27.

IV. Estimating Operating Room Demands
A. Length of Stay in Operating Room

How many operating rooms will be necessary to perform 27 surgical procedures each day?
This will depend on several factors, such as the time of day of the first operation, the length
of time necessary to prepare an operating room for a new patient after an old one has left,
and the number of hours per day that surgeons are willing to work. A principal factor will be
the length of time each operation requires.

Let us illustrate with some crude estimates. Suppose each operation (including make-
ready time for the next patient) takes exactly 1 hour. Suppose also that the surgeons will
work only during the period between 8 o’clock in the morning and 5 o’clock in the
afternoon. Then each operating room can be used for 9 hours each day, so 9 surgical

Table 15.1 Increase in surgical cases based on increased bed count

Type of surgery Increase in number of cases per year

Ophthalmology 132

Gynecology 282

Urology 264

Orthopedic 202

Ear-nose-throat (ENT) 1098

Dental surgery 715

Other major surgery 683

Total projected increase 3376
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procedures can be completed in each room. It would then take 3 operating rooms to
accommodate the expected 27 daily procedures.

Of course, in actual practice not every operation takes 1 hour. A tonsillectomy
requires much less time than a heart transplant, for example. We might argue, however, that
our crude estimate of three operating rooms would hold up if the average length of an
operation is 1 hour. As we saw in our study of expected value in Chapter 10, there are
difficulties that arise if we look only at average values. There can be quite a variation in the
lengths of operations that still produce an average of 1 hour. Also, although the average
length for the 9,669 procedures may well be close to 1 hour, this may not be the case for a
randomly selected group of 27 of them.

Why do we say “randomly selected”? Although the hospital can estimate fairly
accurately the total number of different types of surgical procedures to be performed over a
12-month period, it cannot predict the order in which the patients will present themselves
for treatment. On some days, there may be a relatively large number of patients who need
operations that will last more than 2 hours, while on other days almost all the procedures
will be relatively minor ones. The hospital must be ready to handle these deviations from
the average.

It is necessary, then, to examine more carefully the lengths of stays in the operating
room. Schmitz and Kwak did this by collecting a sample of 445 surgical patients treated in
1970 at Deaconess Hospital. Data was collected on the type of surgery performed, the
length of time spent in the operating room, and the number of days the patient was hos-
pitalized. The percentages of the various types of surgery and the average length of stay for
the total population of patients in the hospital were inferred from this sample data; in
Section III, we saw how these numbers were used.

In Table 15.2, the actual and relative frequencies for length of stay in the operating
room for the 445 patients of the sample are presented.

In Table 15.2 and in all subsequent discussion, time segments are given in hundredths
of an hour rather than in minutes, because this simplifies the mathematical calculations.
From Table 15.2, for example, we note that 2.9% of all operations lasted between 2.5 hours
and 3 hours.

Table 15.2 Length of stay in the operating room

Length of stay in hours Frequency Relative frequency

0.01 0.50 181 40.7

0.51 1.00 103 23.2

1.01 1.50 64 14.4

1.51 2.00 42 9.4

2.01 2.50 22 4.9

2.51 3.00 13 2.9

3.01 3.50 8 1.8

3.51 4.00 5 1.1

More than 4.00 7 1.6

Total: 445 100.0

470 CHAPTER 15 Roulette Wheels and Hospital Beds: A Computer Simulation of Operating and Recovery Room Usage



The data in Table 15.2 show that the frequency of length of stay tends to decrease as
the length of stay increases. This trend is indicated more sharply in Fig. 15.3 where the
frequency is plotted against the length of stay; this kind of graph is called a histogram.

Whenever a scientist sees data that shows one variable rapidly diminishing (or
increasing) as another variable increases uniformly, he suspects that the two variables are
related in an exponential fashion. A statistical analysis of the data of Table 15.2 shows that
the distribution of times of surgical procedures closely follows a curve given by what
probability theorists would call a negative exponential distribution with respect to time.
This is a curve that has the form y= μe−μt where μ is a positive constant representing the
reciprocal of the average length of stay in the operating room.

A continuous nonnegative real-valued function whose integral over its entire domain
equals 1 is called a continuous probability density function. To verify that the positive
valued function f t = μe−μt is actually a probability density for t≥ 0, we need to show that
the improper integral

∞

0

f t dt=

∞

0

μe−μtdt = 1

We evaluate this improper integral using standard calculus techniques:

∞

0

μe−μtdt = lim
b→∞

b

0

μe−μtdt= lim
b→∞

−e−μt
b

t=0
= lim

b→∞
− e−μb − e−μ0

= lim
b→∞

1− e−μb = 1− 0= 1

In the calculation we have just seen, note that

b

0

μe−μtdt= −e−μt
b

t=0
= − e−μb − e−μ0 = 1− e−μb

200

180
181

103

64

42

33
13 8 5 7

160

140

120

100

80

60

40

20

0
0–.5 .5–1 1–1.5 1.5–2 2–2.5 2.5–3 3–3.5 3.5–4 >4

FIGURE 15.3 Length of stay in operating room
observed in a sample of 445 patients.
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We can interpret the value of this integral as the probability that an operation will last
at most b hours. For our exponential density function, the probability that an operation lasts
at most t hours is given by

Pr t = 1− e−μt

for each t≥ 0. More generally, if f is a continuous probability density function on 0,∞ is
associated with some random variable X, then the probability that X takes on a value no
larger than b is

Pr X ≤ b =

b

0

f t dt

while the likelihood that X exceeds b is

Pr X > b =

∞

b

f t dt

Thus, the probability that an operation lasts between a hours and b hours can be
computed as Pr b −Pr a . The mean or average value of a continuous probability density

f on 0,∞ is
∞

0
tf t dt if that improper integral converges to a finite value. For more details

of these kinds of probability density, the reader may consult Grimmett and Stirzaker [2002]
or any other standard probability text.

Schmitz and Kwak assumed that the length of stay in the operating room could be
given accurately by a negative exponential distribution with constant μ, obtained by taking
the observed average length of stay (1.03 hours) in their sample of 445 surgical cases. This
distribution predicts, for example, that 9.0 percent of the operations will last between 1.5
and 2 hours. This compares well with the observed frequency of 9.4 percent in the sample.

B. Random Selection of Patients

We come now to the key step in the simulation process. We are not going to perform any
actual operations. Rather, we will select “patients” at random and keep track of how long
the patient’s operation should last. Our patients will be the 1,000 integers between 000 and
999, inclusive. Since 2% of the patients need operations lasting more than 4 hours (this is
determined from the negative-exponential distribution), we must reserve a block of 20 of
the integers to represent these cases. Let us say that we reserve the block from 980 to 999. If
the number we select at random falls between these limits, then we pretend to perform an
operation lasting more than four hours. If the number selected falls outside these limits, then
it belongs to a block of numbers representing patients who require an operation for a dif-
ferent length of time.

In Table 15.3, we list the type of surgery, associated length of time, frequency of
length of time, and the bloc of numbers reserved for it.

One problem remains. Once we determine that a patient is to be in the operating room
for a time, say, between 1.51 and 2.00 hours, how long do we actually keep him there?
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Evidence shows that the average length of an operation requiring less than one-half hour is
.47 hours; we will round this number off to .5 for the simulation. For the other categories,
we will take as the average length of time the midpoint of the time interval. Thus, a we
arrive at the simulated lengths of operating-room time listed in Table 15.4. Schmitz and
Kwak actually used a more sophisticated approach, based on the negative exponential
distribution, to arrive at the average length of operation for each time interval, but their
numbers are not significantly different from ours.

How are the random numbers generated? We wish to ensure that each of the 1,000
numbers 000 to 999 has the same probability of selection. Tables of 1,000,000 or more
random integers have been published, and these tables are often used for such simulations.
Another method of choosing the numbers would be to build a balanced roulette wheel with
a thousand numbered slots on it evenly distributed about the circumference. A random
number is then determined by spinning the roulette wheel. Because the roulette wheel is a

Table 15.3 Assignment of random numbers

Type of surgery Time interval Relative frequency Random number block

ENT 0.01 0.50 15.8 000 157

Urology (to RR) 0.01 0.50 08.4 158 241

Urology (no RR) 0.01 0.50 08.5 242 326

Ophthalmology (no RR) 0.01 0.50 05.8 327 384

All other surgery 0.51 1.00 23.6 385 620

" 1.01 1.50 14.6 621 766

" 1.51 2.00 09.0 767 856

" 2.01 2.50 05.5 857 911

" 2.51 3.00 03.4 912 945

" 3.01 3.50 02.1 946 966

" 3.51 4.00 01.3 967 979

" More than 4.0 02.0 980 999

Table 15.4 Simulated length of operations

Random number Simulated time in OR (in hours)

000 384 .5

385 620 .75

621 766 1.25

767 856 1.75

857 911 2.25

912 945 2.75

946 966 3.25

967 979 3.75

980 999 4.15
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familiar device for generating random events, the type of model we are using is often called
a Monte Carlo simulation in honor of the famous European gambling casino. Many
computer languages have subroutines that produce numbers sufficiently uniformly dis-
tributed and random to use in simulation experiments; these subroutines are, in fact,
simulations of a roulette wheel.

In addition to operating room demands, Schmitz and Kwak were concerned with
needs for recovery-room beds. After a surgical procedure in which a general anesthetic is
administered, patients are taken to a recovery room in which nurses are constantly present
to monitor their vital signs for some period before the patients go back to their hospital
rooms. The method by which recovery-room demands are handled in the simulation is
explained in the next section, in which we describe in detail the rules of the simulation.

V. The Simulation Model
A. Rules of the Simulation

In carrying out the simulation of the length of stay in the operating room and the recovery
room, a set of rules was formulated by Schmitz and Kwak to reflect the medical policies of
the hospital. The rules were these:

1. Twenty-seven cases were simulated based on the increased bed complement.

2. The random numbers used to select patients were generated independently for each
simulated day.

3. All ENT, urology, and ophthalmology surgical cases have an average length of stay
in the operating room of .5 hours.

4. Fifty percent of the urology surgical cases do not go to the recovery room, because
they are performed under a local anesthetic. Whether or not a urology case goes to
the recovery room is governed by the random number chosen; see Table 15.3.

5. All ENT surgical cases go to the recovery room.

6. None of the ophthalmology cases go to the recovery room. The few ophthalmology
cases that actually go to the recovery room in practice are balanced out by the few
ENT cases that do not go to the recovery room.

7. Any operation lasting more than .5 hours is considered major surgery and the
patient spends 3 hours in the recovery room. Otherwise, if a patient goes into the
recovery room, he stays there for 1.5 hours.

8. The starting time for the beginning of the surgical schedule is 7.50—that is, 7:30 a.m.

9. The necessary “make-ready” time from the moment that one surgical case leaves the
operating room until it is ready to receive the next case is .25 hours.

10. It takes .08 hours to transport a patient from the operating room to the recovery
room.

11. The necessary “make-ready” time from the moment that a patient leaves the
recovery room until his bed is ready for the next occupant is .25 hours.
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12. The first operating room to be vacated is the first one to be put back into use when
the need arises.

13. The first recovery-room bed to be vacated is the first one to be put back into use
when the need arises.

14. If there is no previously vacated recovery-room bed when the patient arrives from
surgery, a new bed is created.

The only missing piece of information that is necessary to begin the simulation is the
number of available operating rooms. Since this is one of the factors to be determined,
the simulation may be run for many hypothetical days with different numbers of operating
rooms.

B. Results of the Simulation

We illustrate the results of a single simulation with five operating rooms. Table 15.5
contains the necessary information for one simulated day.

We can easily trace through the first steps in constructing Table 15.5.

1. The first random number selected is 889. From Table 15.4, we see that this patient
will have an operation lasting 2.25 hours, because 889 belongs to the block of
numbers 857 911.

2. Adding the simulated length of the operation to the starting time of the operation
(7.50), we find that the operation ends at 9.75. Operating room 1 will then be ready
for a new patient at 9.75+ .25= 10.00 hours.

3. We add .08 to the ending time of the operation to determine that the patient arrives at
the recovery room at 9.83.

4. Since this patient underwent major surgery, he will remain in the recovery room for
three hours, leaving it at 12.83.

5. The recovery-room bed he occupied will be ready for another patient at
12.83+ .25= 13.08.

6. Since there are five operating rooms in this simulation, the first five patients will start
surgery at the same time, 7.50. The second patient on the schedule, represented by
random number 396, is the first patient to reach the recovery room, so he is assigned
RR bed 1. The first patient of the day on the schedule (random number 889) is
actually the seventh patient to reach the recovery room. That explains why he is
assigned RR bed 7.

7. Note also from this simulation that when operating room 1 is ready for its second
procedure, it receives the fourteenth patient (random number 648) on the schedule.
Surgery for the patients higher on the schedule takes place in the other operating rooms.

8. The third scheduled operation was performed on random number 358. From Table
15.3, we note that this patient is an ophthalmology case and will not go to the
recovery room.
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9. Random number 214 represents the seventeenth scheduled operation of the day.
Table 15.3 indicates that this patient will receive a urology operation requiring 1.5
hours in the recovery room (since 214 belongs to the bloc 158 241).

For this simulated day, using five operating rooms, we discover that the surgical
schedule is completed at 14.40 (about 2:24 p.m.), the last departure from the recovery room
occurs at 17.73 (about 5:44 p.m.), and that 12 recovery-room beds were needed.

Table 15.5 An example of the simulation

Schedule
Number

Random
Number

Time
Length of
Operation

Time
Operation
Begins

Time
Operation
Ends

Operating
Room
Number

Recovery
Room
Yes No

Time
Recovery
Begins

Time
Recovery
Ends

RR
Bed
No.

Time
RR Bed
Available

1 889 2.25 7.5 9.75 1 X 9.83 12.83 7 13.08

2 396 .75 7.5 8.25 2 X 8.33 11.33 1 11.58

3 358 .5 7.5 8 3 X — — — —

4 715 1.25 7.5 8.75 4 X 8.83 11.83 3 12.08

5 502 .75 7.5 8.25 5 X 8.33 11.33 2 11.58

6 68 .5 8.25 8.75 3 X 8.83 10.33 4 10.58

7 604 .75 8.5 9.25 2 X 9.33 12.33 5 12.58

8 270 .5 8.5 9 5 X — — — —

9 228 .5 9 9.5 4 X 9.58 11.08 6 11.33

10 782 1.75 9 10.75 3 X 10.83 13.83 4 14.08

11 379 .5 9.25 9.75 5 X — — — —

12 93 .5 9.5 10 2 X 10.08 11.58 8 11.83

13 11 .5 9.75 10.25 4 X 10.33 11.83 9 12.08

14 648 1.25 10 11.25 1 X 11.33 14.33 6 14.58

15 527 .75 10 10.75 5 X 10.83 13.83 10 14.08

16 987 4.15 10.25 14.4 2 X 14.48 17.48 2 17.73

17 214 .5 10.5 11 4 X 11.08 12.58 11 12.83

18 474 .75 11 11.75 3 X 11.83 14.83 1 15.08

19 238 .5 11 11.5 5 X 11.58 13.08 2 13.33

20 45 .5 11.25 11.75 4 X 11.83 13.33 8 13.58

21 408 .75 11.5 12.25 1 X 12.33 15.33 9 15.58

22 116 .5 11.75 12.25 5 X 12.33 13.83 3 14.08

23 209 .5 12 12.5 3 X 12.58 14.08 5 14.33

24 48 .5 12 12.5 4 X 12.58 14.08 12 14.33

25 393 .75 12.5 13.25 1 X 13.33 16.33 11 16.58

26 550 .75 12.5 13.25 5 X 13.33 16.33 7 16.58

27 306 .5 12.75 13.25 3 X — — — —
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C. Conclusions

In their paper, Schmitz and Kwak present the results of four simulated days. On three of the
days, 11 recovery-room beds were needed and on the fourth, there was a demand for 12
beds. On all four days, the surgical schedule was completed by 5:30 p.m. The latest
departure from the recovery room was about 8:36 p.m. These simulations all assumed that
there were five operating rooms available.

The simulation of a daily surgical schedule that we have described can be carried out
by hand in less than an hour. On a contemporary computer, the simulation can be completed
in mere seconds, so that it is possible to repeat the simulation a great many times at a very
modest cost.

It should be apparent from our description that it is a simple matter to vary the number
of surgical cases for the day as well as the number of operating rooms. If there are only four
operating rooms, then we can see that the surgical schedule of 27 procedures will not be
completed until the evening hours, while if we increase to six operating rooms, some will
stand empty for a good part of the afternoon. To obtain more precise estimates of time, of
course, we need only run through the simulation process with these constraints.

Schmitz and Kwak conducted the simulation using 3, 4, 5, and 6 operating rooms.
Based on 27 surgical procedures per day, they discovered that the optimum number of
operating rooms was found to be 5 and that there would consistently be a need for at least 12
recovery-room beds. They also concluded that it was not necessary to staff the recovery
room beyond 9 or 10 p.m. each day.

D. Validation

The effectiveness of any model is measured by how closely its predictions match those
actions of the system which are observed in the real world. One way to test our Monte Carlo
simulation of operating room and recovery room usage would be to expand the operating
room capacity to five rooms when the bed complement is increased by 144 and then simply
observe whether the daily surgical schedule works out as well as the simulation says it
should. Unfortunately, this could be a very costly testing procedure, both in terms of
construction dollars and patient well-being, especially if the assumptions underlying the
simulation are poor ones, or if important factors have been omitted from it.

Fortunately, there is an alternative validation procedure. We can determine how well
the model simulates a situation for which observed data already exists. In our case, we
know how the hospital system functioned in 1970 before the addition of new Medical/
Surgical beds. We may then perform our simulation for the daily surgical schedule of 1970.
We will be testing the validity of the simulation to predict the future by determining how
well it simulates the past or present.

Since there were 6,293 procedures in the year 1970, our simulation would call for 17
(6293/365) procedures per day. Suppose that there were three operating rooms available in
1970, but that all the other rules of the simulation were the same. The results of this
simulation, using the random numbers of the first 17 patients of Table 15.5, are shown in
Table 15.6.

With a simulated daily surgical schedule of 17 cases and three operating rooms, note
that all operations have been completed by 16.90 (4:54 p.m.), that there is a need for seven
recovery-room beds, and that the latest time that a patient leaves the recovery room is
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19.98 (about 8 p.m.). If these values are close to those observed for a typical day in 1970,
this would reinforce the belief that the method of simulation chosen is a valid one. It is
interesting to note here that the average length of the 17 operations on this simulated
surgical schedule is 1.04 hours, compared with an observed figure of 1.03 for the sample of
445 cases in 1970.

E. Possible Refinements

There are several ways that we could increase the sophistication of this simulation to imitate
better the actual operating- and recovery-room usages. Instead of using 30-minute time
intervals for our surgical categories, we could have used 10-minute or even 5-minute
intervals. This would give a more precise and accurate distribution of lengths of time in the
operating room. The determination of recovery-room usage was based on the simplifying
assumption that a patient who arrived in the recovery room would spend either 1.5 or 3
hours there, depending on the length of his operation. In fact, the length of time in the
recovery room does not take on only these two values. The nature of the surgery performed,
the length of time it took, and the age and general state of health of the patient will all be
factors in establishing how many hours he will be kept in the recovery room.

The sample data of the 445 patients could have been used to determine a probability
distribution for length of time in the recovery room. This distribution then could have been

Table 15.6 Validating the simulation

Schedule
Number

Random
Number

Length of
Operation

Time
Operation
Begins

Time
Operation
Ends

Operating
Room

Recovery
Room
Yes No

Time
Recovery
Begins

Time
Recovery
Ends

RR
Bed
No.

Time
RR Bed
Free

1 889 2.25 7.50 9.75 1 X 9.83 12.83 4 13.08

2 396 0.75 7.50 8.25 2 X 8.33 11.33 1 11.58

3 358 0.50 7.50 8.00 3 X — — — —

4 715 1.25 8.25 9.50 3 X 9.58 12.58 3 12.83

5 502 0.75 8.50 9.25 2 X 9.33 12.33 2 12.58

6 068 0.50 9.50 10.00 2 X 10.08 11.58 5 11.83

7 604 0.75 9.75 10.50 3 X 10.58 13.58 6 13.83

8 270 0.50 10.00 10.50 1 X — — — —

9 228 0.50 10.25 10.75 2 X 10.83 12.33 7 12.58

10 782 1.75 10.75 12.50 1 X 12.58 15.58 2 15.83

11 379 0.50 10.75 11.25 3 X — — — —

12 093 0.50 11.00 11.50 2 X 11.58 13.08 1 13.33

13 011 0.50 11.50 12.00 3 X 12.08 13.58 5 13.83

14 648 1.25 11.75 13.00 2 X 13.08 16.08 7 16.33

15 527 0.75 12.25 13.00 3 X 13.08 16.08 3 16.33

16 987 4.15 12.75 16.90 1 X 16.98 19.98 4 20.23

17 214 0.50 13.25 13.75 2 X 13.83 15.33 6 15.58
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incorporated into the simulation in much the same way that the negative-exponential dis-
tribution for length of stay in the operating room was.

This method of simulation is thus seen to be extremely flexible, as it allows for
various levels of sophistication. As Schmitz and Kwak [1972] point out,

In general, this method gives a close approximation to reality under conditions when it is not
possible to ascertain by observation the operation of a department. It was found to be extremely
accurate when it did become possible to observe the operation of the department. The uses of
the method are limited only by the imagination and ingenuity of the user.

F. How Many Days to Simulate?

In the models we first studied in this book—deterministic, axiomatic, and probabilistic—
conclusions about the behavior of a real-world system were deduced from a mathematical
model by the standard techniques of proving theorems and solving equations. When
simulation is used to study an actual system, the conclusions we reach can only be inferred
from the outcome of sample runs of the simulation.

Since chance plays such a basic role in a Monte Carlo simulation, repeating the
simulation a second time—with exactly the same rules—will produce different results,
because different random numbers will be generated. We cannot be content with running
our simulation for one daily surgical schedule and making predictions on the basis of the
outcomes we see. We need to repeat the simulation many times to assess the effect of
chance on the differences in outcomes that will be produced. But how many times is a
sufficient number? Consider a prediction, for example, that 12 recovery-room beds will be
sufficient for five operating rooms. How does the degree of confidence in this prediction
grow with the number of simulated days on which no more than 12 beds are demanded?
The proper answer to questions like this and for the general evaluation of simulation
experiments may require quite sophisticated statistical techniques. Some problems were
solved quite a while ago (see Chapter 8 of John Smith, Computer Simulation Models), but
many thorny difficulties remain. Mathematicians are actively developing a theory of sim-
ulation that will enable this powerful technique to be used more widely and knowledgeably.

For the simulation of operating-room and recovery-room usage, we would like to
have a firm grasp both of the expected number and the variance of recovery-room beds
would be needed for each possible number of operating rooms. As we noted, repetition of
the simulation many times may be necessary to achieve such an understanding. It is
important that each simulated day be as independent as possible from any other day. We
need then to have a new set of random numbers for each simulated run. How do we obtain
strings of random numbers?

When simulation and the Monte Carlo method began to gain popularity in the 1950s,
a need arose for a large source of numbers that were as random as possible. A single
simulation of a complex process might easily use hundreds of thousands of random
numbers. The RAND corporation responded with a book, still in print, titled A Million
Random Digits with 100,000 Normal Deviates. To generate truly random numbers, RAND
essentially built an electronic roulette wheel. RAND’s tables have been widely used in
engineering, econometrics, statistics, public opinion polling, physics, and lotteries. Other
attempts to produce random numbers have used emissions from radioactive materials or
other natural processes.
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Many simulation studies today find it to burdensome to store and retrieve previously
generated random number sets. It is faster to have the computer generate a “random”

number with a simple algorithm whenever one is needed. The quotes around “random” are
deliberate. The computer is a deterministic device; the same input should always produce
the same output. The computer is not capable of producing lists of numbers in a truly
random fashion. To deal with this limitation, scientists have developed algorithms that are
fast and efficient and that yield strings of numbers that pass standard statistical tests for
randomness (see Exercise 23 for an example). We call these deterministic algorithms
pseudorandom number generators.

Pseudorandom number generators were used even in the first generation of simula-
tions run on computers with very limited memory and relatively slow input and output from
punched cards. Von Neumann considered hardware-based true random number generators
inappropriate either because they kept no record of numbers generated preventing later tests
for errors or because if they stored the results, the numbers quickly exhausted computer
memory. He advocated rapid simple algorithms, such as the Middle Square method
(Exercise 22), cautioning that their output should not be confused with truly random
sequences: “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin,” he quipped.

The Middle Square Method was fairly quickly replaced by more sophisticated algo-
rithms, which use formulas to generate the next number in a pseudorandom sequence by
performing complicated arithmetic functions on the current number. Few, if any, simulations
today employ natural authentically random processes. As mathematician Robert Coveyou
asserted, “The generation of random numbers is too important to be left to chance.”

VI. Other Examples of Simulation
The Monte Carlo method was first used to solve problems in nuclear physics where more
traditional mathematical techniques failed to give the needed numerical results or required
too great a period of time to produce a useful answer. Many applications of the Monte Carlo
method involve complicated dynamic behavior entailing a chain of events where at each
stage there are different probabilities for the possible outcome of an event. The method,
however, can also be effectively applied in situations in which there are, at least on the
surface, no probabilities involved.

As a very elementary example, suppose youwish to evaluate a particular definite integral

b

a

f x dx

where f is a continuous function on the interval a,b . From the Fundamental Theorem of
Calculus, this is a trivial problem provided you can find an antiderivative of f—that is, a
function F such that F′ x = f x for all x in a,b . Then the value of the definite integral is
given as the difference F b −F a .

In many instances, the function F cannot be found so easily. In fact, for most

functions f (examples are f x =
sin x
x

and f x = e−x
2
), it is impossible to find F in closed

form as a rational combination of the standard functions of calculus.
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There are various approximation techniques in such cases for finding the numerical
value of the definite integral. The Monte Carlo method is one such technique.

For convenience, suppose that the function f takes on only nonnegative values and
that it is bounded on the interval a, b by the positive number M. Then the graph of f over
the interval is entirely contained in a rectangle of dimensions b− a byM. (See Fig. 15.4.)

The value of the definite integral
b

a
f x dx is the measure of the shaded area A in the

rectangle that is below the graph of the curve y= f x . The relative area,

p=
A

b− a M

is then a number between 0 and 1. This number can be interpreted as a probability. If a point
is picked completely at random from the points of the rectangular region, then the prob-
ability that the point lies in the shaded area under the curve is precisely the number p
of Eq. (1).

If there is some other independent way of finding the probability p, then the value of
the definite integral can be found simply as

b

a

f x dx=A= p b− a M 1

The Monte Carlo method provides a way of obtaining the probability p directly. We
need to recall the relative frequency interpretation of probability introduced in Chapter 10.
Imagine the experiment of choosing a point at random from the rectangular region and
noting whether or not it lies in A. If this experiment is repeated a large number N of times,
then p is approximately the frequency of selecting points in A—that is,

p≈
Number of times point chosen lies inA

N
2

0

A

ba

x

M

y

y = f(x)

FIGURE 15.4 The shaded region has area
A= b

a f x dx.
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Our understanding of probabilities is that the approximation in Eq. (2) improves as N
increases. If we conduct the experiment 10,000 times, then we should get an accurate

estimate of p and hence an accurate estimate of
b

a
f x dx.

A point can be chosen at random from the rectangular region by first choosing its x-
coordinate at random and then choosing its y-coordinate at random. The x-coordinate must
lie between the numbers a and b and the y-coordinate between 0 and M. If we have a
random number generator that produces numbers between 000 and 999 with an equi-
probable distribution, then we may start by generating two random numbers, r and s. We
then determine a point in the desired region with coordinates x0, y0 where

x0 = a+
r b− a

999

and

y0 =
sM

999

To decide whether the randomly chosen point x0, y0 belongs to A, we need only
compute f x0 and determine whether the inequality

y0 < f x0 3

is valid. If it is, then the point belongs to A; otherwise, it does not. To obtain our approxi-
mation for p, we generate N points in the rectangular region in the manner just described and
keep track of what proportion of times the coordinates of the point satisfy the inequality (3).

Table 15.7 shows the results of 10 simulations, each using 10,000 randomly selected
points.

Note that each estimate for the value of the integral, based on randomly choosing
10,000 points, is close to the true value of 1/3. Moreover, the average value for the 10
simulations is .33321. My computer carried out all 10 simulations in a fraction of a second.

For a second example, we’ll use an integral we can’t evaluate via the Fundamental
Theorem of Calculus.

Example

Let’s start with an example of an integral whose value we do know and see how well the
Monte Carlo method works. Examine f x = x2 on 0, 1 where

1

0

x2dx=
x3

3

x=1

x=0
=

1
3
−
0
3
=
1
3
= 0.3333 . . .
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Table 15.7

Simulation Run Monte Carlo Estimate of
1

0
x2dx

1 0.3314

2 0.3343

3 0.330

4 0.3357

5 0.333

6 0.3363

7 0.3391

8 0.3332

9 0.3239

10 0.3352

Example

Use the Monte Carlo technique to estimate

1

0

sin x
x

dx. Table 15.8 shows the results of 10

simulations, each one involving choosing 1,000,000 points at random. On a small laptop
computer, the calculations took less than 90 seconds to complete.

The average of the 10 estimates is 0.9458502. The definite integral

1

0

sin x
x

dx can be

estimated by other techniques such as the use of Riemann sums or the Trapezoidal Rule.
These estimates give a value of 0.9460830704.

Table 15.8

Simulation Run Monte Carlo Estimate of
1

0

sin x
x dx

1 0.9458610000

2 0.9456010000

3 0.9456070000

4 0.9460810000

5 0.9460680000

6 0.9459830000

7 0.9458220000

8 0.9458780000

9 0.9458270000

10 0.9457740000
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The real value of the Monte Carlo method comes in situations where other techniques
to obtain approximate numerical answers either do not exist or are much less efficient. Not
all simulations use the Monte Carlo device. “Deterministic” simulation has been used very
successfully in studying the path of a spaceship, for example. If a rocket is sent on a lunar
landing expedition, the system consists of four bodies exerting gravitational attractions on
each other: the sun, earth, the moon, and the spaceship. Newton’s laws give the deter-
ministic differential equation controlling the path of flight of the ship. We can simulate the
solution curve of the equation by using a sophisticated version of the Euler method dis-
cussed in Chapter 2.

VII. Historical and Biographical Notes
The Monte Carlo method has a humble origin. In 1946, the Polish-American mathematician
Stanislaw Ulam was recovering in Los Alamos from a severe case of encephalitis, an acute
inflammation of the brain. Advised by his doctors not to think too strenuously, he wiled
away some time playing a solitaire card game and began to wonder how often the
arrangement of cards might result in a win:

I noticed that it may be much more practical to get an idea of the probability of the successful
outcome . . . by laying down the cards . . . and merely noticing what proportion comes out
successfully, rather than try to compute all the combinatorial possibilities which are an
exponentially increasing number so great that, except in very elementary cases, there is no way
to estimate it. This is intellectually surprising, and if not exactly humiliating, it gives one a
feeling of modesty about the limits of rational or traditional thinking. In a sufficiently com-
plicated problem, actual sampling is better than an examination of all the chains of probability.

Ulam quickly realized that such an approach could be used to study all processes
involving branching of events, including one of special interest to the atomic scientists at
the time: the production and further multiplication of neutrons in some kind of material
containing uranium or other fissile elements. A neutron might scatter at one angle, change
its velocity, be absorbed, or produce more neutrons by fission, Ulam noted. The elementary
probabilities for each of these possibilities were individually known, but

The problem is to know what succession and branching of perhaps hundreds of thousands or
millions will do. One can write . . . equations for the “expected values,” but to solve them or
even get an approximate idea of the properties of the solution, is an entirely different matter.

Ulam’s idea, the core of the simulation process, is to try out thousands of scenarios, at
each stage selecting a random number with appropriate probability to decide which branch
to follow. “After examining the possible histories of only a few thousand,” Ulam declared,
“one will have a good sample and an approximate answer to the problem. All one needed
was to have the means of producing such sample histories, It so happened that computing
machines were coming into existence, and here was something suitable for machine
calculation.”

In addition to his work on the Manhattan Project to develop the first atomic bomb in
World War II, Ulam (April 13, 1909 May 13, 1984) was an outstanding pure and applied
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mathematician, originating the Teller-Ulam design of thermonuclear weapons. The term
“Monte Carlo” was apparently coined by the Greek-American physicist Nicholas
Metropolis (June 11, 1915 October 17, 1999), who also worked at the Los Alamos lab-
oratory and originated several algorithms for generating random numbers to use in these
simulations.

Although simulation was initially employed in the physical sciences, by the mid-1950s
social scientists were beginning to apply it also to a variety of problems. Simulation has been
used as a tool for research, teaching, decision-making, and historical reconstruction. Social
scientists have used simulation to study specific topics such as the spread of urban ghettoes,
the outbreak of World War I, the behavior of the stock market, the introduction of a new
product in a competitive market, and neurotic processes in psychopathology. Disciplines as
diverse as geography, political science, cognitive and social psychology, medicine, inter-
national relations, anthropology, education, sociology, and business administration have all
been affected to some extent by the results of simulation studies.

A characteristic of discrete event simulation, as you have seen in our hospital
planning model is viewing a system as a sequence of events that occur at particular
instants of time and signal a change of state in the system. The simulation jumps in time
from one event to the next one in the sequence; the system does not change in the interim
between events.

An alternative approach, called continuous simulation, breaks up the time interval of
interest into small time periods or “slices” and updates the system at the start of the next
period based on the activities that occurred since the beginning of the previous period. Since
no change may occur during a specified time slice, continuous simulation may run more
slowly than a discrete-event approach, which does not have to simulate every period.

Contemporary simulations can easily transform the numerical data generated by the
underlying equations or rules that govern the simulation into pictures, graphs, or anima-
tions. In watching these visual displays of the output of a simulation, the viewer can obtain
an impressive qualitative sense of the simulation’s behavior. Sometimes, one may be
seduced into believing that what is being displayed is the actual behavior of the real-world
system. As Peter Bak warns in his book How Nature Works, New York: Copernicus, 1996:

There is no such thing as doing calculations on the real thing. One cannot put a frog into the
computer and simulate it in order to study biology. Whether we are calculating the orbit of
Mercury circling the sun, the quantum mechanics of some molecule, the weather, or whatever,
the computer is only making calculations on some mathematical abstraction originating in the
head of the scientist. We make pictures of the world. Some pictures are more realistic than
others. Sometimes we feel that our modeling of the world is so good that we are seduced into
believing that our computer contains a copy of the real world, so that real experiments or
observations are unnecessary. I have fallen into that trap when sitting too long in front of the
computer screen.

For a more complete introduction to this active and growing subject, you may wish
first to examine the book by Guetzkow and others [1972], which contains essays on the
advantages and limitations of simulation as well as a number of particular case studies from
the relatively early days of simulation studies. More recent work can be found in the works
of Gilbert [1999]. One of the most authoritative texts on the theory and practice of simu-
lation is Averill Law’s book [1999].
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Homer H. Schmitz currently serves as a professor of health management and policy at
the College of Public Health and Social Justice of Saint Louis University, where he has
been a faculty member since 2002. At the time he and Professor Kwak developed this
simulation model, he was the vice president and director of management services at
Deaconness Hospital. Professor Schmitz has extensive executive experience in managing
the operations, information systems, planning, and finances of various sectors of the health
care market including a 450-member multispecialty physician practice, a managed care
organization with over 250,000 enrollees, an emergency medical service organization with
over 100 vehicles, and a 500-bed acute care teaching hospital.

An internationally recognized author and lecturer in health care management, Pro-
fessor Schmitz has authored or coauthored five books and more than 75 articles. He has also
had a number of consulting assignments throughout the United States, Syria, the United
Arab Emirates, Qatar, and South Africa.

NoKyoon Kwak is an emeritus professor of decision sciences at the John Cook
School of Business of Saint Louis University.

Author or coauthor of more than 125 journal articles, Professor Kwak has written a
number of books: Management Science: Theory and Applications, Introduction to Mathe-
matical Programming, Operations Research: Applications in Health Care Planning,
Managerial Applications of Operations Research, Quantitative Models for Business Deci-
sions,Quantitative Decision Theory forManagement, andMathematical Programming with
Business Applications. Several of these have been translated into Chinese and Korean.

He also served as a Fulbright distinguished visiting professor at Dongguk University
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EXERC I S E S

1. The projected daily surgical schedule of 27 procedures
was based on the assumption that operations would be
performed every day. Find the length of the schedule if
no operations are done on Sunday.

2. Of the 6,293 surgical procedures performed in 1970,
approximately how many were ophthalmology cases?

3. Find the annual total number of ophthalmology sur-
gical procedures projected for the expanded bed
complement.

4. Find the percentage of the projected 9,669 procedures
that will be ophthalmology cases.

5. Compare the percentage obtained in Exercise 4 with
the 4.5% experienced in 1970. Are the percentages the
same? Should they be the same?

6. Suppose that 6% of the surgical procedures in 1970
were gynecology cases and that the average stay in the
hospital for such a case was 4.7 days. Show that this
would yield a projected increase of 279 gynecological
procedures for the expanded bed complement.

7. If a projected increase of 312 beds is estimated for a
surgical category that represented 7.1% of all proce-
dures in 1970, what was the average length of stay per
patient in this category?

8. Schmitz and Kwak report that the projected 9,669
annual procedures would represent an increase of
53.6% over the 1970 totals. Does this give you enough
information to determine the number of MIS beds in
the hospital in 1970? To determine the average length
of stay of a surgical patient? What other data would
you need in order to answer these questions?

9. For a random variable X with continuous probability
density function f defined on 0,∞ , show that

(a) The probability that X takes on a value larger than

b is
∞

b
f t dt.

Hint: Use the fact that
∞

0
f t dt=

b

0
f t dt+

∞

b
f t dt.

(b) Pr a≤X ≤ b =
b

a
f t dt.

10. For the negative exponential density f t = μe−μt , show
that the probability that an operation will last more
than T hours is e−μT .

11. (a) Use integration by parts to show that
μte−μtdt= − 1+ μt e−μt

μ +C.

(b) Suppose that μ> 0. Use the result of part (a) to

show that
∞

0
μte−μtdt= 1

μ. (l’Hôpital’s Rule may be

helpful.)

Exercises 12 19 refer to the simulation of Table 15.5.

12. In which operating room was the largest number of
procedures performed? The smallest number? What was
the average number of procedures per operating room?

13. Which operating room was used for the longest period
of time? What was the average length of time of usage
per operating room?

14. Using the random numbers of Table 15.5, trace
through the effects on the number of required recov-
ery-room beds of

(a) shortening the “make-ready” time in the recovery
room to .20 hours;

(b) lengthening the recovery-room time to 4 hours for
major surgery and 2 hours for minor surgery.

15. Using the random numbers from Table 15.5, work
through the simulation with the original rules, but with
only three operating rooms. Determine the following:

(a) Time of completion of surgical schedule

(b) Number of recovery-room beds required

(c) Latest time a patient leaves the recovery room

16. Repeat Exercise 12 with

(a) Six operating rooms

(b) Four operating rooms

17. Trace through a simulated surgical schedule using the
original rules and the random numbers of Table 15.5,
except that whenever a random number R occurs,
choose the patient represented by the random number
999−R.
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18. Generate your own random number sequence and go
through a simulated day.

19. What refinements in the model would you suggest that
would make the simulation more realistic? For some
hints, see Fetter and Thompson [1965].

20. Use the Monte Carlo method to estimate 4
1

0

1
1+ t2 dt.

Explain why you expect to get a number close to π.

21. Use the Monte Carlo method to estimate
10000

− 10000
e−t

2
dt.

22. One of the earliest suggested schemes for generating a
sequence of numbers that may appear to be random was
the Middle Squares method. Begin with an arbitrary
four-digit integer, square it and extract the middle four
digits for the next number (if the square has fewer than
eight digits, pad some zeroes onto the left end). The third
number in the sequence would be the middle four digits
of the square of the second number, and so forth.

(a) Show that if the initial four-digit number is 6543,
then the next numbers generated are 8108, 7396,
7008, 1120.

(b) The Middle Squares method produces a sequence
of numbers between 0 and 9999. How would
modify these numbers to get probabilities—i.e.,
numbers between 0 and 1?

(c) What does the Middle Squares method produce if
you begin with 2500?

(d) What weaknesses in the Middle Square method
are revealed by the result in (c)?

(e) Show that the middle four digits can be extracted
by first dividing the square by 100 and throwing
away the decimal part and then dividing the
resulting number by 10,000 and keeping the
remainder.

23. The Linear Congruential Generator is a widely used
method for producing strings of numbers that appear
random. It uses the relationship xn+1 = axn + c mod m
to produce the next number xn+1 in the sequence from
the previous number xn and fixed integers a, c, and m.
After computing a xn + c, divide it by m and let xn+1 be
the integer remainder.

(a) If a= 231, c= 13, and m= 210, show that an initial
choice of x1 = 1221 produces a sequence begin-
ning 404, 701, 152, 309, 736, . . .

(b) Java uses a= 25214903917, c= 11, and m= 248.
What are the first few terms generated by this rule
if the initial choice x1 is again 1221?

SUGGESTED PRO J ECTS

1. Investigate the negative exponential distribution.
Show, in particular, that the simulated length of stay in
the operating room can be determined by drawing a
number from a list of random exponential numbers of
mean 1 and then multiplying it by an appropriate
interarrival mean. See Schmitz and Kwak’s paper and
Grimmett and Stirzaker’s book (References).

2. (For those with some background in statistics.) Sup-
pose that the simulation we have described is repeated
N times and that it is observed that the largest number
of recovery-room beds ever needed is 12 and that the
latest time an operation was completed was 6 p.m.
How large should N be so that we can assert that the
probability of needing more than 12 recovery-room
beds or that an operation would continue past 6 p.m. is
less than .051 (see Chapter 8 of John Smith, Computer
Simulation Models)?

3. Write a computer program to carry out the Monte
Carlo simulation of operating-room and recovery-room
usage described in this chapter. Carry out the simula-
tion for a 30-day period and analyze the results.

4. Show that the data usually collected in a major league
baseball game to determine players’ batting, pitching,
and fielding averages gives sufficient information to
construct a Monte Carlo simulation that provides
estimates on a team’s run production as a function of
the particular batting order chosen. Discuss the relative
difficulty of modeling some particular aspect of foot-
ball, basketball, or hockey by simulation. What infor-
mation would be required? Is it readily available?

5. Suppose you are the manager of a supermarket. You
must decide the maximum number of items to allow a
customer to bring through the express lane. You wish
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to select the number that will minimize the average
length of time all customers must wait in line before
being checked out. What data would you need? How
would you construct the simulation?

6. Write a computer program to evaluate definite integrals
using the Monte Carlo technique. Test the program on
functions whose integrals can be computed exactly by
Fundamental Theorem of Calculus. How many points
need to be chosen to obtain a good approximation?

How does the Monte Carlo method compare in effi-
ciency to other techniques, such as Simpson’s Rule?

7. Investigate methods of generating pseudorandom
numbers in use today. What are the strengths and
weaknesses of the various techniques. What tests
should a sequence of numbers need to pass in order to
be considered “random enough” to use in simulations?
Useful places to start include Barker [2012], Luby
[1996], and Knuth [1997].

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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CHAPTER
16

Game Theory

Games combining chance and skill give the best representation

of human life. . . . It would be desirable to have a complete study made

of games, treated mathematically.

—Gottfried Wilhelm von Leibniz

I. Two Difficult Decisions
We will begin with two classic tales of characters facing difficult decisions involving
love, life, and death. One is the biblical patriarch Abraham and the other Florio Tosca, the
title character of Giacomo Puccini’s famous opera Tosca. We will examine how game
theory, a mathematical field created in the 20th century, provides insight into their ulti-
mate behavior.

A. Abraham

The Binding of Isaac (in Hebrew, , Akedat Yitzhak) is one of the most dramatic
and troubling stories of the Old Testament. God tests Abraham by demanding a human
sacrifice.

Chapter 22 of the book of Genesis begins:

Some time later God tested Abraham. He said to him, “Abraham!
“Here I am,” he replied.
Then God said, “Take your son, your only son, whom you love—Isaac—and go to the

region of Moriah. Sacrifice him there as a burnt offering on a mountain I will show you.”

God has directed Abraham to commit an almost unthinkable act: willingly kill his
son. Should he comply with God’s directive, or should he refuse? What would be the
consequences of Abraham’s decision? How would God respond to the action Abraham
does or does not carry out?

It is abhorrent to us to think of any parent deliberately killing, or even injuring, his or
her child. For Abraham, the slaying of his only son bears additional anguish as Isaac was
seen to be the next link in a long chain of Abraham’s descendants who were to be recipients
of God’s benevolence. Earlier chapters of Genesis tell of the unique, personal relationship
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that has developed between God and Abraham. In several passages, God promises Abra-
ham and his descendants great rewards:

Raise your eyes and look from where you are, to the north and south, to the east and west. For I
give all the land that you see to you and your offspring forever. I will make your offspring as the
dust of the earth, so that if one can count the dust of the earth, then your offspring too can be
counted. Up, walk about the land, through its length and its breadth, for I give it to you.”
[Genesis 13:15]

God reassures him when Abraham, now over 75 years old, expresses fear that he will
die childless and his steward will inherit his estate:

None but your very own issue shall he your heir. . . . Look toward the heaven and count the
stars, if you are able to count them. . . . So shall your offspring be. [Genesis 15:4 5]

On a third occasion, God reiterates his promise to the now 99-year-old Abraham:

I will place My covenant between Me and between you, and I will multiply you very
greatly. . . . As for Me, behold My covenant is with you, and you shall become the father of a
multitude of nations. . . . And I will make you exceedingly fruitful, and I will make you into
nations, and kings will emerge from you. . . . And I will establish My covenant between Me and
between you and between your seed after you throughout their generations as an everlasting
covenant, to be to you for a God and to your seed after you.

Abraham and his beloved wife Sarah have lived together for many decades, but they
have been unable to conceive a child, for she is barren. When Abraham is 99 years old and
Sarah not much younger, it seems that it is impossible that they will ever become parents.
As we read in verse 11 of Chapter 18: “Now Abraham and Sarah were old, and well stricken
in age; it had ceased to be with Sarah after the manner of women.” But there is another
message from God that Sarah will bear a son within the next year. When the promise comes
true, there is rejoicing in Abraham’s camp, and when Isaac is weaned Abraham prepares a
great feast.

It comes as a shock to the reader of the Bible that a scant few pages after this happy
event, we encounter the demand from God that Abraham sacrifice the long-awaited child.

We can imagine that Abraham may have spent a sleepless night, but by morning he
seems to have made his decision:

Early the next morning Abraham got up and loaded his donkey. He took with him two of his
servants and his son Isaac. When he had cut enough wood for the burnt offering, he set out for
the place God had told him about. On the third day Abraham looked up and saw the place in the
distance. He said to his servants, “Stay here with the donkey while I and the boy go over there.
We will worship and then we will come back to you.”

Abraham took the wood for the burnt offering and placed it on his son Isaac, and he
himself carried the fire and the knife. As the two of them went on together, Isaac spoke up and
said to his father Abraham, “Father?”

“Yes, my son?” Abraham replied.
“The fire and wood are here,” Isaac said, “but where is the lamb for the burnt offering?”

I. Two Difficult Decisions 491



Abraham answered, “God himself will provide the lamb for the burnt offering, my son.”
And the two of them went on together.

When they reached the place God had told him about, Abraham built an altar there and
arranged the wood on it. He bound his son Isaac and laid him on the altar, on top of the wood.

Then he reached out his hand and took the knife to slay his son.

Will Abraham indeed go forward with this human sacrifice? Will God intervene to
stop him, or will He sit back and allow it to happen? Will Abraham decide at the last
moment that he cannot kill Isaac and that he must defy God whatever punishment he
might suffer?

We will pause at this dramatic moment in the story and introduce another famous
account of a difficult decision.

B. Tosca

Puccini’s opera Tosca has been described as a “tragic love story and a nail-biting thriller,
from the famous dark opening chords to its unforgettable conclusion.” We are in Rome in
June 1800. The singer Florio Tosca is fiercely in love with the painter Mario Cavaradossi.
He is in trouble with the law as he helped to hide an escaped political prisoner and fellow
revolutionary Angelotti. The local police chief Scarpia lusts after Tosca, who is repulsed by
his advances. Scarpia suspects that Cavaradossi may be assisting Angelotti and plays on
Tosca’s jealously in the hopes that she will lead him to Angelotti.

Scarpia’s agents fail to find Angelotti, but they do arrest Cavaradossi. Cavaradossi
defies Scarpia and denies knowing anything about Angelotti, so Scarpia orders his interro-
gation—using any means necessary. Despite being tortured, Cavaradossi taunts Scarpia, who
orders his immediate execution. At first Scarpia turns a deaf ear to Tosca’s pleas for mercy,
but then reveals that the price for Cavaradossi’s life is Tosca herself. In despair, she sees no
way out, despite her revulsion, which only makes her more desirable in Scarpia’s eyes. She
indicates agreement to have sex with Scarpia in return for saving Cavaradossi’s life. Scarpia
apparently orders a fake execution and writes out safe conduct passes for Tosca and
Cavaradossi. Tosca, nervously looking around the room, perhaps thinking of a way to escape,
sees a sharply pointed knife, which she hides behind her. Scarpia seals the passes and then
turns to embrace Tosca and satisfy his lust, exclaiming “Tosca, now you are mine at last!”

The moment of truth is hand for Tosca. Should she go forward with her end of the
agreement?Will She Love the Man She Hates to Save the Man She Loves? How should
Scarpia behave? Should he let Cavaradossi go free, or should he double-cross Tosca and
make sure his rival dies after he satisfies his carnal desires? Should Tosca double-cross
Scarpia, stab him to death with the knife, and flee with Cavaradossi after the fake execu-
tion?Will she fight, or will she succumb? The music is building as we sweep toward the end
of the opera’s second act.

II. Game Theory Basics
A. What Is Game Theory?

Can mathematics help us find a way to advise Abraham and God, Tosca and Scarpia? Are
there rational choices for each?
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In the dilemmas facing Abraham and God, Tosca and Scarpia, we have a common
thread. Several decision makers must make choices that will determine the outcome. No
single participant controls the scenario on his or her own.

Much of classical mathematics concerns itself with optimal decision making by a
single individual. What shape should a farmer choose to create a pasture with a fixed
amount of fencing in order to maximize its area? What is the least expensive meal you can
buy at your local fast-food restaurant that meets or exceeds some minimal nutritional
requirement? In such situations, there is a solitary decision maker.

Most real-world situations are more complicated. There is an interdependent decision
process whose outcome depends on the choices of all the actors. In deciding what you should
do, youmust take into account somehowwhat everyone elsewill choose.What should a rational
person do? In the early 1940s, John von Neumann and Oskar Morgenstern, a mathematician
and economist, respectively, set out to create a new discipline to analyze such situations: game
theory. [See Chapter 8 for biographical notes on von Neumann and Morgenstern.]

Up to this point in our text, we have shown modelers as consumers of existing
mathematics. Richardson, for example, employed systems of differential equations—a
mathematical tool invented to study the physical universe—to model the behavior of
nations and their weapons. Von Neumann and Morgenstern realized that the mathematics
adequate to describe inanimate nature was inadequate to their goals. They had to become
producers of mathematics.

In an essay written a quarter-century after the publication of their work Theory of
Games and Economic Behavior, Morgenstern emphasized the inadequacy of the mathe-
matics developed to study the physical world to be useful in studying the social world:

Game Theory is a new discipline that has aroused much interest because of its novel mathe-
matical properties and its many applications to social, economic, and political problems. The
theory is in a state of active development. It has begun to affect the social sciences over a broad
spectrum. The reason that applications are becoming more numerous and are dealing with
highly significant problems encountered by social scientists is due to the fact that the mathe-
matical structure of the theory differs profoundly from previous attempts to provide mathe-
matical foundations of social phenomena. These earlier efforts were oriented on the physical
sciences and inspired by the tremendous success these have had over the centuries. Yet social
phenomena are different: men are acting sometimes against each other, sometimes coopera-
tively with each other: They have different degrees of information about each other, their
aspirations lead them to conflict or cooperation. Inanimate nature shows none of these traits.
Atoms, molecules, stars may coagulate, collide, and explode but they do not fight each other:
nor do they collaborate. Consequently, it was dubious that the methods and concepts developed
for the physical sciences would succeed in being applied to social problems.

Game theory is the development and analysis of mathematical models of cooperation
and conflict among intelligent rational decision makers. Commonly played board games
such as chess, checkers, go, Scrabble, and Monopoly, or card games such as bridge, poker,
and gin rummy, also involve outcomes that are the result of two or more players’ making
independent or perhaps coordinated choices. These games contain many of the major
concepts in game theory. It is not surprising that the theory borrows many of the terms of
ordinary games: players, rules, moves, strategies, payoffs, and so forth. Some of the early
work in the theory was motivated by attempts to find optimal strategies in ordinary games.
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Although the focus of von Neumann and Morgenstern’s book was developing a theory that
could be applied to economics, they had a larger vision; at one point, for example, they were
thinking of titling their book General Theory of Rational Behavior.

B. Classifying Games

Game Theory deals with a vast range of decision-making situations. To make progress on
the theory, it is helpful to consider the fact that there are many ways in which games are
classified. We will discuss several important classifications.

1. Number of Players
One of the most important classification schemes involves the number of players. There are
fields within game theory that deal separately with games involving only one player,
exactly two players, three or more players, or extremely large numbers of players.

One-person games are often called games against nature; mathematicians use the
term decision theory to refer to the discipline that considers such situations. The earliest
work in game theory, dating from the 1920s, dealt with two-person games. The examples in
this chapter focus principally on two-person games. Games with at least three players,
called n-person games, are especially interesting because of the possibility that subsets of
the players may form coalitions who may coordinate their decisions. Nonatomic games are
situations in which there are an enormous number of players, no single one of whom has
very much power or influence—think of a large economy with millions of consumers.

We present here one very elementary example of a one-person game. In keeping with
a biblical theme, we will look at David’s decision to fight Goliath. Chapter 17 of the book of
I Samuel recounts the famous story. The armies of the Israelites and the Philistines face
each other on the eve of battle, each occupying a hill with the Valley of Elah between them.
From out of the Philistine camp strides the giant Goliath, a warrior nearly 10 feet tall. Each
morning for 40 days he taunts the Israelites:

“Choose a man and have him come down to me. If he is able to fight and kill me, we will become
your subjects; but if I overcome him and kill him, you will become our subjects and serve us.
This day I defy the armies of Israel! Give me a man and let us fight each other.”

Saul, the Israelite king, and all his troops are dismayed and terrified; they flee from
Goliath in great fear. No one is willing challenge Goliath, despite the promise of rewards if he
is triumphant against the giant: “The king will give great wealth to the man who kills him. He
will also give him his daughter in marriage and will exempt his family from taxes in Israel.”

The young man David, who come to the camp to bring supplies to his oldest brothers
serving in the army, hears rumors of these rewards and asks several men independently what
good things may be in store for the person who slays Goliath. He is actively thinking about
accepting the giant’s challenge and weighing the costs and benefits of such a decision.

The best possible outcome for David is that he fights and kills Goliath, marries the
king’s daughter, becomes a wealthy man whose family is exempt from taxes, and is lauded
as the nation’s savior and hero. Let W (for win) be the utility David receives from this
outcome. See Chapter 8 for more about utility.

At the other end of the spectrum is David’s worst outcome: he loses the fight and is
slain by Goliath. He may receive some posthumous praise for challenging the giant, but also
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anger from a people who are now enslaved as a result of his actions. Let L be the utility of
that outcome.

There is an intermediate outcome if David chooses not to fight. He continues to live,
perhaps as a poor shepherd with no local fame or fortune. Suppose M is the associated
utility so that L<M <W .

What is not certain is the outcome of the fight between David and Goliath should the
young man accept the giant’s challenge. Let p be the probability that David triumphs so that
1− p is the likelihood that Goliath is the victor. One outcome of the fight has value W ,
which will occur with probability p. The other outcome, with probability 1 p, is L. Thus,
the expected value to David of the battle would be pW + 1 p L. Since the option of not
fighting gives David a utility of M with probability 1, its expected value is 1M =M.

Decision theorists might advise David to choose the option with the greater expected
value. Thus, David should fight Goliath if and only if

pW + 1 p L>M

which occurs exactly when

p>
M −L

W −L

We can infer from the fact that David did go out and fight Goliath that he estimated
his probability p was that large.

2. Zero-Sum versus Nonzero-Sum Games
Our theory concerns itself with games that eventually end. Depending on the choices of
players at each turn of the game, and the chance elements that may play a role intermit-
tently, various different outcomes may be possible. Generally there is a dispersal of rewards
(money, power, prestige) to each of the players that is dependent on the specific outcome.
Von Neumann and Morgenstern posited that there would a payoff to each player—a real
number measuring the utility each player would receive. They originally thought to confine
payoffs to monetary amounts, but quickly realized that a general concept was needed. Thus,
they had to begin their theory with creating the axioms of utility theory (see Chapter 8).

If there are n players in a game, then a payoff is a n-dimensional vector of real
numbers whose ith component is the utility awarded to player i.

If the sum of the entries in every payoff vector of a particular game is 0, then the game
is called a zero-sum game. An equivalent characterization of a zero-sum game is that the
sum of components of every payoff vector is the same constant. A game is a nonzero-sum
one if there is at least one payoff vector whose components do not add up to 0; equivalently,
there are at least two payoff vectors whose sums are different. In a zero-sum game, a player
can attain a larger payoff only at the expense of at least one other player suffering a smaller
playoff. Compare this idea to Pareto-optimal allocations (see Chapter 9).

Many classic two-person games (chess, checkers, backgammon, and the like) are
zero-sum games. These are games of pure conflict. There is no room for negotiation or
compromise; they are situations of strict competition.

The Battle of the Sexes game is an example of a two-person nonzero-sum game. As
described by Anatol Rapoport [1966], a husband and wife are negotiating how they will
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spend the evening. The man suggests the opera, the woman suggests a prize fight. Each
would rather do something together than not, but they are willing to go their separate ways.
Suppose the man gets one utility unit if they both go to the opera, while the woman gets
nothing. If they jointly attend the prize fight, the woman gets one, the man nothing. If he
goes to the opera and she attends the prize fight, then both receive a negative amount.

Here is a three-person nonzero-sum game. A wealthy man with three daughters
dies. His will stipulates that if at least two of them agree on how his estate should be
divided, then it will be split according to that agreement. Otherwise, none of them will
receive anything, so (0, 0, 0) is a possible payoff vector. Another possible payoff is that
each receives one-third of the estate. Suppose that the youngest daughter indeed proposes
such an even split: (1/3, 1/3, 1/3). The eldest daughter quickly approaches the middle sister
and suggests they agree on splitting the entire estate evenly between the two of them, giving
the youngest one nothing: (.5, .5, 0). The youngest quickly comes up with a counteroffer to
the middle daughter which she hopes will tempt her: “Let’s you and I split it in 60-40; you
can have 60%.” The proposed payoff vector here is (0, .6, .4). Can you think of a good
counteroffer by the oldest sister? Here the eldest and youngest sisters are each trying to
build a coalition with the third sister; if two can agree, each of the pair may get more than
the one-third share.

3. The Role of Chance
Game theorists also distinguish among decision-making situations by the extent to which
chance plays a role in the outcome. At one end of the spectrum are games of pure skill such
as chess, checkers, or go, in which chance elements are completely absent. At the other end
are games of pure luck, typified by casino offerings like slot machines, roulette, or craps.

Many games fall somewhere in between these extremes. Card games, such as poker,
bridge, gin rummy, or blackjack, typify these intermediate situations. Cards are initially
shuffled, randomizing their order, and then dealt out to the players so each play of the game
begins with a different set of initial conditions over which the players have no control. Once
the game begins, however, there are opportunities for more skillful players to do better than
less skillful opponents. They may be able to use information about previously revealed cards
to adjust their bets (as in blackjack) or compute the probabilities that a specific player holds a
particular grouping of cards (as in bridge). Expected value considerations (see Chapter 10)
play an important role in analyzing games where chance plays a significant role.

4. Information
Other aspects of a game that determine their character are information and communication.

Many games involve a sequence of moves made by the players in some rotation. In
chess, for example, two players alternate moving a piece from one square on the board to
another. In Monopoly, players in turn roll a pair of dice, move a token the indicated number
of squares, and then take some action: collect a reward, pay a penalty, buy or upgrade a
property, and so on. Although chance plays no role in chess and plays an important role in
Monopoly, each player knows exactly what all the other players have done at every move.
These are games of complete information.

Most card games are decision-making situations with incomplete information. In gin
rummy, for examples, the two players each receive 10 cards dealt face down from a well-
shuffled deck of 52 cards. Thus, neither player knows the initial holding of the other. The
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twenty-first card is turned face up to start the discard pile and the remainder of the deck is
placed face-down beside it to form the stock. Players alternate turns. If it’s your turn, then
your move has two parts. First, you take the top card from the stock pile or the top card on
the discard pile. Both players can see the discard pile, but only you will see the top card
from the stock pile if that is the pile you choose. You add whichever card you picked to
your hand. For the second part of your move, you remove one card from your hand and
place it face up on the discard pile. In gin rummy then, each player has partial information
about that status of his opponent’s hand, but not complete knowledge.

At the other end of the spectrum from chess in terms of information, is the game of
Rock-Paper-Scissors. In this game two players simultaneously form one of three shapes
with an outstretched hand. The rock beats the scissors, the scissors beat the paper, and the
paper beats the rock; if both players throw the same shape, the game is tied. Since the
players are required to move simultaneously, neither has any information about the other’s
move before deciding their own moves.

5. Communication
Another important component influencing how people play games and how they should
play is the level of communication during the game between the players. Must they make
their moves without being able to speak to the other player? Would they be able to discuss
with other players how they might coordinate their moves to steer the game toward an
outcome more beneficial to all than would otherwise happen? Are they allowed to negotiate
agreements on coordinating moves? Are the agreements binding?

At first glance, it would appear that the ability to exchange messages could never
disadvantage a player. After all, he could simply choose not to talk to any of the other
players. However, the ability to communicate allows one not only to offer proposals for
cooperation but also the opportunity to issue threats. You might choose to say nothing, but
one of the other players can announce he will play a certain way that will give you a low
payoff unless you agree to play he wants the game to go. The wife in Battle of the Sexes, for
example, may announce “I’m going to the prize fight whether you agree or not. If you don’t
come with me, then your payoff will be negative, so you’d better join me!”

6. Strategies
We come now to perhaps the central concept in all of the theory of games: strategy. By a
strategy we mean a plan that specifies what a player should do in every possible situation
that can arise in during a game. A strategy describes what move a player should make in
every conceivable contingency. It is a recipe of how to play.

Consider, for example, the familiar game of tic-tac-toe (also known as Noughts and
Crosses). The players are called X and O are named after the symbol each is allowed to
place in an empty square of a 3× 3 grid. X and O take turns. The game ends when one of the
players (the winner) succeeds in placing three of his marks in a vertical, horizontal, or
diagonal row of the grid. The game can end in a draw if all the squares are filled and no row,
column, or diagonal is filled with the same symbol.

Suppose we number the squares in 3× 3 grid as in Fig. 16.1. One strategy for playing
tic-tac-toe is to place your symbol at every move in the unoccupied square with the lowest
number. This strategy is not a very effective one. If my opponent becomes aware that I am
using that strategy, she will simply use her first three moves to place her symbol in the
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squares of the bottom row and I will lose every game. Most people learn at a fairly young
age an optimal strategy for tic-tac-toe that guarantees they will at least earn a draw and can
win if their opponent does not use an optimal strategy.

In many two-person games, each player has available a finite, but possibly different,
number of strategies. By an m× n game, we mean a two-person game in which one player
has m distinct possible strategies and the other has n distinct strategies. For an m× n game,
we can construct an m× n outcome matrix in which each row corresponds to one of the m
strategies for the first player and each column corresponds to one of the n strategies
available to the second player. The entry in the ith row, jth column of the matrix, describes
the end result of the game if the first player uses her ith strategy and the second player uses
his jth strategy.

It’s common practice in the game theory literature to use the terms row player and
column player. I will follow the helpful mnemonic introduced by Peter Ungar and Philip
Straffin in Straffin’s book Game Theory and Strategy: call the first, or row, player Rose and
the second, or column, player Colin. If we replace the outcome with its payoff vector, we
obtain the payoff matrix. Fig. 16.2 shows a payoff matrix for a 2× 3 game. If Rose chooses
her second strategy R2 and Colin chooses his third strategy C3, then Rose’s payoff is r23
and Colin’s payoff is c23.

In a zero-sum game, cij = − rij for each i and j. Since Colin’s payoff is the negative of
Rose’s for every pair of strategy choices, we know what he gets as soon as we know what
she is going to receive. It is customary, then, to list only Rose’s payoff in the matrix for a
zero-sum game. Fig. 16.3 shows a typical payoff matrix in a zero-sum 2× 3 game.

Consider the 3× 4 zero-sum game with the payoff matrix shown in Fig. 16.4.

FIGURE 16.1 Tic-tac-toe
grid.

1 2 3

654

7 8 9

C1 C2 C3

R1 r11, c11 r12, c12 r13, c13
R2 r21, c21 r22, c22 r23, c23FIGURE 16.2 A payoff

matrix for a 2× 3 game.

C1 C2 C3

R1 2 3 − 1

R2 0 − 4 1

FIGURE 16.3 A payoff
matrix for a zero-sum
2× 3 game.
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Observe that Rose’s fourth strategy gives her a higher payoff than her second strategy
no matter which strategy Colin selects (8> 1, 6> 5, 12> 2). In this case, we say that Rose’s
R4 dominates R2. Since R4 is universally better for Rose than R2, she would never use R2.
If we eliminate row 2 from the matrix, the resulting payoff matrix becomes

5 3 9

2 10 6

8 6 12

Noting that Colin’s payoffs are the negative of Rose’s, we see that Colin loses less in
all cases choosing column 1 rather than column 3 so Colin would never play column 3.
Eliminate the third column reduces us to the payoff matrix

5 3

2 10

8 6

In this payoff matrix, Rose is always better playing in Row 3 than in Row 1, so Row 3
dominates Row 1. Cross out Row 1 to obtain the payoff matrix of the reduced game:

2 10

8 6

We can provide more formal definitions about dominance. Note that one outcome is
better than another outcome if it provides a higher utility to the player.

DEFINITION A strategy S dominates strategy T if every outcome using S is at least as
good as the corresponding outcome using T and there is at least one outcome using S that
is strictly better than the corresponding outcome using T . If S dominates T , then we say T
is dominated by S and that T is a dominated strategy.

The dominance principle of game theory asserts that a rational player should never
play a dominated strategy.

C. Zero-Sum Games

Consider the 3× 4 two-person zero-sum game with the payoff matrix shown in Figure 16.5.
How should Rose play this game? She would certainly like the outcome R2C2,

because it has the largest possible payoff for her. She could try to achieve this outcome

C1 C2 C3

R1 5 3 9

R2 1 5 2

R3 2 10 6

R4 8 6 12 FIGURE 16.4 A payoff matrix with a dominating row.
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by playing strategy R2, but she would need Colin to select C2. Colin is not likely to
make that choice, as he loses 7. In fact, if Colin knew Rose was going to play R2, he
would play C1 to keep his losses down to 1 unit. But if Rose knows Colin is choosing
C1, she would pick R1 . . . and the reasoning continues. One of the precepts of game
theory is that the players are equally intelligent and capable of equally long chains of
reasoning. Each needs to keep in mind what the other would do if that player knew what
we were going to do.

So Rose should be thinking that Colin is going to try his best to thwart her desire to
get a large payoff. She should determine what is her worst possible outcome for each of her
strategies. For R1, it is 7; for R2, it is 1; and for R3 it is 8. The “best of the worst” is 1, so
if she plays R2, Rose is guaranteed to get a payoff of at least 1. There is nothing Colin can
do to force a smaller payoff to Rose. The “best of worst” criterion is called the maximin
approach; Rose first determines theminimum in each row and then chooses the maximum of
these numbers. We call this number the lower value of the game.

Colin’s considerations are similar to Rose’s. He determines his worst possible out-
come for each of his strategies. He does this by finding the largest possible number in each
column because that would be the magnitude of his loss. Thus, he looks for the maximum in
each column. Of these maxima, he wants to choose the smallest one, the minimum. For the
column player, the “best of the worst” is the minimax. This number constitutes the upper
value of the game. Colin can guarantee that Rose will never get more than this amount no
matter what scheme she follows.

For this particular game, the lower value and the upper value coincide. The common
number is called a saddle point of the game. It is simultaneously the smallest number in its
row and the largest number in its column. The strategy choices whose outcomes intersect at
this payoff are optimal strategies for the players in a zero-sum game. The row player can
guarantee herself that she will get at least the lower value and the column player can assure
himself that his losses will be no more than the upper value. When the values are equal,
neither player can do any better. In the game of Fig. 16.6, Rose should play R2 and Coin
should play C3.

C1 C2 C3 C4

R1 3 5 − 1 − 7

R2 1 7 2 5

R3 − 8 1 − 1 − 3
FIGURE 16.5 A zero-sum
3× 4 payoff matrix.

C1 C2 C3 C4 Worst Best of worst

R1 3 5 − 1 − 7 − 7

R2 1 7 [1] 5 1 1

R3 − 8 1 − 1 − 3 − 8

Worst 3 7 1 5

Best of worst 1

FIGURE 16.6 Finding
the saddle point of the
game in Fig. 16.5.
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The saddle point principle of game theory asserts that if a game has a saddle point,
then rational players should play a strategy that contains a saddle point.

In general, however, the lower value of a game is usually strictly smaller than the
upper value and there is no saddle point. The reduced game of Fig. 16.7 is a simple
example. Here the lower value is 6 and the upper value is 8. See Fig. 16.7. Rose can get at
least 6 and Colin can hold her payoffs down to 8. Is there some way to play this game so that
Rose gets more 6? Can we attach a single value to this game?

The answers to both questions are No if we constrain ourselves to so-called “pure”
strategies. Game theory introduces the idea of a mixed strategy to get Yes answers. Imagine
what might happen if Rose and Colin play this game repeatedly where the players chose
their strategies with different frequencies, sometimes using the first strategy and other times
the second? Suppose Rose chooses at random between R1 and R2, selecting R1 with
probability p and R2 with probability 1 p while Colin is randomly picking between his
two strategies, employing C1 with probability q and C2 with probability 1 q. It is natural
then to examine the expected value of the payoff.

Recall that the expected value is the weighted sum of all possible outcomes, each
weighted by its probabilities of occurring. Since Rose and Colin make their choices
independently of each other, we can combine probabilities by multiplying them.

Rose’s expected value is EVRose = 2pq+ 10p 1 q + 8 1 p q+ 6 1 p 1 q .
If we multiply out and collect like terms, we find

EVRose = 6− 10pq+ 4p+ 2q

which we may write as

EVRose = 6
4
5
− 10 p−

1
5

q−
2
5

In this form, we see that if Rose chooses p= 1 5, then her expected payoff will be 6.8
regardless of Colin’s choice of q. If Colin sets q= 2 5, then he holds Rose’s payoff to 6.8 for

C1 C2 Worst Lower Value

R1 2 10 2

R2 8 6 6 6

Worst 8 10

Upper Value 8
FIGURE 16.7 A 2× 2 zero-sum game
with no saddle point.

Outcome Probability Value

R1C1 Pq 2

R1C2 p 1 q 10

R2C1 1 p q 8

R2C2 1 p 1 q 6
FIGURE 16.8 The outcomes of the game in Fig.
16.7 with probability and payoffs.
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every choice of p.What if Rose tries to increase her expected payoff? She would need tomake
the term − 10 p− 1

5 q− 2
5 positive. If she choose p< 1 5, then − 10 p− 1

5 becomes

positive, but Colin can respond with a q less than 2/5, rendering − 10 p− 1
5 q− 2

5 negative
and decreasing Rose’s expected payoff to something below 6.8. On the other hand, if Rose
tries a p larger than 1/5, Colin can answer with q> 2 5, again lowering Rose’s expected
payoff below 6.8. Thus, Rose’s attempt to be greedy can backfire. Similarly, if Colin tries on
his own to decrease his losses bymaking Rose’s expected payoff smaller than 6.8 by tinkering
with his q, she can find an appropriate p that will increase her expected payoff. So neither
player can benefit frommoving away for choosing p= 1 5, q= 2 5; in fact, each runs the risk
of doing worse. We have the equivalent of a saddle point in mixed strategies. In this game
there are optimal mixed strategies for each player. The optimal mixed strategies provide an
equilibrium solution for the game. The value of the game is the expected payoff to Rose if she
and Colin use the optimal mixed strategies.

How does Rose implement a mixed strategy of playing R1 one-fifth of the time and
R2 four-fifths? One way is to use R1 in the first game, followed by R2 in the next four
games and then repeat this pattern over and over again. But Rose is in trouble if Colin
figures out the pattern. Colin can then play C1 every time Rose plays R1 and C2 each time
she uses R2. Then Rose gets 2 with frequency 1/5 and 6 with frequency 4/5, yielding an
average payoff of only 5.2. The result is similar if Rose follows any systematic pattern for
choosing R1 and R2. If Colin discovers the pattern, he can find a matching one of his own to
depress her expected payoff. Rose must avoid using a pattern. She should use a random-
izing device to make her choice. She could construct a simple spinner, for example, with 4/5
of the wheel colored red and 1/5 colored blue. Before each game, she spins the needle. If it
lands on blue, play R1; otherwise, play R2. [Rose might also make use of a pseudorandom
number generator of the type discussed in Chapter 15.] Since Rose does not know in
advance which of R1 or R2 she is going to use in the next play of the game, Colin has no
way to anticipate her choice and exploit a pattern.

To summarize the results of our analysis of the game of Fig. 16.6: Each player in this
2× 2 zero-sum game has an optimal mixed strategy that he or she should use in a randomized
fashion. The value of the game is the expected payoff under these optimal mixed strategies.

The first major theorem in game theory generalizes this result to an arbitrary m× n
two-person zero-sum game. Called the Minimax Theorem, it was first proved by John von
Neumann in 1928. Von Neumann showed that there would always exist a pair of optimal
mixed strategies in a zero-sum game between two players where each had a finite number of
pure strategies. The expected value v using the optimal mixtures is a number the row player
can guarantee receiving and the column player can guarantee as a bound on his loss. If
either player deviates from the optimal mixture, the opposing player has a mixed strategy
response, which will punish the deviating player.

There are many different proofs of von Neumann’s Minimax Theorem. In Section IV
of this chapter we will outline a proof of a generalization of this theorem due to John Nash
that makes use of the Brouwer Fixed Point Theorem.

III. The Binding of Isaac
Let’s return to the story of Abraham and the possible sacrifice of Isaac and examine it
through the lens of game theory. We shall follow the analysis of Steven Brams, who
pioneered in the application of game theory to Bible narratives. The outcome of this
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situation depends on the decisions of both Abraham and God. Abraham must decide
whether to go forward with the sacrifice and God must decide how to react to whatever
choice Abraham makes. Game theory aims, in part, to determine what strategy rational
players should follow to best achieve their objectives. Is it presumptuous to treat God as a
mere player in a game? Isn’t the Almighty ultimately unknowable and not subject to our
human understanding? Brams gives a carefully reasoned response:

In any biblical analysis . . . God must be given His proper due. He is the central character in the
Bible. Accordingly, I propose to treat Him as such, but my treatment assumes more than His
omnipresence. I also assume that God is motivated to do certain things—that He has goals He
would like to achieve.

I do not assume that God is omnipotent . . . the Bible is clear on one thing: human
beings do have free will and can exercise it, even if it invokes God’s wrath. . . . Consequently,
God, powerful as He is, is sometimes thwarted.

Since God does not always get His way, He can properly be viewed as a participant, or
player, in a game.

Additional evidence to support Brams’s view comes from earlier sections of the Bible,
which recount Abraham’s interactions with God.We learn that Abraham can appeal to God’s
preferences to persuade Him to change His mind. In Chapter 18 of Genesis, for example, God
informs Abraham of His intent to destroy the sinful cities of Sodom and Gomorrah. Abraham
challenges God, in an almost rebuking voice “Will you sweep away the innocent along with
the guilty? What if there should be fifty innocent within the city; will You then wipe out the
place and not forgive it for the sake of the innocent fifty who are in it? Far be it from You to
do such a thing, to bring death upon the innocent as well as the guilty, so that innocent and
guilty fare alike. Far be it from You! Shall not the Judge of all the earth deal justly?”

God agrees to spare Sodom and Gomorrah if there are 50 innocent among the people.
Abraham is not content to accept this judgment. Outwardly humble in speech (“I who am but
dust and ashes”), he demands to know what God would do “if the fifty innocent should lack
five? Will you destroy the whole city for want of the five.” God relents and agrees to spare
Sodom and Gomorrah if there are 45 innocent people. In the next several verses, Abraham
gets God to lower the number even further, first to 40, then to 30, then 20, and finally to 10.

Let’s see what happens then if we regard both God and Abraham as players in a two-
person game. Abraham has two choices: O: he can offer Isaac as a sacrifice or O*: he
refuses to go forward with the sacrifice. God also has two possible moves: He can act with
mercy (R) or He can be adamant (R*).

Fig. 16.9 shows the outcome matrix for the game. There are four scenarios:

OR: Abraham offers Isaac as a sacrifice and God is merciful.

OR*: Abraham offers Isaac as a sacrifice and God is adamant.

O*R: Abraham doesn’t sacrifice Isaac and God is merciful.

O*R*: Abraham doesn’t sacrifice Isaac and God is adamant.

How do we go from an outcome matrix to a payoff matrix in this case? We do not need
to know the utility functions of Abraham and God to do the analysis. It will be sufficient to
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rank order their preferences. We will use the numerals 1, 2, 3, and 4, with a higher number
indicating a more preferred outcome. Thus, we label the most preferred outcome with a 4 and
the least preferred with a 1. We are only paying attention to order here. We are not asserting
that the outcome with a 4 is twice as desirable as an outcome with a 2, for example.

We assume that God would prefer to be obeyed than disobeyed. Thus, the entries in the
first row of the matrix will get the 4 and 3 designations, while 1 and 2 will be assigned to the
second row entries. If Abraham obeys God’s command, so that we are in the top row of the
matrix, it is reasonable to assume that God would prefer to be merciful; Abraham will have
passed God’s test, so why punish him?On the other hand, should Abraham disobey, then God
will not be happy and would prefer to be adamant rather than merciful. Thus, we have God’s
preference orderOR > OR* > O*R* > O*R,whichwe display inmatrix form in Fig. 16.10.

What are Abraham’s preferences among the possible outcomes? We can identify
three different views of Abraham. First, there is the Abraham who is faithful to God
whatever the circumstances are. For such an Abraham, showing his faith is paramount; he
would rather obey than disobey. Thus, his two most desired outcomes (4 and 3) will be in
the top row of the payoff matrix and the two least preferred (2 and 1) will be in the bottom
row. Certainly Abraham would prefer that God act mercifully rather than adamantly; he
prefers outcomes in the left column over outcomes in the right column. Thus, Abraham
ordering, from most to least preferred, would be OR > OR* > O*R > O*R*. Fig. 16.11
shows the ever faithful Abraham’s payoffs.

GOD
R R*

A Abraham faithful Abraham faithful
B O God merciful God Adamant
R Isaac saved Isaac sacrificed
A
H Abraham resistant Abraham resistant
A O* God merciful God Adamant
M Isaac saved Isaac’s fate uncertain

R R

O

O

4 3

1 2
FIGURE 16.10 How God
ranks the outcomes.

FIGURE 16.9 The
outcome matrix for
the Abraham-God game.

R R

O

O

4 3

2 1

FIGURE 16.11 How
supremely faithful
Abraham ranks the outcomes.
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The second view of Abraham shows his faith wavering somewhat. He would most
prefer that God act with mercy rather than adamantly, so 4 and 3 will appear in the left column
with 2 and 1 in the second column. It is still very important to Abraham that he display his
faith, so he would rather obey than disobey. This Abraham has the preference order OR >
O*R > OR* > O*R*. Fig. 16.12 shows Abraham’s payoffs with these assumptions.

A third perspective on Abraham is that his paramount concern is not showing faith in
God, but rather in saving Isaac’s life. This Abraham has a preference ordering similar to the
previous case, but if God were going to be adamant, Abraham would rather not carry out the
sacrifice. The outcome OR* would be the worst possible for Abraham for in this case it is
certain that Isaac will die. If Abraham withholds Isaac (O*) and God is adamant so O*R*
results, then he expects some punishment from God, but it may be entirely directed at
Abraham, with Isaac being spared. Of course, if God were going to be merciful, Abraham
would prefer to obey. The preference ordering for this Abraham among the four possible
outcomes would be OR > O*R > O*R* > OR*. See Fig. 16.13.

Let’s turn to analyzing the three games that correspond to this trio of views about
Abraham. What is common in all three is that Abraham makes the first move and then God
responds. Abraham has only two strategies: obey (O) or disobey (O*). God, however, has
four strategies, since He has two choices (R or R*) for each of Abraham’s moves. We will
use the notation A/B to describe a strategy for God where God chooses A if Abraham obeys
and chooses B if Abraham disobeys. We can denote and describe God’s possible strategies
as follows:

R/R: Be merciful regardless. If Abraham offers Isaac, renege on your command, and
intervene to stop the sacrifice. If Abraham refuses to sacrifice Isaac, relent; show mercy
and do not punish him.

R*/R*: Be adamant regardless. If Abraham offers Isaac, let the sacrifice be completed. If
Abraham withholds his son, punish him for disobedience.

R/R*: Tit-for-Tat: Show mercy and stop the sacrifice if Abraham is obeying God, but
punish him if he won’t kill Isaac.

R*/R: Tat-for-Tat: Be adamant if Abraham obeys and be merciful if he doesn’t. An
adamant God would let the sacrifice continue to its bitter end should Abraham display his
obedience. Acting mercifully if Abraham disobeys would mean forgiving him.

R R

O

O

4 2

3 1 FIGURE 16.12 How a somewhat wavering Abraham ranks the outcomes.

R R

O

O

4 1

3 2 FIGURE 16.13 How a seriously wavering Abraham ranks the outcomes.
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For each of our three possible Abrahams, we have a 2× 4 game. For each we will
display an additional two columns on the left showing the payoffs for the four possible
outcomes of the game. Fig. 16.14 shows the result for a supremely faithful Abraham.

In this payoff matrix, Abraham always does better in the first row than in the second
regardless of which strategy God chooses: 4> 2 R R , 3> 1 R R , 4> 1 R R , and
3> 2 R R . Thus, Abraham’s obey strategy is dominant and he will always choose it.
God recognizes this as well, so He can secure His best outcome (4) by choosing R/R or R/
R*. For either choice, the outcome of the game is that Abraham will obey God and proceed
with the sacrifice, but God will be merciful and intervene. The outcome is OR; both players
get their best possible payoff.

The payoff matrix for an Abraham who wavers somewhat in his faith appears in
Fig. 16.15.

Here Abraham does not have a dominant strategy. Obeying (O) is better against R/R,
R*/R*, and R/R*, but O* is better if God plays R*/R. Abraham needs to think about what
God will do before he can decide what strategy he should follow. Viewing the payoff matrix
from God’s perspective, we see that R/R*, the tit-for-tat strategy, is a dominant one for God.
It is always better than R*/R: 4> 3 and 2> 1. It is at least as good as R/R in all cases and
better in one case: 4≥ 4 (if Abraham chooses O) and 2> 1 (if Abraham chooses O*).
Similarly, R*/R is better for God than R R 4> 3 if Abraham obeys and at least as good
for God (2≥ 2) if Abraham disobeys. Thus, R/R* is a dominant strategy for God. God will
choose R/R*. Abraham, realizing this, knows he will get 4 if he plays O and 1 if he chooses
O*. Thus, Abraham will choose the O strategy. God, playing the tit-for-tat strategy, will be
merciful. The outcome is again OR and each gets the best possible payoff.

Finally, let’s do the analysis for our seriously wavering Abraham for whom saving
Isaac is more important than showing his faith. Here the payoff matrix for the 2× 4 game is
shown in Fig. 16.15b.

R R

O 4, 4 3, 3

O 2, 1 1, 2

R R R R R R R R

4, 4 3, 3 4, 4 3, 3

2, 1 1, 2 1, 2 2, 1

FIGURE 16.14 Payoff
matrix for Case (a):
Abraham faithful
regardless.

R R

O 4, 4 2, 3

O 3, 1 1, 2

R R R R R R R R

4, 4 2, 3 4, 4 2, 3

3, 1 1, 2 1, 2 3, 1

Fig. 16.15a Payoff
matrix for Case (b):
Abraham wavers
somewhat.

R R

O 4, 4 1, 3

O 3, 1 2, 2

R R R R R R R R

4, 4 1, 3 4, 4 1, 3

3, 1 2, 2 2, 2 3, 1

Fig. 16.15b Payoff
matrix for Case (c):
Abraham wavers
seriously.
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As in the previous case, Abraham does not have a dominant strategy. O is better
against R/R and R/R*, but O* is better against R*/R* and R*/R. Abraham is forced to look
at what God might do. Abraham sees that R/R* is again the dominant strategy for God.
Knowing that God will choose R/R*, Abraham will choose 0. The outcome, once more, is
OR and yet again both players get their best possible payoff.

The conclusion for game theory is that if the players act rationally and choose
dominating strategies when they have them, then no matter which of the three views of
Abraham we have, the outcome will be the same. Abraham will attempt to carry out God’s
order to sacrifice his son, but God will intervene to stop it.

How accurate is game theory’s prediction? Let’s go back to Genesis for the conclusion
of the story. Recall that we interrupted the narrative just after Abraham had bound Isaac and
laid him on altar: “Then he reached out his hand and took the knife to slay his son.”

The text continues:

But the angel of the Lord called out to him from heaven, “Abraham! Abraham!”
“Here I am,” he replied.
“Do not lay a hand on the boy,” he said. “Do not do anything to him. Now I know that

you fear God, because you have not withheld from me your son, your only son.”
Abraham looked up and there in a thicket he saw a ram caught by its horns. He went over

and took the ram and sacrificed it as a burnt offering instead of his son. So Abraham called
that place The Lord Will Provide. And to this day it is said, “On the mountain of the Lord it will
be provided.”

The angel of the Lord called to Abraham from heaven a second time and said, “I swear
by myself, declares the Lord, that because you have done this and have not withheld your son,
your only son, I will surely bless you and make your descendants as numerous as the stars in the
sky and as the sand on the seashore. Your descendants will take possession of the cities of their
enemies, and through your offspring all nations on earth will be blessed because you have
obeyed me”.

Thus, the outcome game theory predicted is how the story turned out. Does game
theory provide any further insight into the Akedah that classic biblical commentary and
literary analysis fails to give? It is certainly consistent with the game theory approach that
Abraham’s action followed the traditional interpretation that he passed God’s test by
demonstrating unwavering faith in blindly obeying the command to sacrifice Isaac. But
game theory says there is another possibility: instead of acting out of faith, Abraham might
have had other priorities. His decision to move forward with the sacrifice could be ade-
quately explained as the logical action to take in light of a dispassionate, cold, rational
analysis of the game. A game theorist could well conclude that if God’s test was designed to
be a test of faith, it was a poor exam. Abraham could have passed the test even if his faith
was quite weak.

IV. Tosca and the Prisoners’ Dilemma
The Prisoners’ Dilemma is justifiably one of the most studied games in the history of
mathematics. Merrill Flood and Melvin Dresher created the game in 1950 as an example of
a situation where people might not cooperate even if it is in their best interests to do so.
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Albert Tucker (1905 1995) framed the example in its current form when he wanted to
come up with an interesting example to explain game theory to a class of psychology
students at Stanford a half-century ago.

Police suspect that a certain pair of men, Ehrlichperson and Handlebody, have
committed a major crime together, a felony punishable by 20 years in prison. They are
arrested, jailed, and interrogated separately. There is sufficient evidence to charge them
with a minor offense, but without a confession, the state will not be able to convict them of
the more serious crime. The prisoners are aware that there is enough evidence in police
hands to send them to jail for 1 year.

The district attorney offers each man the same deal. “If you confess to the major crime
and implicate your partner, then he will receive a 20-year prison sentence, but you will go
free for being a state’s witness. On the other hand, if you remain silent and he confesses that
you did the crime together, then you will be the one with the 20-year prison term, and
he will be free. If you both confess, then we will let the pair of you enter into a plea
bargaining deal under which you both serve 5-year terms.” If both prisoners remain silent,
they will each spend a year behind bars.

Each player has two strategies: Confess (C) or Remain Silent (S). Fig. 16.16 shows
the payoff matrix of the classic Prisoners’ Dilemma Game:

What should each of the prisoners do? They are not able to communicate with each
other, so each must make a decision without knowing for certain what the other prisoner
will do. This seems easy because each has a dominant strategy: Confess. For Ehrlichperson,
for example, C is a better choice if Handlebody chooses C; he would be in prison for 5 years
instead of 20. C is also better for Ehrlichperson if Handlebody remains silent; he goes free if
he confesses but spends a year in prison if he remains silent. Handlebody has a similar
analysis; he is better off confessing no matter what Ehrlichperson does.

Thus, maximizing your own gains (or equivalently minimizing your individual los-
ses) by choosing a dominant strategy if you have one leads to the outcome of both choosing
strategy C. Each faces 5 years locked in a penitentiary.

But wait! There is another strategy choice that leads to a better outcome for both of
them! If each chooses to remain silent (S), then each only goes to prison for a year. Ehr-
lichperson and Handlebody both prefer 1, 1 to 5, 5 . The Confess (C) is often
described as an act of betrayal because it results in the other player getting a longer prison
sentence than he would have if the confessor had remained silent. Betrayal is a dominant
strategy in the Prisoners’ Dilemma, and the Dominance Principle says that players should
always choose a dominating strategy. Following that advice, however, leads to a less
desirable outcome for both than if each had remained silent.

Handlebody

Confess C Stay Silent S

Confess C − 5,− 5 0,− 20

Ehrlichperson

Stay Silent S − 20, 0 − 1,− 1

FIGURE 16.16 Payoff
matrix for prisoners’
dilemma.

508 CHAPTER 16 Game Theory



The arms race between the United States and the Soviet Union during the Cold War
exhibited some characteristics of the Prisoners’ Dilemma. Each nation had a choice to arm
or to disarm. Disarming while your opponent continued to build up arms was seen as
leading to military inferiority (the “missile gap”) and possible annihilation. On the other, if
you arm and the other disarms, you have military superiority. If each side had huge
stockpiles of nuclear weapons, neither could afford to attack the other without fear of its
own destruction, but both sides would have a large economic burden that would deflect
expenditures away from important domestic concerns. If both sides chose to disarm, then
neither would be in danger from the other and each would free up revenues for other
purposes. The best choice is mutual disarmament, but the “rational” choice appeared to be a
mutual escalation in weaponry and that’s what both countries did for several decades.

It turns out that the situation posed in Puccini’s opera is a Prisoners’ Dilemma for
Tosca and Scarpia. Each one has two strategies: keep the bargain made with the other one or
double cross the other. Scarpia’s double cross is signaling his assistant that the “fake”
execution should be a real one. Tosca’s double cross is to kill Scarpia. Fig. 16.17 displays
the outcome matrix for the game.

For Tosca, the best outcome occurs if she double-crosses Scarpia but he keeps his
bargain. She is reunited with her beloved Cavaradossi and avoids sex with the now dead
Scarpia, who will never bother her again. The second-best outcome is the one in which
Cavaradossi lives, but she must sully herself with Scarpia’s lust. The worst outcomes for
Tosca are the two in which Cavaradossi dies; of these, the worst is the one where she keeps
her bargain but Scarpia has double-crossed her. Using the numerals 1 to 4 as in the Abraham
story, we assign them to the outcomes as we just described. Fig. 16.18 shows the payoffs to
Tosca, Fig. 16.19 for Scarpia, and Fig. 16.20 combines them for a full payoff matrix.

Scarpia
Keep
Bargain

Double
Cross

Tosca Keep
Bargain

3 1

Double
Cross

4 2 FIGURE 16.18 Payoffs
to Tosca.

Scarpia
Keep
Bargain

Double
Cross

Tosca Keep
Bargain

Scarpia’s lust is satisfied
Cavaradossi lives
Tosca’s virtue is compromised

Scarpia’s lust is satisfied
Cavaradossi dies
Tosca’s virtue is compromised

Double
Cross

Scarpia dies
Cavaradossi lives
Tosca’s virtue remains intact

Scarpia dies
Cavaradossi dies
Tosca’s virtue remains intact

FIGURE 16.17 Outcome
matrix for Tosca and
Scarpia.
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It is easy to see from the payoff matrix of Fig. 16.20 that the dominant strategy for
both Tosca and Scarpia is to double-cross each other. The outcome is that each gets their
second-worst payoff. If they both choose the keep the bargain, then each winds up with
their second-best outcome. Did they find that better outcome, or does the opera conclude
with a double double cross, or perhaps some other outcome?

As Scarpia sings “Tosca, you are mine at last!” he opens his arms and advances
towards Tosca to embrace her . . .

The libretto describes what happens next:

Scarpia’s shout of lust ends in a cry of anguish. Tosca has struck him full in the heart with the
knife. “Accursed one!” exclaims Scarpia to which Tosca triumphantly answers “This is the kiss
of Tosca!”

Both our players went for the dominant strategy. Tosca decided to deceive Scarpia by
appearing to agree to his demand, but then stabbing him dead after he has given the order to
use blanks. She does so, but too late discovers that Scarpia chose a double cross as well. The
firing squad does not use blanks; Cavaradossi dies. Tosca leaps from the battlements,
committing suicide, and all three end up dead.

The Prisoners’ Dilemma Game illustrates one essential difference between nonzero-
sum games and zero-sum situations. For zero-sum games, we only have to consider our
own payoffs is selecting strategies that are most likely to give us the best possible outcomes.
For nonzero-sum games, rational no longer can means maximizing our expected value,
thinking the worst about the other player. Such selfish thinking can lead to the paradoxical
outcome that members of a group will consciously steer towards a sub-optimal outcome in
certain scenarios. To do as well as possible in a nonzero-sum game, the theory needs to take
into account, in advising us of our most attractive strategy mixture, other players’ payoffs as
well as our own.

Scarpia
Keep
Bargain

Double
Cross

Tosca Keep
Bargain

3 4

Double
Cross

1 2

Scarpia
Keep
Bargain

Double
Cross

Tosca Keep
Bargain

(3, 3) (1, 4)

Double
Cross

(4, 1) (2, 2)

FIGURE 16.19 Payoffs
to Scarpia.

FIGURE 16.20 The
payoff matrix for the
game in Tosca.
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V. Nash Equilibrium
The mutual double cross outcome in the Tosca-Scarpia game (see Fig. 16.20) has an
equilibrium aspect to it. If either player moves away from this outcome acting individually,
then the payoff to the one who moves decreases. We are currently at (2, 2). If Tosca moves
to her Keep Bargain strategy, the payoffs shift to (1, 4) where Tosca winds up with her
worst possible outcome. If Scarpia moves alone to his Keep Bargain strategy, the new
payoff is (4, 1); his payoff decreases from 2 to 1. Thus, neither player has an incentive for a
unilateral move to another strategy. They do have a mutual incentive to move to the (3, 3)
payoffs, but they may not be able to reach an agreement to do so either because they are not
able to communicate with each other or there isn’t sufficient trust of one another.

In his short, but brilliant Ph.D. thesis, John F. Nash generalized this situation and
developed what is now called the Nash equilibrium. The setting is a game with at least two
players who act independently of each other without the ability to make binding agree-
ments. The term noncooperative game is often employed to describe such games. Each
player can see the payoff matrix. A Nash equilibrium is an assignment of strategy choices to
the players so that no player can benefit by changing strategies if the other players keep
theirs unchanged.

As we observed, the Double Double Cross is a Nash equilibrium for Tosca and
Scarpia. The outcome in which they both choose Keep Bargain and receive (3, 3) is not a
Nash equilibrium. While Tosca’s payoff would go down if she switches to Double Cross
and Scarpia doesn’t move, Scarpia’s payoff would go up if he switched to Double Cross
while Tosca continued to use the Keep Bargain strategy.

A strategy combination (Ri, Cj) in a two-person game is a Nash equilibrium pair if
no player can increase his or her reward by a unilateral departure from (Ri Cj). If one
player sticks rigidly to his or her Nash-equilibrium strategy, then the other player cannot
increase his or her payoff by selecting a strategy other than his or her Nash-equilibrium
strategy. The pair (Ri, Cj) is a Nash equilibrium if Ri is the best reply to Cj and Cj is the
best reply to Ri

As another example, consider the payoff matrix shown in Fig. 16.21 for a 2× 2
two-person game. Both R1C2 and R2C1 produce Nash equilibria. If the players find
themselves at R1C2, for example, then neither Rose nor Colin has any incentive to move
on his or her own. Rose sees that her move to R2 results in the outcome R2C2 where payoff
drops from 10 to 5. Colin realizes similarly that if he moves and Rose doesn’t, his
payoff drops. The new outcome would be R1C1 where Colin’s payoff now becomes 10
instead of the original 1.

Game theorists use the name chicken for games that have payoffs with the structure
shown in Fig. 16.21. Such games may occur in situations where each player would rather
not yield to the other, but the worst possible outcome happens if neither yields. The name
chicken refers to a contest where two drivers speed toward each other on a collision course.

C1 C2

R1 − 10,− 10 10,− 1

R2 − 1, 10 5, 5 FIGURE 16.21 The game of chicken.
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They will both die if neither one swerves out of the way of the other, but the driver who
swerves is labeled a coward or “chicken.” This game has also used a model of the nuclear
brinksmanship involved in the Cuban Missile Crisis.

Biologists know this game as Hawk-Dove where two animals are contesting an
indivisible resource. If both use the more aggressive Hawk strategy, then they fight until
one is injured and the other wins. If one chooses Hawk and the other the less aggressive
Dove strategy, then Hawk beats Dove. If both employ Dove, there is a tie; each receives a
payoff smaller than the payoff a Hawk gets in beating a Dove. See Maynard Smith [1982]
and the discussion in Chapter 18. Chicken has also been used to model some economic
decisions. Suppose two companies are considering entering a market in which there is a
relatively low demand for a product so that there is only enough room in the market place
for one of them. If both enter, then each will go broke. See Krugman [1987].

Some games such as Tosca-Scarpia have a single Nash equilibrium, whereas others,
such as chicken, may have multiple Nash equilibria. A more common situation is that in
which no pair of strategies produces a Nash equilibrium. Fig. 16.22 shows such a game.
Note that Rose does better by a unilateral move from R2C1 or R1C2, while Colin improves
his payoff by a unilateral move from R1C1 or R2C2. None of the four possible outcomes is
a Nash equilibrium.

In the case of zero-sum games with no saddle points in pure strategies, we proceeded
to consider mixed strategies where players chose each pure strategy with a probability
picked in order to maximize expected payoffs. We can also examine Nash equilibria with
mixed strategies.

In the Rose-Colin game with the payoff matrix shown in Fig. 16.22, suppose Rose
plays strategy R1 with probability p and strategy R2 with probability (1 p). Let’s
determine how well Colin will do.

Colin’s expected payoff if he always chooses C1 is

3p+ 5 1 p = 3p+ 5 5p= 5 8p

and his expected payoff under C2 is

4p 4 1 p = 4p 4+ 4p= 8p 4.

Then C1 will have a higher expected payoff than C2 if 5 8p> 8p 4—that is, when
p< 9

16. Colin’s second strategy C2 has a higher expected payoff when p> 9
16. The two

strategies have the same expected payoff, 1
2, when p= 9

16. Thus, if Rose uses R1 with

probability 9
16 and R2 with probability 7

16, then Colin will have an expected payoff of 1
2 for

every mixture of C1 and C2 that he chooses.

C1 C2

R1 5,− 3 − 4, 4

R2 − 5, 5 3,− 4

FIGURE 16.22 A 2 × 2
game with no pure
Nash equilibrium.
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Shifting perspectives, we find that if Colin uses a mixture where he plays C1
with probability q and C2 with probability (1 q), then Rose’s expected payoffs are
5q+ 4 1 q = 5q 4+ 4q= 4+ 9q if she always plays R1 and 5q+ 3 1 q
= 5q+ 3 3q= 8q+ 3 if she always plays R2. These expected payoffs are equal
when q= 7

17 and have a value − 5
17 . If Colin uses the strategy mixture 7

17 ,
10
17 , then Rose’s

expected payoff would be − 5
17 , no matter what strategy mixture she picked.

Our claim is that the strategy mixtures 9
16 ,

7
16 for Rose and 7

17 ,
10
17 for Colin provide

a Nash equilibrium for the game. If either player sticks to the suggested mixture and the
other deviates to another mixture, the deviating individual will see no change at all in the
expected payoff. There is no mixture that will increase his or her expected payoff.

For this particular two-person game, we were able to compute mixed strategies that
yielded a Nash equilibrium. Nash proved a major extension of this result: namely, there
always exists at least one Nash equilibrium in any n-person game. We will now outline a
proof of Nash’s theorem.

First, we need to introduce some notation: we let n be the number of players and we
use i, j, k as indices for individual players. Lowercase Greek letters such as α, β, γ denote
indices for the set of strategies available to an individual. The symbol πiα means the αth
pure strategy of individual i.

By a mixed strategy si for player i we mean a collection {ciα} of nonnegative
numbers that sum to 1 and are in a one-to-one correspondence with player i’s pure
strategies. Our symbol for such a mixed strategy is si = α ciαπiα where each cia ≥ 0 and

α ciα = 1. The number cia is the probability that player i will use his αth strategy. In
addition to si as a symbol for a mixed strategy, we will also use terms like tj and rk. Since
each of our n players can select a mixed strategy that may differ from one individual to
another, we can consider n-tuples S= s1, s2, . . . ,sn of mixed strategies. For each col-
lection S of mixed strategies, there will be an n-dimensional vector p of expected payoffs.
We call p the payoff function. Then pi S =pi s1, s2, . . . ,sn indicates the expected payoff
to player i.

Given a particular set S of strategy mixtures, we need a notation for a new set of
mixtures in which exactly one of the players switches strategies. Let (S;ti) indicate the new
set where ti replaces the original si for player i. More exactly, if S= s1.s2,si−1,si,si+1 . . . ,sn
then (S, t1) s1.s2,si−1,ti,si+1 . . . ,sn

With this notation, we can provide a precise description of a Nash equilibrium. An
n-tuple S is a Nash equilibrium point if and only if for every player i,

pi S = max
all r′i s

pi S ri

This is a precise way of saying that each player’s mixed strategy in S maximizes his payoff
if the strategies of the others are held fixed. What is true for every player i is that no matter
what other mixture ri he tries, his payoff will not increase if he is the only one changing
strategy mixtures.

It’s easy to show that maxall r′i s pi S ri = maxα pi S πiα . This result implies that
if in replacing a mixed strategy by any of the pure strategies a player has does not increase
her expected payoff, then no mixture will either. Thus, to test whether a particular set of
mixed strategies is a Nash equilibrium, we do not have to examine the infinitely many
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possible other mixtures for each of the players, but only the finite set of pure strategies for
each player. If player i replaces her strategy mixture si by her pure αth strategy, then we
denote her expected payoff pi S πiα by piα S .

Each of our players typically has a large number of pure strategies available. A
particular strategy mixture may attach 0 as the weight of one or more pure strategies so that
the corresponding pure strategy is never employed. If the weight cia is positive, however,
then we say that mixture uses the pure strategy πia.

A necessary and sufficient condition for S to be a Nash equilibrium is

pi S = max
all r′i s

pi S ri = max
α

pi S πiα = max
α

piα S

Note: if S is a Nash equilibrium point, then cia=0 whenever piα S < maxβ piβ S —

that is, S does not use πiα unless it is an optimal pure strategy for player i.
Hence: A necessary and sufficient condition for a Nash equilibrium is

If πiα is used in S, then piα S = maxβ piβ S piα S = maxβ piβ S .

We come now to a proof of Nash’s theorem guaranteeing the existence of at least one
Nash equilibrium. The proof is very similar in spirit and structure to the argument for the
existence of a price equilibrium that we introduced in Chapter 9. We suggest you review
that argument before continuing.

NASH’S THEOREM: Every finite game has an equilibrium point.

Proof Let S be an n-tuple of mixed strategies and piα S the corresponding payoff to
player i if he changes to his αth pure strategy πiα and the others continue to use their
respective mixed strategies from S. Define φiα S =max 0,piα S − pi S , and for each
component si of S, we define a modification s′ by

s′i =
si + α φiα S πiα
1+ α φiα S

and let S′ be the n-tuple S′= s′1,s′2, . . . ,s′n .
We now show that the fixed points of the mapping T S→S′ are the equilibrium

points.
If S is an equilibrium point, then each φiα S =max 0, piα S − pi S is 0 so that

S is a fixed point under T.
Conversely, suppose S is fixed under T.
For any S (fixed or not), the ith player’s mixed strategy si will use certain of his

pure strategies. Some one of these strategies, say πiα, must be “least profitable” so that
piα S ≤ pi S , which will make φiα S = 0.

But if S is fixed under T, the proportion of πiα used in si must not be decreased by
T. Hence, for all β’s we must have φiβ S = 0 to prevent the denominator of s′i from
exceeding 1.

s′i =
si + α φiβ S πiα
1+ α φiα S
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Thus, if S is fixed under T, for any i and β, we have φiβ S = 0. But that means
that no player can improve his payoff by moving to a pure strategy πiβ. That’s exactly
the criterion for an equilibrium point.

Hence, equilibrium points correspond to fixed points of a certain continuous
function T from the space of all n-tuples of mixed strategies to itself. Note that the
function T does not change any of the pure strategies; it only modifies the weights cia
for each player. But the set of all possible weights for each player is a collection of finite
dimensional vectors of nonnegative entries that add to 1. In the language of Chapter 9,
we are dealing with sets of normalized prices. It should not be a surprise then that
domain of T has the fixed-point property. Hence, T must have a fixed point by
Brouwer’s Theorem, and so Nash’s Theorem is proved. ⋄

VI. Dynamic Solutions
We conclude our brief introduction to the rapidly expanding discipline of game theory with
an examination of how you might play a game where you know the strategies available to
you and the other player but you are not told exactly what the payoff matrix is. Suppose, for
example, that we have a 2× 2 zero-sum game with unspecified payoffs a, b, c, and d as
shown in Fig. 16.23.

If Rose and Colin do not know the payoffs, they can only try to guess what an optimal
strategy mixture might be. Here is one way to guess. Each tries some initial arbitrary mixed
strategy x,1− x for Rose and y,1− y for Colin. When they use this pair of mixed
strategies for some time, each gets an average return. These expected returns are

Rose EVR = axy+ bx 1 y + c 1 x + d 1 x 1 y

= a b c+ d xy+ b d x+ c d y+ d

Colin EVC= EVR

Now Rose and Colin only experience seeing the average payoff after a number of
plays of the game; they remain ignorant of the values of a, b, c, and d.

Let Rose switch to some other mixed strategy x≠,1− x≠ where x≠ > x—that is, Rose
chooses R1 more frequently. Her average payoff may increase or decrease. If it increases,
then Rose knows she is “on the right track” toward a better mixture, and she will try
increase the frequency of R1 even more. If her average payoff decreases, then she will
reduce how often she plays R1.

Furthermore, let’s assume that if Rose sees a big increase in her average payoff, she will
be inclined to make a big change in x. If she experiences a small change in her average payoff,
she will make a small change in x. We can model Rose’s dynamics as a differential equation

C1 C2

R1 a b

R2 d d
FIGURE 16.23 A 2× 2 zero-sum game with unspecified
numerical payoffs.
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dx

dt
= k1

∂EVR x, y
∂x

for some k1 > 0

With similar assumptions about Colin, we obtain

dx

dt
= k2

∂EVR x, y
∂y

for some k2 > 0

To see how this system of differential equations behaves over time, we examine first
the specific 2× 2 zero-sum game with payoff matrix as shown in Fig. 16.24.

Here the expected payoff to Rose with mixed strategies x, 1− x and y, 1− y is

5xy 4y 1 x 3x 1 y + 7 1 x 1− y = 19xy 10x 11y+ 7

and since it is zero-sum game, the expected payoff to Colin is

19xy 10x 11y+ 7 = 19xy+ 10x+ 11y 7

Neither Rose nor Colin is aware of these formulas for the expected payoffs. Each just
sees the numerical payoffs. If, for example, each played both their strategies exactly half the
time, Rose would experience an average payoff of 1.25. If Rose lets x= .6 and Colin
chooses y= .3, then Rose would see an average payoff of 1.12.

[Note that when we analyzed this game earlier in the chapter, we wrote Rose’s
expected value as

19xy− 10x− 11y+ 7= 19 x−
11
19

y−
10
19

+
23
19

and concluded that Rose and Colin’s optimal choices were x= 11 19 and y= 10 19.]
The system of differential equations becomes

dx

dt
=

∂ 19xy− 10x− 11y+ 7
∂x

= 19y− 10

dy

dt
=

∂ − 19xy+ 10x+ 11y+ 7
∂y

= − 19x+ 10

The stable point for the system is x=
11
19

, y=
10
19

.

C1 C2

R1 5,− 5 − 3, 3

R2 − 4, 4 7,− 7

FIGURE 16.24 Our first
example payoff matrix
for the dynamic approach.
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To find the orbit for the system, we find the equation for dy dx, separate the variables,
and integrate. Our successive equations are

dy

dx
=
dy dt

dx dt
=

− 19x+ 11
19y− 10

∫ 19y− 10 dy= ∫ − 19x+ 11 dx

19
2
y2 − 10y= −

19
2
x2 + 11x+C

19y2 − 20y= − 19x2 + 22x+C

19 y2 −
20
19

y + 19 x2 −
22
19

x =C

Now we complete the squares in x and y to find

x−
11
19

2 + y−
10
19

2 =
D

19

for some constant D, depending on the initial values. From this form for the equation of the
trajectory, we see that it is a circle with center at

11
19

,
10
19

Using a similar approach that we employed in Chapters 2 and 4, we can find explicit
solutions of the differential equations. Make the change of variables X t = x t − 11 19
and Y t = y t − 10 19. Then X′= x′= 19 y− 10 19 = 19Y and Y ′= y′=
− 19 x− 11 19 = − 19X. Hence,

X″= X′ ′= 19Y ′= 19Y ′= 19 − 19X = − 192X

Y″= Y′ ′= − 19X ′= 19X′= − 19 19Y = − 192Y

and this system has solutions

X t =A sin 19t +B cos 19t

Y t =C sin 19t +D cos 19t

so that

x t =X t + 11 19=A sin 19t +B cos 19t + 11 19

y t = Y t + 10 19=C sin 19t +D cos 19t + 10 19

for appropriately chosen constants A, B, C, and D.
Thus, the functions x t and y t are periodic, but their average values are 11/19 and

10/19, respectively, regardless of what values they initially chose for x and y. Their average
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payoffs would be same as using the optimal strategy mixtures. Here Rose and Colin, over
the long haul, will do as well in the game as if they knew the entries in the payoff matrix.

In particular, if both players start with a 50-50 mixture of their two strategies
x 0 = 1 2, y 0 = 1 2 , then

x t = −
1
38

sin 19t −
3
38

cos 19t +
11
19

y t =
1
38

sin 19t −
1
38

cos 19t +
10
19

As a second example of this technique, we examine the nonzero-sum game whose
payoff matrix is displayed in Fig. 16.25:

Here the expected payoff to Rose is 17xy 7x 8y+ 3, and the expected payoff to
Colin is 16xy+ 8x+ 9y 4. The differential equations become

dx

dt
= 17y− 7

dy

dt
= − 16x+ 9

The equation for the trajectory is

x−
9
16

2

+ y−
7
17

2

=D

from which we see that x t , y t will travel around a circle whose center is 9
16 ,

7
17 . On

average, Rose will play R1 will probability 9
16 and Colin will play C1 with probability 7

17.
Their long-term expected payoffs will be the same as if they used the mixed strategies
9
16 ,

7
16 and 7

17 ,
10
17 . Observe now that this game is the same one as displayed in Fig. 16.22;

our analysis there showed that these mixed strategies are precisely the Nash equilibrium
mixtures. Thus, the dynamic approach yields essentially the same solution as computing the
Nash equilibrium when the players know the entries in the payoff matrix.

Finally, let’s see what this dynamic approach says about a Prisoners’ Dilemma game.
Recall the payoff matrix facing Tosca and Scarpia as shown in Fig. 16.26. Tosca’s strat-
egies are T1 (Keep the Bargain) and T2 (Double Cross); similarly S1 (Keep the Bargain)
and S2 (Double Cross) are Scarpia’s strategies. If Tosca uses T1 with probability x and

C1 C2

R1 5,− 3 − 4, 4

R2 − 5, 5 3,− 4

FIGURE 16.25 Our
second example payoff
matrix for the dynamic
approach.
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Scarpia employs S1 with probability y, then the expected payoffs are x 2y +2 for Tosca
and 2x y + 2 for Scarpia.

The differential equations of the dynamic approach are

dx

dt
=

∂ − x− 2y+ 2
∂x

= − 1

dy

dt
=

∂ 2x− y+ 2
∂y

= − 1

where both derivatives are negative constants. Thus, no matter what the starting proba-
bilities, both Tosca and Scarpia will use less and less of their first strategy. Over time,
x and y will decrease to 0 and the process ends with both using the Double Cross strategy
exclusively. The dynamic approach leads to the same outcome as the advice to use a
dominant strategy if you have one. Tosca and Scarpia do reach the Nash equilibrium
where each receives their second worst outcome. The dynamic approach fails to converge
on the available outcome that both Tosca and Scarpia would have favored over the one
that happened.

VII. Historical and Biographical Notes
Prior to the publication of von Neumann and Morgenstern’s 625-page tome in 1944, there
were only a few isolated results in what is now known as game theory. In 1913, Ernst
Zermelo (1871 1953) proved that in any finite two-person game of perfect information
where players alternate moves and in which chance plays no role, then one of the players
must have a winning strategy; that is a strategy that insures a victory or a draw. Thus, there
is a winning strategy for chess, although no one knows what it is.

In the early 1920s, Emile Borel (1871 1956) published several papers, defining the
idea of games of strategy and suggesting that mixed strategies might lead to stable out-
comes. Using poker as an example, Borel addressed the tactic of bluffing in games of
imperfect information. Von Neumann’s 1928 paper stating and proving the Minimax
Theorem is generally considered the beginning of modern game theory. In the light of
Nash’s later work, we can describe von Neumann’s result as showing the existence of at
least one Nash equilibrium for a two-person zero-sum game and, if there are multiple Nash
equilibria, then they all have the same expected payoff.

Von Neumann published nothing more on the subject until Morgenstern began
collaborating with him during World War II. In the early 1940s, von Neumann served on
many committees and commissions related to the war effort, advised both the army and the
navy, and consulted on the ultrasecret Manhattan Project that developed the atomic bomb.
How did he have time to coauthor such a large and ambitious book?

S1 S2

T1 3, 3 1, 4

T2 4, 1 2, 2 FIGURE 16.26 Our second example payoff matrix for the dynamic approach.
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Von Neumann’s wife Klári recalled how he and Morgenstern worked on the project:

Johnny would get home in the evening after having zig-zagged through a number of meetings
up and down the coast. As soon as he got in, he called Oskar and then they would spend the
better half of the night writing the book. . . . This went on for nearly two years, with continuous
interruptions of one kind or the other. Sometimes they could not get together for a couple of
weeks, but the moment Johnny got back, he was ready to pick up right where they stopped, as if
nothing had happened since the last session. (quoted from Dyson [2012])

In his own account of the collaboration, Morgenstern [1976] adds more detail and
recalls how frustrated von Neumann’s wife became over the amount of time the two men
spent together:

There were endless meetings. . . . We wrote virtually everything together and in the manuscript
there are sometimes long passages written by one or the other and also passages in which the
handwriting changes two or three times on the same page. We spent most afternoons together,
consuming quantities of coffee and Klári was often rather distressed by our perpetual col-
laboration and incessant conversations . . . she teased us by saying that she would have
nothing more to do with the ominous book, which grew larger and larger and consumed more
and more of our time[,] if it didn’t also have an elephant in it. So we promised we would happily
put an elephant in the book.

[You can find the elephant if you look closely at page 64 of vonNeumannandMorgenstern.]

The Theory of Games of Economic Behavior drew rave reviews when it first
appeared. “Posterity,” Arthur Copeland wrote “may regard this book as one of the major
scientific achievements of the first half of the twentieth century.” From our perspective
seven decades later, we see that von Neumann and Morgenstern had not created a fully
developed theory that answered all questions, but they did lay a solid foundation. “Nev-
ertheless[,] to the economists and social scientists of the time,” Antonia Jones observed, “it
must have seen that the answer to their prayers had magically appeared overnight.”

The next breakthrough in game theory came in 1950 with John Nash’s discovery of
equilibrium strategies for n-person noncooperative games. The potential of Nash’s idea did
not become fully exploited until the early 1970s, when economists discovered how pow-
erful a tool the equilibrium concept could be.
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John Nash in his college years.
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John Forbes Nash Jr. was born on June 13, 1928, in Bluefield, West Virginia. His
father was an electrical engineer and his mother a school teacher. Bluefield, in Nash’s
words, was “a small city in a comparatively remote geographical location in the Appa-
lachians, not a community of scholars or of high technology.” He supplemented his public
school education with his own reading, including Compton’s Pictured Encylopedia, and
taking courses at a local community college while in high school.

Nash won a George Washington Scholarship, which paid all his expenses at Carnegie
Tech (now Carnegie Mellon University). He began as a chemical engineering student,
switched to chemistry, and eventually decided on a mathematics major, in part because the
math faculty explained to Nash “that it was not almost impossible to make a good career in
America as a mathematician.” He was simultaneously awarded both a bachelor’s and a
master’s degree when he graduated at the age of 20. His mathematics professor Richard J.
Duffin wrote a one-line letter of recommendation in support of Nash’s Princeton graduate
school application: “This man is a genius.”

The single economics course Nash ever took was an elective class in International
Economics, but it had profound consequences. It led directly to the ideas behind his
Econometrica paper “The Bargaining Problem” and spurred his interest in game theory. As
von Neumann and Morgenstern were both in Princeton, the university was a center of
activity in this new discipline. Within a year of his arrival on campus, Nash had formulated
his idea about equilibrium in noncooperative games and proved the existence of such
strategies in n-person games. The impact of his short (27-page) doctoral dissertation was the
basis of his 1994 Nobel Prize in Economics.

Nash left Princeton in 1951 to accept a faculty position at the Massachusetts Institute
of Technology. Over the next several years, he developed brilliant solutions to several
outstanding open research questions in different fields of mathematics. He would hear about
major unsolved problems in Riemannian geometry or partial differential equations and then
embark on his own unique path to solve them. Before age 30, Nash had earned the “genius”
description.

Then tragedy struck. Nash fell victim to paranoid schizophrenia. He had auditory
delusions that he believed. He turned down an offer for a professorship at the University of
Chicago, for example, claiming that he was shortly to become the emperor of Antarctica.
He had many periods of enforced stay at psychiatric hospitals where he was subject to a
variety of treatments, including insulin shock therapy—none of which were successful.

There were intermittent periods when Nash was able to overcome the delusions:

And it did happen that when I had been long enough hospitalized that I would finally renounce
my delusional hypotheses and revert to thinking of myself as a human of more conventional
circumstances and return to mathematical research. In these interludes of, as it were, enforced
rationality, I did succeed in doing some respectable mathematical research . . .

But after my return to the dream-like delusional hypotheses in the later 60s I became a
person of delusionally influenced thinking but of relatively moderate behavior and thus tended
to avoid hospitalization and the direct attention of psychiatrists.

Nash eventually returned to Princeton where he was seen as a ghostly, sad figure—
“The Phantom of Fine Hall”—who wrote complex equations at night on classroom
blackboards. By the early 1970s, Nash began to emerge from schizophrenia, essentially by
his own will. “I began to intellectually reject some of the delusionally influenced lines of
thinking which had been characteristic of my orientation,” he noted in the autobiographical
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statement he prepared in conjunction with his receipt of the Nobel award. “So at the present
time I seem to be thinking rationally again in the style that is characteristic of scientists.
However this is not entirely a matter of joy as if someone returned from physical disability
to good physical health. One aspect of this is that rationality of thought imposes a limit on a
person’s concept of his relation to the cosmos.”

Nash’s life and his struggle with mental illness formed the basis of a major 2001
motion picture A Beautiful Mind, based on Sylvia Nasar’s award-winning biography of the
same title. Nash associated his madness with living on an “ultralogical” plane, “breathing
air too rare” for most mortals, and if being “cured”meant he could no longer do any original
work at that level, then, Nash argued, a remission might not be worthwhile in the end. At the
very beginning of her biography, Nasar recounts a story that illustrates the often fine line
between genius and madness, the belief that Nash apparently had that original creative ideas
may come from the same part of the mind that generates delusions. It is May 1959, and
Harvard mathematician George Mackey is visiting Nash in the psychiatric hospital:

Nash was slumped in an armchair in one corner of the hospital lounge, carelessly dressed in a
nylon shirt that hung limply over his unbelted trousers. His powerful frame was slack as a rag
doll’s, his finely molded features expressionless. He had been staring dully at a spot imme-
diately in front of the left foot of Harvard professor George Mackey, hardly moving except to
brush his long dark hair away from his forehead in a fitful, repetitive motion. His visitor sat
upright, oppressed by the silence, acutely conscious that the doors to the room were locked.
Mackey finally could contain himself no longer. His voice was slightly querulous, but he
strained to be gentle. “How could you,” began Mackey, “how could you, a mathematician, a
man devoted to reason and logical proof . . . how could you believe that extraterrestrials are
sending you messages? How could you believe that you are being recruited by aliens from outer
space to save the world? How could you . . . ?”

Nash looked up at last and fixed Mackey with an unblinking stare as cool and dispas-
sionate as that of any bird or snake. “Because,” Nash said slowly in his soft, reasonable
southern drawl, as if talking to himself, “the ideas I had about supernatural beings came to me
the same way that my mathematical ideas did. So I took them seriously.”

The Nash equilibrium, writes Robert Aumann, also a Nobel Prize winner in eco-
nomics for his work in game theory, “is without doubt the single game theoretic solution
concept that is most frequently applied in economics. Economic applications include oli-
gopoly, entry and exit, market equilibrium, search, location, bargaining, product quality,
auctions, insurance, principal-agent [problems], higher education, discrimination, public
goods, what have you. On the political front, applications include voting, arms control and
inspection, as well as most international political models (deterrence, etc.). Biological
applications all deal with forms of strategic equilibrium; they suggest an interpretation of
equilibrium quite different from the usual overt rationalism.”

EXERC I S E S

1. Suppose David thought there was a probability of .8
that he could beat Goliath and that he assigned utility
values to L and W as 10 and + 90. How large would
M have to be for David to decide not to fight?

2. A physician advises a patient suffering from angina that
his best options for treatment is bypass surgery, which
has a 85% of being successful and relieving him of
pain; unfortunately, there is 15% chance that the patient
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will die during the operation. Without the operation,
the patient can expect to live for many years but with
recurring chest pain. Suppose the patient’s utility scale
ranges from 0 (worst outcome) to 1 (best outcome).
Should he elect the surgery if he evaluates continuing
to live with angina as having a utility of .7?

3. The mayor of the largest city in her state has just won
her party’s nomination to run for governor. The mayor
needs to decide whether she should resign her position
and campaign full-time for governor or stay on the job
and campaign part-time. She estimates that she has a
.65 probability of being elected if she devotes full time
to campaigning, but only a .55 chance with a part-time
effort. The worst outcome (utility 0) would be to resign
as mayor and lose the governor’s race; she would then
have to find a new job. The best outcome (utility 1) is
becoming governor. Let m be utility of remaining
mayor after a part-time unsuccessful governor’s cam-
paign. How small a value of m would it take for the
mayor to decide to quite her current job and devote all
her time trying for the governorship?

4. Create a payoff matrix for the Battle of the Sexes game.

5. In our example of the wealthy man with three daugh-
ters, we created a scenario in which the older and
younger daughter are each vying to convince the
middle daughter to split the estate two ways.

(a) The younger daughter has just offered the middle
one a (0, .6, .4) split. If you are the older daughter,
what would be your counteroffer?

(b) If these negotiations continue, the middle daughter
will be offered a sequence of offers of the form
0,m, 1 m or 1 m,m, 0 with an ever-
increasing m. How high do you think m might get
before the oldest daughter offers the youngest a
.5, 0, .5 division of the money? What might
happen next?

6. Write out in words the optimal strategy for playing tic-
tac-toe.

7. Suppose the payoffs in Rock-Paper-Scissors are + 1
for a winner, − 1 for the loser, and 0 to each if it is a
tie. Write out the payoff matrix. What is the lower
value? The upper value? Is there a saddle point?

8. In the game Matching Pennies, Rose and Colin each
has a penny, which he or she simultaneously places
on the table. If the pennies match (both heads or
both tails), Rose keeps both pennies, but if the

pennies do not match (one head and one tail), Colin
keeps both.

(a) Write out the payoff matrix for this 2× 2 zero-sum
game.

(b) What is the optimal way to play this game?

(c) What is the expected payoff of the game if both
Rose and Colin play optimally?

9. A zero-sum game is fair if the expected payoff of
optimal strategies is 0. Is Matching Pennies fair? Is
Rock-Paper-Scissors fair? Give an example of a game
that is not fair.

10. Find all dominating rows and columns for the zero-
sum game with matrix

C1 C2 C3 C4

R1 9 3 12 3

R2 3 0 − 6 − 63

R3 6 3 9 3

R4 − 51 − 3 45 0

11. Find lower value, upper value, and saddle points (if
any) for the game shown in Exercise 10.

12. Consider the zero-sum game with payoff matrix

C1 C2 C3 C4

R1 17 27 7 − 3

R2 27 47 17 37

R3 − 3 7 27 17

R4 − 13 − 3 − 3 7

(a) Show that R2 dominates R1 and also dominates
R4 so that we can reduce the game by deleting
rows 1 and 4.

(b) In the resulting 2× 4 game, show that C1 dominates
C2 and C4 so that columns 2 and 4 can be deleted.

(c) Show that the resulting 2× 2 game has the payoff

matrix
C1 C3

R2 4 2

R3 − 2 4

(d) Find the lower and upper values for the 2× 2
game. Is there a saddle point?

(e) Determine the optimal mixed strategies for the game.
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13. Examine the payoff matrix for a zero-sum game

C1 C2 C3 C4

R1 7 5 9 5

R2 5 3 9 1

R3 5 5 5 5

(a) Show that this game has a value 5.

(b) Show that there are four saddle points for this game.

(c) Show that not every entry of 5 in the matrix is a
saddle point.

(d) Show that a saddle point occurs in a dominated
strategy.

14. [Straffin] The payoff matrix in Exercise 13 raises a
concern. Since a saddle point can appear in a dominated
row and we have advised never using a dominated row,
it is conceivable that eliminating a dominated row
might remove the only saddle point in a game. Show
that this actually cannot happen: prove that the Domi-
nance Principle and the Saddle Point Principle cannot
conflict with each other. [Hint: Prove that if row A
dominates row B and row B contains a saddle point of
the game, then the entry in row A in the same column of
row B that holds a saddle point is itself a saddle point.]

15. For the zero-sum game with payoff matrix

C1 C2

R1 1 3

R2 4 2

, find

(a) Lower value and upper value

(b) Optimal mixed strategies for Rose and Colin

(c) The value of the game

16. Repeat Exercise 15 if the payoff matrix is

C1 C2

R1 − 5 4

R2 6 0

17. For the zero-sum game with payoff matrix

C1 C2

R1 a b

R2 c d

where D= a b c+ d≠ 0, show

that the optimal strategy for Rose is to play R1 with
probability d c D and for Colin is to play C1 with
probability d b D. What should the players do
if D= 0?

18. In our game theory model of Abraham and the Sacrifice
of Isaac, we assumed that God’s preference ordering was

OR>OR >O R >O R

Determine the payoff matrix and the optimal strategy
choices for both players—for each of the three dif-
ferent orderings for Abraham—if God’s preferences
are given by

(a) OR>O R>OR >O R

(b) OR>OR >O R>O R

19. Investigate another plausible ordering for God’s
preferences and analyze the payoff matrices for
each of the three given orderings of Abraham’s
preferences.

20. Describe and justify what you consider to be the most
realistic preference orderings for God and Abraham,
then determine the payoff matrix and find the optimal
strategy choices for the two players.

21. Is there any example of preference orderings you
consider to be reasonable ones where Abraham’s
rational strategy is anything other than to offer Isaac as
a sacrifice? Do you believe that God designed a good
test for Abraham’s faith? Explain.

22. Show that in our model of the biblical story Abraham
has 24 different possible rankings of the four outcomes
OR, O R, OR , and O R .

23. List all 24 possible rankings for Abraham.

24. For each of the 24 rankings for Abraham, determine if
he has a dominant strategy.

25. In analyzing the “sacrifice” story of Jephthah (Judges
11), Steven Brams assumes that Jephthah and God
have the same strategies available as Abraham and
God had in the Genesis episode. He considers the same
three rankings for Jephthah as we earlier considered for
Abraham: faithful, somewhat wavering, seriously
wavering. But he considers two different rankings
for God:

OR* > OR > O*R* > O*R (show-of-faith interpreta-
tion of God’s preferences)

OR* > O*R* > OR > O*R (vindictive interpretation
of God’s preferences)

For each of these two rankings, determine the
payoff matrix, find any dominant strategies, and pre-
dict the outcome of the game. How does your pre-
diction compare with what happened in the Bible?
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26. (a) For the game in Fig. 16.25, show that the expected
payoff for Rose is EVR p,q = 17pq 7p 8q+ 3
and the expected payoff for Colin is EVC p, q =
16pq+ 8p+ 9q 4 if Rose chooses R1 with

probabilityp andColin choosesC1withprobabilityq.

(b) Demonstrate that EVR and EVC have the prop-
erties that EVR p, 7 17 = 1 5 for all p and
EVC 9 16,q =½ for all q.

27. (a) Show that both R1C1 and R2C2 are Nash equi-
librium for the nonzero-sum game

C1 C2

R1 3, 2 1, 1

R2 2, 2 2, 3

(b) Is either R1C2 or R2C1 a Nash equilibrium?

28. Find the mixed strategy Nash equilibrium if the payoff
matrix is

C1 C2

R1 4, 8 2, 0

R2 6, 0 0, 8

29. Find the mixed strategy Nash equilibrium if the payoff
matrix is

C1 C2

R1 4, 7 1, 0

R2 6, 2 0, 8

30. Is there a mixed strategy Nash equilibrium for

(a) The game of chicken?

(b) The game Tosca and Scarpia play?

31. Determine whether there are Nash equilibria in pure
strategy choices for the game with payoff matrix

C1 C2 C3 C4

R1 9, 1 9, 1 0, 0 0, 0

R2 5, 3 4, 4 5, 3 4, 4

32. Prove that maxall r′i s pi S ri = maxα pi S πiα .

33. Give a complete justification for the claim that a nec-
essary and sufficient condition for S to be an equilib-
rium point is

pi S = max
all r′i s

pi S ri = max
α

pi S πiα = max
α

piα S

34. Explain why the transform T is continuous.

35. Modify, if necessary, the proof of Nash’s theorem to
give a proof of von Neumann’s Minimax Theorem.

36. Use the dynamic approach to analyze the game of
Exercise 15.

37. Use the dynamic approach to analyze the game of
Exercise 16.

38. What outcome does the dynamic approach predict for

the game with payoff matrix
C1 C2

R1 1 4

R2 5 8

?

39. What outcome does the dynamic approach predict for
the game of Exercise 27?

40. Here is a game with infinitely many strategies: Rose and
Colin each picks one positive integer. If both pick the
same integerN, then Colin pays f N dollars to Rose for
some given payoff function f . If they choose different
integers, then no money is exchanged; both get $0.

(a) Why does each player have infinitely many
strategies?

(b) How should they play the game if f N = N 3 2?

(c) If the function f takes on both positive and nega-
tive values, show that each player has a strategy
that results in both getting a payoff of 0 and that
the value of the game is 0.

(d) Show that in an equilibrium, each of Rose’s pure
responses to a mixed strategy by Colin yields the
same payoff.

(e) If every value of f N is positive, so that an
equilibrium strategy has a player choose positive

integer N with probability 1
f N

∞

k=1

1
f k

−1

if the

infinite sum converges.

(f) Suppose f N =N2 for all N. Use the fact that
∞

k = 1

1
k2 =

π2

6 to show that the equilibrium strategy

chooses N with probability 1
N2

6
π2 and that the value

of this game is 6
π2.
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SUGGESTED PRO J ECTS

1. In some games against nature, we may have no
knowledge of the probabilities with which each state of
nature may occur. How do you play such a one-person
game? Assume all of nature’s states are equally likely?
Use a maximin approach? Are there other ideas with
interesting properties? How much should you be
willing to pay to get good estimates of nature’s prob-
abilities? A good place to begin an investigation of
such games is a classic 1951 paper by John Milnor,
“Games against Nature,” reprinted in Martin Shubik,
ed., Game Theory and Related Approaches to Social
Behavior, New York: Wiley, 1964.

2. Decision theory is now a well-developed discipline ana-
lyzing one-person games in which the states of nature
have known probabilities. Behn and Vaupel [1982] pro-
vide an easy introduction to this intriguing topic, which
has many important applications you can analyze.

3. Duels provide another source with infinitely many
strategies. Two duelists start a fixed distance apart and
walk toward each other. Each must decide at what
distance between them they will fire. More generally, a
duel is a two-person game in which each player can
take as long as she likes to prepare his or her move, but
the other player can take advantage of his or her hes-
itation. Dresher [1961] is a good place to start. See also
D. Marc Kilgour and Steven J. Brams, “The Truel,”
Mathematics Magazine 70 (1997): 315 326, for a
study of duels among three opponents.

4. The Nash equilibrium is but one idea for what is the
appropriate notion of a “solution” for a general n-
person game. Other concepts worth exploring are sta-
ble set, core, nucleolus, and kernel imputation among
others. Anatol Rapoport, n-Person Game Theory:
Concepts and Applications, New York: Dover, 2013,
provides an enlightening introduction.

5. As we have seen, the Nash equilibrium solution does
not always provide the most desirable payoffs to the
players. There are also difficulties when multiple Nash
equilibria exist. Investigate Robert Aumann’s idea of a
correlated equilibrium to deal with such problems. See
Aumann [1974, 1987].

6. Explore other applications of game theory to religious
texts. Aumann and Maschler [1985], for example,
show evidence that the nucleolus appears in an ancient
Talmudic text. See also O’Neill [1982] and Brams
[1980, 2007].

7. Instead of playing a game only once, we may have the
opportunity to play against the same person repeatedly.
So-called iterative games enable each player to “signal”
to the other a willingness to cooperate or to retaliate in
later plays of the game by how they play in early
rounds. The “best” strategy in a repeated game may be
quite different from what it is for a single play. See
Axelrod [2006], Aumann and Maschler [1995], and
Sorin [2002] for more on the theory and applications.

8. Another major result in game theory due to John Nash
[1950] is his solution to “The Bargaining Problem,” a
two-person cooperative game where the players can
make binding agreements on how to play. Nash’s
paper derives a solution from a plausible set of axioms.

9. A characteristic function for an n-person game is a
function that assigned a numerical value to each
coalition (subset) of the players. Lloyd Shapley
(1923 ), another Nobel Prize winner, derived a solu-
tion concept for such games from a short list of
appealing axioms. Investigate Shapley’s approach
[1953] and some of the many applications of what is
now called the Shapley Value. Sergiu Hart maintains a
bibliography on value theory at http://www.ma.huji.ac
.il/hart/value.html

10. How much relative power do the president, the Senate
(100 members) and the House of Representatives (435
members) have in enacting legislation? One way a bill
may become a law is with the approval of a majority of
both houses and the president’s approval. Another path
is by the approval of at least two-thirds of both houses
over the objection of the president. Shapley and Martin
Shubik (1926 ) developed an index of power in vot-
ing games that showed that power is not always pro-
portional to size; it has more to do with how often
coalitions cast deciding votes. See Shapley and Shu-
bik’s 1954 paper.

You can find a listing of references and suggestions for additional reading on the books’s website, www.wiley.com
/college/olinick
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APPENDIX
I

Sets

By a set we mean a well-defined collection of objects, called the elements or (members) of the
set. Some examples of sets are

1. The set A of real numbers less than 21

2. The set B of college sophomores in Texas universities

3. The set C of negative integers

4. The set D of three-headed residents of Muskegon, Michigan

5. The set E of solutions of the equation tan x− log x= x3

6. The set F of integers strictly between 3 and 10

We use the notation “x∈X” to represent the statement that “The element x is a member of the set
X.” If x is not an element of X, denote this by x∉X. In our examples, 4∈A and 24∉A.

Sets may be described in terms of some common property shared by the elements. A set
may also be given by listing all its members; when this is done, the elements are typically written
within braces. Here are some further examples:

7. G= single, double, triple, home run

8. H = 4, 5, 6, 7, 8, 9

9. I = 1, 2, 3, . . .

10. J = Washington, Adams, Jefferson, . . . , Clinton, Bush, Obama

Some sets occur so frequently in applications that special symbols have been invented
for them. The set of real numbers, for example, is commonly denoted by ℝ and the set of
integers by ℤ.

A third way of describing a set is by a special notation easily understood by an example.
The set of integers strictly between 3 and 10 would be written

x∈ℤ 3< x< 10

where the colon “:” is read “such that.” Note that the descriptions of the sets F and H in
these examples specify the same collection of numbers. So does the description
K = 9, 8, 7, 6, 5, 4 . It is reasonable to call these sets equal by the following definitions.
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DEFINITION If X and Y are sets, then X and Y are equal, denoted X =Y , precisely if
the sets contain exactly the same elements.

The sets F and A of the examples are not equal, since 17 is an element of A but not of F.
However, every element of F is an element of A, so F is a subcollection, or subset, of A.

DEFINITION If X and Y are sets and every element of X is also an element of Y , then
we say that X is a subset of Y . This relationship is denoted by X ⊆Y .

Observe that although sets A and I have some common elements, neither is a subset of the
other. We might denote this by A⊄ I and I ⊄A.

Proposition 1 X = Y if and only if X ⊆ Y and Y ⊆X.

The set containing no elements is called the empty set and is denoted ∅. Observe that the
setD in the examples is the empty set. If X is any set, then∅⊆X (proof: try to find some element
of ∅ that is not an element of X). Also note that every set is a subset of itself.

If X is any set, we may consider the collection of all subsets of X. This set is called the
power set of X. As an example, the set X = x, y, z has eight distinct subsets:

∅, x , y , z , x, y , x, z , y, z , X.

A set X is finite if it contains exactly n distinct elements for some nonnegative integer n. The sets
B, D, E, F, G, H, and J of the examples are finite sets.

Proposition 2 If X is a finite set with precisely n distinct elements, then the power set
of X contains 2n distinct elements.

DEFINITION If S is a set and X is a subset of S, then the set of elements of S that are
not in X is called the complement of X in S. It is denoted S−X or sometimes by XC (if there
is no ambiguity about S).

As an example, if S= 1, 2, 3, 4, 5 and X = 3, 4 , then S−X = 1, 2, 5 .

Exercise Show that S− S−X =X.

By definition, the sets X and S−X have no elements in common. This is also true of the
sets A and B of the examples and for many other pairs of sets. Such sets are said to be pairwise
disjoint. Other pairs of sets do share common elements, and there is a special notation for this set
of common elements.

DEFINITION If X and Y are sets, then the set X ∩ Y is the set of all elements that are in
both X and Y . The set X ∩ Y is called the intersection of X and Y .
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In the examples,

A∩ I = x x∈A and x∈ I

= x x is a real number less than 21 and x is a positive integer

= x x is a positive integer less than 21

= 1, 2, . . . , 20 .

If X and Y are pairwise disjoint, then we have X ∩ Y =∅.
There is another important operation of combining sets that consists in forming the col-

lection of all elements that belong to either set.

DEFINITION If S is a set and X and Y are subsets of S, then the union of X and Y ,
denoted X ∪ Y , is the set of elements belonging to X or Y or both. In our notation,

X ∪ Y = z z∈X or z∈ Y

As an example, suppose that X = 1, 2, 3, 5 and Y = 3, 4, 5, 6, 7 . Then the union is
X ∪ Y = 1, 2, 3, 4, 5, 6, 7 .

To study relations and functions, it is necessary to introduce the concept of a Cartesian
product of two sets.

DEFINITION If X and Y are any two sets, then the Cartesian product of X and Y ,
denoted X ×Y , is the set of all ordered pairs x, y where x is a member of X and y is a
member of Y . In terms of our notation,

X × Y = x, y x∈X and y∈ Y .

The next example should clarify this definition. If X = 1, 2, 3 and Y = 3, 4 , then we have

X ×Y = 1, 3 , 1, 4 , 2, 3 , 2, 4 , 3, 3 , 3, 4

Y ×X = 3, 1 , 3, 2 , 3, 3 , 4, 1 , 4, 2 , 4, 3

Y × Y = 3, 3 , 3, 4 , 4, 3 , 4, 4
What is X ×X?

The principle of mathematical induction, which is used in a number of proofs in this text,
can be formulated in terms of sets. Let N be the set of positive integers, and suppose that X is a
subset of N. The Axiom of Mathematical Induction asserts,

IF: (i) 1∈X and (ii) whenever n∈X, then n+ 1∈X

THEN: X =N

An equivalent axiom, easier to remember but sometimes more cumbersome to use, is as follows:
Every nonempty set of positive integers has a least element.
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EXERC I S E S

1. Use mathematical induction to prove Proposition 2.

2. Show that X ∪ Y = Y ∪ X and X ∩ Y = Y ∩ X for all
sets X and Y , but that, in general, X × Y≠Y ×X.

3. Show that X ∪ Y ∪ Z =X ∪ Y ∪ Z and
X ∩ Y ∩ Ζ =X ∩ Y ∩ Z for all sets X, Y , Z so that
the expressions X ∪ Y ∪ Z and X ∩ Y ∩ Z are well
defined. What can you say about X × Y × Z and
X × Y × Z ?

Example

Show that 1+ 2+3+⋯+ k = k k +1
2 for every positive integer k.

Solution I:

Let X be the subset of N for which the equation is valid. Then 1∈X, since 1= 1 1+1
2 ; thus,

(i) is satisfied. To show that (ii) is true, suppose that n∈X. Then 1+ 2+⋯+ n= n n+1
2 .

Adding n+ 1 to each side of this equation produces

1+2+⋯+ n+ n+ 1 = 1+2+⋯+ n + n+ 1

=
n n+ 1

2
+ n+ 1

=
n+1 n+ 2

2

which is just the statement that n+ 1∈X. Since (i) and (ii) are true, the principle of math-
ematical induction asserts that X =N—that is, the equation is true for every positive integer.

Solution II:
Let A be the set of all positive integers for which the equation is not true. If A is nonempty,
then it has a smallest element k. But then we have

a. k≠1
b. 1+ 2+⋯+ k≠ k k + 1

2
c. 1+ 2+⋯+ k − 1 = k − l k

2

Condition (c) is true because k − 1 is smaller than k and the equation is true for all
positive integers less than k. Now (a), (b), and (c) are inconsistent. We have a contradiction
to the assumption that A is nonempty. Thus, A must be empty, and the equation is valid for
every positive integer.
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APPENDIX
II

Matrices

By a matrix, we simply mean a rectangular array of numbers. Examples of matrices are

A =
3 2 1

− 1 0 7

B =
1 2

3 4

C = .2 .3 .5 .4

D =

1.5

− 6

9.9

0

22

Matrices are classified according to their size and shape by specifying the number of their rows
and columns. An m× n matrix is a matrix with m rows and n columns. Thus, A is a 2× 3 matrix,
B is a 2× 2 matrix, C is a 1× 4 matrix, and D is a 5× 1 matrix. Any 1× n matrix is called a row
vector, while anm× 1 matrix is said to be a column vector. The individual numbers in vectors are
called components of the vector. If m= n, the matrix is said to be square and to have an order

equal to the number of rows. Thus, B is a square matrix of order 2. Two matrices have the same
size if they have the same number of rows and columns. The four matrices A, B, C, and D, it
should be noted, are of different sizes.

The general m× n matrix M has the form

M =

a11 a12 . . . a1n
a21 a22 . . . a2n
. . .

am1 am2 . . . amn

The number in the ith row and jth column of a matrix is called the ijth entry of the matrix, and
may be denoted Mij. Thus, A23 = 7.

Two matrices are said to be equal matrices if they are of the same size and the corre-
sponding entries are all equal. We write A=B to denote that two matrices A and B are equal. For
example, if we consider the six matrices:
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U = 1, 2 V =
1

2
W = 1, 2 X = 2, 1 Y = 1, 0 Z = 1, 2, 0

only the matrices U and W are equal.
Matrix addition is defined for matrices of the same size by the addition of the corre-

sponding entries. Thus, the ijth entry of the sum of two matrices is the sum of their ijth entries; in
symbols,

A+B ij =Aij +Bij

As an example, if the matrices A and B are given by

A=
3 2 1

− 1 0 7
and B=

5 4 − 6

2 1 0

then the sum, A+B, is given by

A+B=
3+ 5 2+ 4 1− 6

− 1+ 2 0+ 1 7+ 0
=

8 6 − 5

1 1 7

The matrices A and C, given by

A=
3 2 1

− 1 0 7
and C=

4 5

2 0

− 1 − 1

cannot be added, even though they have the same number of entries.
A matrix, all of whose entries are 0, is called a zero matrix, and we denote the m× n zero

matrix by 0mn or sometimes simply by 0 if the size of the matrix is clear from the context.
If A is a matrix and c is a constant, then we can define the scalar multiple cA to be the

matrix obtained by multiplying each entry of A by the constant c. In symbols, this is
cA ij = c Aij ; that is, the ijth entry of cA is c times the ijth entry of A.

If A is the matrix given above then the matrices 2A and − 1A are given by

2A=
6 4 2

− 2 0 14
and − 1A=

− 3 − 2 − 1

1 0 − 7

We will denote the matrix − 1A simply by −A. If A and B are matrices of the same size, then the
expression B+ −A is well defined as a matrix addition. We will write such an expression as
B−A and call the operation matrix subtraction. What this idea boils down to is that subtraction
of matrices is defined by subtraction of corresponding entries.
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Our first theorem lists the basic properties of matrix addition and scalar multiplication.
These properties follow easily from analogous properties of the addition and multiplication of
ordinary numbers.

THEOREM 1 Let A, B, and C be any m× n matrices, and let c and d be any real
numbers. Then

1. A+B is an m× n matrix

2. A+B=B+A

3. A+ B+C = A+B +C

4. A+ 0=A

5. For each matrix A, there is a matrix, −A, such that A+ −A = 0

6. cA is an m× n matrix

7. c A+B = cA+ cB

8. c+ d A= cA+ dA

9. c dA = cd A

10. 1A=A

Proof of Theorem 1 We will prove (2); the other properties follow by similar rea-
soning and are left as exercises for the reader. By definition of matrix addition, the ijth
entry of A+B is Aij +Bij. But Aij and Bij are numbers, so we have Aij +Bij =Bij +Aij.
Now Bij +Aij is the ijth entry of B+A. Since the corresponding entries of A+B and
B+A are equal, the matrices are equal. ⋄

Knowledge of Properties 1 10 of Theorem 1 is essential for working with matrices. You will
have little difficulty remembering them as they are so similar to the operations involving real
numbers. Matrix multiplication, which we introduce next, is a different story.

Matrix Multiplication

One might define the product of two matrices to be the matrix obtained by multiplying
corresponding entries. Such a definition would have a number of applications; you will be
invited to explore the consequences of such a definition in the exercises. When mathe-
maticians speak of matrix multiplication, however, they have a different operation in mind,
an operation that was invented to handle many very useful applied problems.

To explain this operation, we will begin with the example of a cashier at the checkout
counter of the campus bookstore. Suppose that you purchase 6 pencils, 4 notebooks, 2
packs of index cards, 36 paper clips, and 1 sweatshirt at the store. How does the cashier
determine what to charge you?
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The cashier makes the following calculation:

Total Cost = Total cost of pencils + total cost of notebooks

+ total cost of index cards + total cost of paper clips

+ total cost of sweatshirts

= Number of pencils cost per pencil

+ number of notebooks cost per notebook

+ number of packs of index cards cost per pack

+ number of paper clips cost per clip

+ number of sweatshirts cost per shirt

Let us represent the purchases by a row vector:

A= 6 pencils, 4 notebooks, 2 packs of cards, 36 clips, 1 sweatshirt

= 6, 4, 2, 36, 1

and represent the unit cost of each item by a column vector:

B=

5

75

30

2

398

cents per pencil

cents per notebook

cents per pack of index cards

cents per paper clip

cents per sweatshirt

Then the total cost is given by

Total cost= 6 5 + 4 75 + 2 30 + 36 2 + 1 398

= 30+ 300+ 60+ 72+ 398

= 860 cents or $8.60

Matrix multiplication will be defined so that the total cost is the product of the
purchase vector and the cost vector.

As a second example, consider a gamble with three possible outcomes, + $5, − $2,
and + $25, with respective probabilities of .25, .7, and .05. Then the expected value of the
gamble (see Chapter 10) is 5 .25 + − 2 .7 + 25 .05 = $1.10. If we denote
the outcomes of the gamble by the row vector A= 5, − 2, 25 and the probabilities by the
column vector

B=

.25

.7

.05

then the expected value is given by the product of these two matrices.
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With these two examples in mind, we are ready to make our first formal definition
about matrix multiplication.

DEFINITION If A is a 1×m row vector and B is a m× 1 column vector, then the
product AB is defined to be the number given by

AB=
m

k=1

a1kbk1 = a11b11 + a12b21 +⋯+ a1mbm1

where A= a11, a12, . . . , a1m and

B=

b11
b21
. . .

bm1

Note that a row vector and a column vector may be multiplied by this definition only
if the number of components in each vector is the same.

Now suppose that A is a 1×m vector and B is an m× n matrix. According to the
definition given above, it is possible to multiply the row vector A by each column of the
matrix B simply by treating that column as a column vector. This gives us a natural way to
define the product of a vector and a matrix.

DEFINITION If A is a 1×m row vector and B is a m× n matrix, then the product AB is
defined to be the 1× n matrix whose jth component is the product of the vector A and the
jth column of B.

EXAMPLE

Suppose A= 3, 2, −1 and B=
5 4
− 2 0
1 9

Then the product AB is a 1×2 matrix. The first component is the product of the
vector 3, 2, − 1 and the vector

5

− 2

1

which is 3 5 + 2 − 2 + − 1 1 = 10. The second component is the product of A and
the second column of B. The value of this second component is 3 4 + 2 0 +
− 1 9 = 3. Thus, the product AB is the matrix 10, 3 .
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Finally, suppose that A is a k ×m matrix and B is an m× n matrix. Then it is possible
to multiply each row of A by the matrix B by using the definition we have just given. Each
such multiplication yields a 1× n row vector. Fitting these k row vectors together in a
natural fashion gives a k× n matrix.

DEFINITION If A is a k×m matrix and B is an m× n matrix, then the product AB is
defined to be the k× n matrix whose ijth entry is the product of the ith row of A and the jth

column of B. Thus, AB ij =
m

r=1
airbrj.

EXAMPLE

Consider the following four matrices:

A=
1 2 7

− 3 0 8
B=

9 − 6

− 2 1

4 1

C=
3 6

2 4
D=

2 8

6 9

Then we have the following products:

AB=
33 3
5 26 BA=

27 18 15
− 5 −4 − 6
1 8 36

BD=
− 18 18
2 − 7
14 41

DB is not defined

CD=
42 78
28 52

DC=
22 44
36 72

CC=
21 42
14 28

C CC = CC C=
146 294
98 196

Note that the product BD is defined, but that the product DB is not. The products AB
and BA are both defined, but they are not of the same size. The products CD and DC are of
the same size, but are not equal.

Besides checking the details of computation in this example, you should not continue
reading until you are impressed with two facts about matrix multiplication:

1. The product AB of two matrices is defined only when the number of columns of A is
equal to the number of rows of B. The product has the same number of rows as A and
the same number of columns as B.

2. Matrix multiplication is not commutative. Even if the products AB and BA are both
defined and are both the same size, the matrices AB and BA are not necessarily equal.

The fact that, in general, AB≠BA is the first significant difference between matrix
arithmetic and ordinary arithmetic. There are other surprising results in store. We know that
if the product of two numbers is zero, at least one of the factors must be zero. This is not
true for matrices. The next example illustrates what can happen.
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Before you give up in despair, it is well to point out that a number of properties of
ordinary arithmetic continue to hold true for matrix multiplication. Some of these are listed
in the next theorem. For convenience, we state the theorem for square matrices although
some of the results hold more generally.

THEOREM 2 Let A, B, and C be any n× n matrices, and let c be any constant. Then
the following properties are all true:

1. AB is an n× n matrix

2. A BC = AB C

3. A B+C =AB+AC

4. B+C A=BA+CA

5. c AB = cA B=A cB

6. There is a unique n× n matrix I such that AI = IA=A for every n× n matrix A.

Note: The matrix I of Property (56) is called the identity matrix and is defined by the
condition:

Iij =
1 if i= j

0 if i≠ j

That is, the identity matrix has the form

I =

1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

.. . . . .. . . . 0

0 0 0 . . . 1

EXAMPLE

Let

A=
4 2

− 2 − 1
and B=

3 2.5

− 6 − 5
.

Then the product AB is the zero matrix

AB=
0 0

0 0

although no entry of either factor is a zero.
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In particular the 2× 2 and 3× 3 identity matrices have the form
1 0
0 1

and
1 0 0
0 1 0
0 0 1

, respectively.

Proof of Theorem 2 The hardest result to establish is (2). The others are substantially
easier and will be left, as is the custom, as exercises.

We let D represent the matrix BC and let E=AB. We need to show that the ijth
entry of A BC is the same as the ijth entry of AB C . Now we have

A BC ij = AD ij =
n

k=1

aikdkj

where

dkj = BC kj =
n

r=1

bkrcrj

so that

A BC ij =
n

k=1

aik
n

r=1

bkrcrj

but since ordinary arithmetic of real numbers is commutative and associative, we write
this double sum as

n

k=1

n

r=1

aik bkrcrj =
n

k=1

n

r=1

aikbkrcrj =
n

r=1

n

k=1

aikbkrcrj =
n

r=1

n

k=1

aikbkr crj

=
n

r=1

eircrj = EC ij = AB C ij

where

eir =Eir = AB ir =
n

k=1

aikbkr

The fact that the matrices AB C and A BC are identical means that we can
ignore the parentheses and write ABC to represent the product. It also means that we
may define, unambiguously, positive integral powers of a square matrix. That is, if A is
an n× n matrix, then A2 =AA, A3 =AAA, A4 =AAAA, and so on. ⋄

Inverses

In your first studies of algebra, you learned to solve equations of the form

ax+ c= d

where a, c, and d were given numbers and x was an unknown number.
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We can form analogous algebraic questions for matrices. Suppose for example that A,
C, and D are given n× n matrices. Does there exist an n× n matrix X such that

AX +C=D 2

If so, how do we compute X?
Since matrices of the same size can be subtracted, Eq. (2) is equivalent to

AX =D−C 3

Now suppose there is an n× n matrix B so that BA= I where I is the n× n identity
matrix. If we multiply each side of Eq. (3) on the left by B, we obtain

B D−C =B AX = BA X = IX =X.

The question of solving the matrix Eq. (2) reduces then to finding a matrix B with the
stated property.

DEFINITION Let A be an n× n matrix. Any n× n matrix B such that AB=BA= I is
called an inverse of A.

Corollary of the Definition If B is an inverse of A, then A is an inverse of B.

The definition of an inverse does not rule out the possibility that a matrix may have
more than one inverse. Our first theorem about inverses shows that this cannot happen; if a
matrix has an inverse, then it has a unique one.

THEOREM 3 If B and B are inverses of the matrix A, then B=B".

Proof of Theorem 3 The proof is a clever, one-line affair:

B=BI =B AB = BA B = IB =B .

EXAMPLE

The matrix

B=
3 − 4

− 5 7

is an inverse of the matrix

A=
7 4

5 3

You may verify this claim by computing the products AB and BA.
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According to Theorem 3, we may speak of the inverse of a matrix. Since the
identity matrix I plays the same role in matrix multiplication as the number 1 in the
multiplication of numbers, the inverse of a matrix plays the role of the reciprocal. For
this reason, the inverse of the matrix A is denoted by A− 1. ⋄

As an application of the inverse of a matrix, consider the following example.

Existence of Inverses
It is not true that every square matrix has an inverse. Consider, for example, the matrix

A=
1 0

0 0

EXAMPLE

If a Holstein cow is fed x units of grain and y units of hay per day, then she will produce
7x+ 4y pounds of skim milk and 5x+ 3y pounds of butterfat per week. How much would
you have to feed her to get 41 pounds of milk and 30 pounds of butterfat?

Solution
Let A be the matrix

A=
7 4

5 3

and let X be a 2× 1 matrix whose components are units of grain and hay, respectively. Then
AX is a 2× 1 matrix whose components represent the pounds of skim milk and butterfat,
respectively. Let D be the column vector of desired output

D=
41

30

Then we are trying to find a vector X such that AX=D. Multiplying each side of this
equation on the left by A−1 gives the answer: X=A−1D. Since A− 1 is

A− 1 =
3 − 4

−5 7

we have

X =
3 − 4

− 5 7

41

30
=

3

5

The farmer should feed the cow 3 units of grain and 5 units of hay.
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If B is any 2× 2 matrix,

B=
a b

c d

then the product AB has the form

AB=
a 0

c 0

and no choice of a and c will make this the identity matrix. Thus, A has no inverse.
Clearly, the presence of so many zeros as entries of A has something to do with the

lack of an inverse. However, less suspicious-looking matrices may also fail to possess
inverses.

The existence of an inverse for a square matrix hinges, then, on the question of
whether a certain system of linear algebraic equations has a solution.

The problem of determining whether an inverse exists and, if it does, of computing it
is somewhat simplified by the following theorem.

EXAMPLE

The matrix C, given by

C=
3 6

2 4

does not have an inverse.
Suppose, to the contrary, that there was a matrix B such that CB= I. Now the product

of C and the first column of the matrix B must give the first column of the identity matrix. If
the first column of B looks like

a

c

then we must have the two equations

3a+ 6c= 1

2a+ 4c= 0

But if 2a+ 4c= 0, then a+2c= 0, so that 3a+6c= 0 and cannot equal 1.
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THEOREM 4 If A and B are square matrices of order n and AB= I, then BA is also
the identity.

Because the proof of this theorem is not elementary, we will not present it. Any
standard linear algebra text will contain the proof. For example, see Section 2.3 of
David C. Lay, Linear Algebra and Its Applications, 4th ed., Boston: Pearson Addison
Wesley, 2012.

Suppose, then, that we are given a 2× 2 matrix A:

A=
a b

c d

According to Theorem 4, A will have an inverse exactly if there is a matrix

B=
w x

y z

such that

AB= I =
1 0

0 1

The matrix equality AB= I translates into a system of four linear equations in four
unknowns:

aw+ by = 1

ax+ bz = 0

cw+ dy = 0

cx+ dz = 1

4

The existence of an inverse for a given 3× 3 matrix reduces similarly to the existence
of a solution of a system of nine linear equations in nine unknowns.

The system of Eq. (4) splits quite naturally into two systems, each containing two
linear equations in two unknowns:

aw+ by = 1

cw+ dy = 0

and

ax+ bz = 0

cx+ dz = 1

Note that the coefficients of the unknown terms on the left-hand sides of these two
systems are the same. The systems correspond to the matrix problem of finding column
vectors X1 and X2 so that AX1 and AX2 are the first and second columns of the 2× 2
identity matrix.
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In general, if A is an n× nmatrix, then A has an inverse if and only if there are column
vectors X1, X2, ..Xn so that AX is the ith column of the n× n identity matrix,
i= 1, 2, . . . , n. Thus, the problem of finding the inverse or determining its nonexistence
reduces to an algebraic problem: determine the nature or nonexistence of solutions to n
systems of linear equations, where each system contains n equations in n unknowns. The
coefficients of the unknowns in all the systems are the same; only the constants on the right-
hand side change. There is a systematic method for solving this problem—the Gauss-
Jordan elimination process. We discuss it in detail in Appendix III.

EXERC I S E S

1. Consider the three row vectors u= 4, 2, 3 ,
v= − 2, 3, 0 , and w= − 1, 1, 1 . Compute each of
the following:

(a) 2u

(b) −v

(c) 3u− 2v

(d) u+w

(e) u− v+w

(f) 4u− 3v+ 2w

2. If 3v− 2w= 0 for a pair of vectors v and w, what is the
relationship between the components of v and w?

3. Suppose 4u− 2v+ 3w= 0 for three vectors u, v, w.
What is the relationship among the components of
these vectors?

4. If A is a matrix, then we say A≥ 0 if every entry of A is
nonnegative.

(a) Define A≤ 0 analogously.

(b) Prove that if A≥ 0, then −A≤ 0.

5. If A and B are matrices of the same size, define A≥B
to mean A−B≥ 0. Show that if A≥B and B≥C, then
A≥C

6. Suppose A, B, C and D are matrices whose sizes are
3× 4, 5× 4, 4× 4, and 4× 3, respectively. Find the
sizes of each of the following:

(a) AC

(b) CB

(c) DA

(d) ADC

(e) BCDA

7. Let matrices A, B, and C be given by

A=

2 0 −3

1 −1 4

3 2 1

B=

5 6

−7 0

8 2

C=

0 0

2 −3

4 1

Compute:

(a) B+C

(b) B− 2C

(c) A B+C

(d) A2

8. Let 0 be a zero matrix, and suppose that A0 is defined.
Show that A0 is also a zero matrix.

9. Prove Theorem 1.

10. Prove Theorem 2.

11. Show that the system of equations

2x− 3y = 46

9x+ 7y = 27
can be represented in matrix form Au= v for a suitably
chosen 2× 2 matrix A and vectors u and v.

12. Show that any system of linear equations can be
written in the form Au= v where A is a suitably chosen
matrix and vectors u and v.

13. A matrix is invertible if it has an inverse. Suppose A
and B are n× n invertible matrices.

(a) Show that AB is invertible and that
AB − 1 =B− 1A− 1.

(b) Is A+B necessarily invertible?

14. Let A be an m× n matrix and B an n×m matrix. Then
both products AB and BA are square matrices.
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(a) If m> n, show that AB has no inverse.

(b) If m> n, can BA have an inverse?

15. Suppose A is an invertible n× n matrix with inverse B.
Find, where possible, inverses of the following
matrices:

(a) A2

(b) A3

(c) 2A

(d) −A7

(e) A− 1 2

(f) ABA

16. Let A and B be matrices of the same size and define an
operation A×B by A×B ij =AijBij; that is, multiply
together corresponding entries. Show that this opera-
tion is commutative and associative. Is there an
“identity” element? Which matrices have “inverses”
under this operation? Can you find any applications for
this operation?
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APPENDIX
III

Solving Systems of Equations

The equation

7x1 + 2x2 = 5 1

is an example of a linear equation in two unknowns x1 and x2. This equation is true for some
values of the unknowns (for example, x1 = 1, x2 = − 1), but false for other values (for
example, x1 = 2, x2 = 1). The set of all vectors

X=
x1
x2

for which the equation is true is called the solution set of the equation. Any element of this
set is called a solution of the equation.

It is easy to check that every solution of Eq. (1) is a vector of the form

α
5− 7α

2

where α can be any real number. Conversely, every vector of this form is a solution of Eq. (1).
The general linear equation in two unknowns has the form

a1x1 + a2x2 = b 2

where a1, a2, and b are given constants and a1 and a2 are not both zero.
The general linear equation in n unknowns x1, x2, . . . , xn, is an equation of the form

a1x1 + a2x2, +⋯+ anxn = b 3

where the a1, a2, . . . , an, and b are given constants and at least one of the ai’s is nonzero.
The set of all vectors

X=

x1
x2

⋅
⋅
⋅
xn

4
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for which Eq. (3) is true is called the solution set of (3).
Since a linear equation in two unknowns is the equation of a straight line in the plane, a

vector

X=
x1
x2

is a solution if and only if the point x1, x2 lies on the line.
A system of m linear equations in n unknowns is a collection of linear equations

a11x1 + a12x2 +⋯+ a1nxn = b1
a21x1 + a22x2 +⋯+ a2nxn = b2

. . .

. . .

. . .

am1x1 + am2x2 +⋯+ amnxn = bm

5

where the constants aij and bi are given. Note that aij is the coefficient of xj in the ith
equation.

The solution set of a system is defined to be the intersection of the solution sets of the
individual equations—that is, a vector

X=

x1
x2

⋅
⋅
⋅
xn

is a solution of the system (5) if and only if it is a solution of each equation.
In the case of two equations in two unknowns,

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

6

each equation represents a straight line in the plane, so the solution set corresponds to the set
of all points lying on both lines. There are three possibilities for the intersection of two lines
in the plane: the lines intersect in a single point, the lines are parallel and do not intersect at
all, or the lines are coincident.

These three cases are illustrated, respectively, by the examples

7x1 + 2x2 = 5

4x1 − 3x2 = 7
7
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7x1 + 2x2 = 5

14x1 + 4x2 = 7
8

7x1 + 2x2 = 5

14x1 + 4x2 = 10
9

The solution set of system (7) consists of the single vector

1

− 1

The solution set of system (8) is empty, and the solution of system (9) is, again, any vector of

the form X=
x1
x2

=

α
5− 7α

2
, α is arbitrary.

The equations of a general linear system are the equations of “hyperplanes” in n-
dimensional space and the solution sets correspond to the points lying on the intersection of these
hyperplanes. Although these intersections may take many forms, there are essentially the same
three possibilities as for the system of two equations in two unknowns:

(i) Exactly one solution

(ii) No solutions

(iii) Infinitely many solutions

The main purpose of this appendix is to describe a systematic procedure for obtaining the
solution set of a system of linear equations. The basic idea is to replace the original system by a
sequence of equivalent, progressively simpler systems.

DEFINITION Two systems of equations are called equivalent if they have the same
solution set—that is, if every solution of either one is a solution of the other.

EXAMPLE

The systems

7x1 + 2x2 = 5

4x1 − 3x2 = 7
7

and

13x1 + 9x2 = 4

−4x1 +7x2 = − 11
10

are equivalent systems.
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THEOREM 1 If the positions of any two equations in a system are interchanged to
form a new system, then the new system is equivalent to the original system.

Proof of Theorem 1 Let Xi be the solution set of the ith equation of the original
system. Suppose that equations j and k are interchanged. Then the solution set of the
original system is

X1 ∩X2 ∩ . . . Xj−1 ∩Xj ∩Xj+1 ∩ . . . ∩Xk−1 ∩Xk ∩Xk+1 ∩ . . . ∩Xn

and the solution set of the system after interchanging is

X1 ∩X2 ∩ . . . Xj−1 ∩Xk ∩Xj+1 ∩ . . . ∩Xk−1 ∩Xj ∩Xk+1 ∩ . . . ∩Xn

Since intersection of sets is a commutative operation, the two solution sets are the
same. ⋄
THEOREM 2 If an equation of a given linear system is replaced by a nonzero
multiple of itself plus a multiple of another equation of the system to obtain a new
system, then the new system is equivalent to the original system.

EXAMPLE

The systems

11x1 + 12x2 − 7x3 = 8

3x1 + 2x2 + 9x3 = 7

x1 − x2 + x3 = 4

11

and

x1 − x2 + x3 = 4

3x1 + 2x2 + 9x3 = 7

11x1 + 12x2 − 7x3 = 8

12

are equivalent.

EXAMPLE

Suppose the second equation of system (11) is replaced by − 1 times the second
equation plus 3 times the first equation:

3x1 + 2x2 + 9x3 =7

is replaced by

− 3x1 −2x2 −9x3 = − 7 + 3x1 − 3x2 + 3x3 = 12 = − 5x2 − 6x3 = 5
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Proof of Theorem 2 If the ith equation of the original system (5) is replaced
by c times the ith equation plus d times the jth equation, then the new system is

a11x1 + a12x2 +⋯+ a1nxn = b1

. . .

c ai1x1 + ai2x2 +⋯+ ainxn

+ d aj1x1 + aj2x2 +⋯+ ajnxn = cbi + dbj

. . .
am1x1 + am2x2 +⋯+ amnxn = bm

14

Now, every vector X which satisfies the equations of (5) will also satisfy the
equations of (14). On the other hand, system (5) can be obtained from system (14) by a
similar operation: replace the ith equation of (14) by 1 c times the ith equation plus
− d c times the jth equation. Thus, every vector satisfying the equations of (14) will

also satisfy the equations of (5). We have seen that the solution set of each system is a
subset of the other. Hence, the solution sets are equal. ⋄

The method of solution we shall describe is called the Gauss-Jordan elimination procedure. It
consists of a sequence of operations using Theorem 1 and Theorem 2 to obtain new, equivalent
systems that eliminate, at each step, at least one unknown in one of the equations. To be more
precise, we use Theorem 2 to eliminate x1 from every equation except the first, then use Theorem
2 to eliminate x2 from every equation except the second, and so on. Eventually, we obtain a
system whose solution set can be determined by inspection. We shall illustrate the procedure
with several examples.

EXAMPLE

Consider system (7)

7x1 + 2x2 = 5

4x1 − 3x2 = 7
7

The new system is

11x1 + 12x2 − 7x3 = 8

3 x1 + 2x2 + 9x3 = 7

− 5x2 − 6x3 = 5

13

By Theorem 2, Eqs. (11) and (13) are equivalent. Note that system (13) is “simpler” in
the sense that we have eliminated one of the unknowns in one of the equations.
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Step 1. Replace the first equation with (1/7) times the first equation. We obtain

x1 + 2 7 x2 = 5 7

4x1 − 3x2 = 7
15

Step 2. In system (15), replace the second equation with the second equation plus −4
times the first equation. The result is

x1 + 2 7x2 =5 7

− 29 7x2 = 29 7
16

Step 3. Replace the second equation with −7 29 times itself:

x1 +
2
7
x2 =5

x2 = − 1

17

Step 4. Replace the first equation with the first equation plus − 2 7 times the second
equation:

x1 + = 1

x2 = −1
18

Now the solution set can be read off from the equations of system (18). It consists of
the unique vector

X=
1

−1

As a second example, consider the system

x2 −2x3 = 0

2x1 + x2 − 4x3 = 6

x1 + x2 + x3 = 3

19

Step 1. Interchange the first and third equations:

x1 + x2 + x3 = 3

2x1 + x2 − 4x3 = 6

x2 − 2x3 = 0

20

Step 2. Use the first equation to eliminate x1 in the other equations. Since x1 is already
missing in the third equation, we only have to work on the second equation.
Replace it by the second equation plus −2 times the first equation:

x1 + x2 + x3 = 3

− x2 +2x3 =0

x2 − 2x3 = 0

21
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Step 3. Use the second equation to eliminate x2 from the other equations:
a. Replace the second equation with − 1 times the second.
b. Replace the first equation with the first equation plus − 1 times the second.
c. Replace the third equation with the third plus − 1 times the second. The

result is

x1 +3x3 =3

x2 −2x3 =0

0= 0

22

From Eq. (22), we see that we can assign any value to x3 and then compute x1 and x2
from the first two equations. For example, if x3 = 0, then x1 =3 and x2 = 0; if x3 =1, then

x1 = 0 and x2 =2. Thus, the vectors X1 =
3
0
0

and X2 =
0
2
1

are solutions to the original

system. The general solution can be described by letting x3 take on any arbitrary value α.
Then x1 =3− 3α and x2 = 2α. Thus, the solution set is the set of all vectors of the form

X=
3− 3α
2α
α

, α arbitrary.

If the right-hand side of Eqs. (19) had been replaced by the constant vector

b=

1

2

3

then we would have obtained the system

x2 − 2x3 = 1

2x1 + x2 +4x3 = 2

x1 + x2 + x3 = 3

19′

The procedure to solve this system is the same as that for system (19); the operations
we use in the Gauss-Jordan process are dictated only by the coefficients of the unknowns
x1, x2, . . . xn and are independent of the constants on the right-hand sides of the
equations.

After completing Steps 1, 2, and 3, we would arrive at

x1 +3x3 = − 1

x2 −2x3 =4

0= − 3

22′

The system (22′) has no solution, since the third equation is not true for any choice of
x1, x2, and x3. Thus, the equivalent system (19′) has no solution. Geometrically, the
equations of (19′) represent three planes in three-dimensional space that have no common
point. The three planes of system (19) intersect along a line.
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We can simplify the Gauss-Jordan elimination procedure somewhat by adopting
matrix notation. The original system of linear Eq. (5) can be represented by the matrix
equation

AX=B

where A is the m× n matrix of coefficients

A=

a11 a12 . . . a1n
a21 a22 a2n1
.

.

.

am1 am2 . . . amn

and X and B are the column vectors

X=

x1
x2
.

.

.

xn

, B=

b1

b2

.

.

.

bm

In the Gauss-Jordan process, the entries of A and B will change after each operation.
We can keep track of these changes by considering an m× n+ 1 augmented matrix

A|B =

a11 a12 . . . a1n
a21 a21 . . . a2n
.

.

.

am1 am2 . . . amn

b1

b2

bm

Then the operations of Theorems 1 and 2 can be interpreted as operations on the
rows of the augmented matrix:

a. Interchange two rows of A B .
b. Replace one row of A B with the sum of a nonzero multiple of that row and a multiple

of another row.
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EXAMPLE

The system

2x1 + 10x2 + 6x3 = 14

4x1 + 22x2 − 8x3 = 12

the augmented matrix

2 10 6

4 22 − 8

14

12

To solve the system, we carry out the operations of the Gauss-Jordan procedure on
the rows of the augmented matrix.

Step 1. Replace the first row with 1 2 the first row. The result is

1 5 3

4 22 − 8

7

12

Step 2. Replace the second row with the second row plus −4 times the first row. The
result is

1 5 3

0 2 −20

7

− 16

Step 3. Replace the second row with 1 2 times the second row:

1 5 3

0 1 − 10

7

−8

Step 4. Replace the first row with the first row plus − 5 times the second row:

1 0 53

0 1 − 10

47

−8

This augmented matrix represents the system

x1 + 53x3 = 47

x2 − 10x3 = − 8

which has as its solution set the set of vectors of the form

X=
47−53α

−8+ 10α
, α arbitrary.
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With these examples in mind, we may describe the Gauss-Jordan procedure more
explicitly:

1. Interchange equations (or rows of the augmented matrix) so that the first equation has
a nonzero coefficient of x1.

2. Replace the first equation with the first equation multiplied by the reciprocal of the
coefficient of x1.

3. Use the new first equation to eliminate x1 in every other equation. The ith equation is
replaced with the ith equation plus − ail times the first equation i= 2, 3, . . . , m .

4. Let j be the smallest number such that xj occurs with some nonzero coefficient in
some equation other than the first. Interchange equations so that the new second
equation has a nonzero coefficient of xj.

5. Replace the second equation with the second equation multiplied by the reciprocal of
the coefficient of xj.

6. Use the new second equation to eliminate xj in all equations (including the first
equation) except the second. Follow the procedure of the third step to do this.

7. Let k be the smallest number for which xk appears with a nonzero coefficient in some
equation other than the first two. Make this the new third equation and use it to
eliminate xk in every equation except the third.

8. Continue in this manner until further simplification is not possible. Read off the
solution set from the resulting system.

Computing the Inverse of a Square Matrix
The Gauss-Jordan procedure can be used for any system of m linear equations in n
unknowns. In this section, we apply the procedure to the problem of determining the inverse
of a square matrix.

Suppose we wish to find the inverse of the matrix

A=
7 4

5 3

The discussion in Appendix II shows that we need to find vectors X1 and X2, so that

AX1 =
1

0
and AX2 =

0

1

That is, we need to solve the systems

7x1 + 4x2 = 1

7x1 + 4x2 = 0
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and

5x1 + 3x2 = 0

5x1 + 3x2 = 1

There are two approaches we may take.

Approach I Solve the more general system

7x1 + 4x2 = a

5x1 + 3x2 = b

and then find X1 by letting a= 1 and b= 0, and find X2 by letting a= 0 and b= 1.
The augmented matrix is

7 4

5 3

a

b

The steps in the Gauss-Jordan procedure are:

Step 1. Divide row 1 by 7:

1
4
7

5 3

a

7

b

Step 2. Replace row 2 with row 2− 5 (row 1):

1
4
7

0
1
7

a

7

7b− 5a
7

Step 3. Replace row 2 with 7 (row 2):

1
4
7

0 1

a

7

7b− 5a

Step 4. Replace row 1 with row 1− 4 7 (row 2):

1 0

0 1

3a− 4b

7b− 5a
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Letting a= 1, b= 0, we obtain

X1 =
3

− 5

Letting a= 0, b= 1 produces

X2 =
− 4

7

Thus, the inverse of A is

A−1 = X1, X2 =
3 − 4

− 5 7

Approach II Solve the two systems simultaneously by using a doubly augmented matrix

7 4

5 3

1 0

0 1

Since the steps for solution are the same, we merely note the augmented matrices:

After Step 1:
1

4
7

5 3

1
7

0

0 1

After Step 2:

1
4
7

0
1
7

1
7

0

− 5
7

1

After Step 3:
1

4
7

0 1

1
7

0

− 5 7

After Step 4:
1 0
0 1

3 − 4
− 5 7

Note that in this approach, we begin with A I and end up with I A−1 .
No matter which approach is used, it is important that the operation used at each step be

applied to all the coefficients in the indicated row of the augmented matrix.
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A FINAL EXAMPLE

Consider the system

x1 + x2 + x3 = a

2x1 − 4x2 + 7x3 =b

− x1 + 5x2 − 6x3 = c

which has the augmented matrix

1 1 1

2 − 4 7

− 1 5 − 6

a

b

c

The reader should verify that the following steps, in the indicated order—

1. Replace row 2 with row 2− 2 row 1
replace row 3 with row 3+ row 1

2. Replace row 2 with −1 6 row 2
replace row 1 with row 1+ − 1 row 2
replace row 3 with row 3− 6 (row 2)
—yield the augmented matrix

1 0
11
6

0 1
− 5
6

0 0 0

8a−b
6

2a−b

− a+b+ c

The corresponding system of equations has a solution if and only if − a+b+ c= 0. In
particular, if a=1, b= 0, c= 0, then − a+b+ c= − 1≠ 0. Thus, if A is the matrix

A=

1 1 1

2 − 4 7

−1 5 − 6

then it is impossible to find a vector X such that

AX=

1

0

0

Hence, the matrix A does not have an inverse.
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EXERC I S E S

1. Solve the system
x1 + 4x2 + 3x3= 1

− 3x2 − 2x3= 2

− 7x2 − 5x3= 4

2. Solve the system
x1 − 2x2 − 3x3 = 2

x1 − 4x2 − 13x3 = 14

− 3x1 + 5x2 + 4x3 = 0

3. Solve the system
x+ 2y+ z= 3

3x+ 6y+ 11z= 8

− 2x− 4y+ 4z= 9

4. Solve the system
8x− 8y+ 2u+ 4v+ 2w= − 14

4x+ 2y− 2u− v+ 7w= 29

x+ 4y+ 3u+ 5v+ 7w= 2

for x, y, v in terms of u and w. (No promises that the
arithmetic will be simple.)

5. The Gauss-Jordan procedure works even if the number
of equations equals or exceeds the number of
unknowns. Solve the following system for w and x in
terms of y and z:

w+ 2x+ 3y+ 4z= 10

2w− x+ y− z= 1

3w+ x+ 4y+ 3z= 11

− 2w+ 6x+ 4y+ 10z= 18

6. The system
x+ y+ z+w = 8

x− 2y+ 4z = − 1

2x− y+ 5z+w = 6

is inconsistent—that is, it has no solutions (add the first
two equations together and compare the result with the
third equation). Try to solve for x in terms of y, z, w
using the Gauss-Jordan procedure, and discuss what
happens.

7. Construct a flow chart for the Gauss-Jordan procedure.

8. Show that when the Gauss-Jordan procedure is used to
find an inverse of a square matrix, the result is either
that there is no inverse or there is a unique inverse—
that is, show why there cannot be infinitely many

solutions of the corresponding system of linear
equations.

9. Let XI and X2 be any two solutions of the matrix
equation AX= 0 where 0 is a zero matrix.

(a) Show that XI +X2 is also a solution.

(b) Show that cXI is a solution where c is any
constant.

(c) Show that AX= 0 always has at least one solution,
and that if it has two distinct solutions, then it must
have infinitely many distinct solutions.

10. Let X be any solution of AX=B where A and B are
given matrices, and let X0 be a solution of AX= 0.

(a) Show that X +X0 is a solution of AX=B.

(b) Show that every solution of AX=B can be written
in the form X=X +X1 where X1 is some solu-
tion of AX= 0.

11. Find, if possible, inverses of the following matrices:

A=
3 1

11 4
B=

5 6

4 5
C=

8 4

6 3

D=
0 1

1 0
E=

1 2 3

4 5 6

7 8 9

F =

0 0 1

1 0 0

0 1 0

12. Let A be the 2× 2 matrix

A=
a b

c d

(a) Show that A has an inverse if and only if
ad− bc≠ 0.

(b) Determine A−1 if ad− bc≠ 0.

13. Let B be an arbitrary 3× 3 matrix. Find necessary and
sufficient conditions on the entries of B for the matrix
to have an inverse.

14. The Otter Creek Manufacturing Company produces
two kinds of skis, “Premium” and “Quality.” From x
pounds of wood and y pounds of plastic, it can produce
7x+ 4y pairs of Premium skis and 5x+ 3y pairs of
Quality skis. If there is a demand for 5,600 pairs of
Premiums and 4,100 pairs of Quality skis, how much
wood and plastic should the company order?
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APPENDIX
IV

Functions of Two Variables

Let S be a subset of the x, y -plane. A relationship that assigns a unique number to each point of
S is called a real-valued function of two variables. The domain of such a function is a set of
ordered pairs x, y of real numbers, and the range is a subset of the reals. We may denote such a
function by the letters customarily reserved for functions: f , g, h, F, G, H, φ, θ, . . . .

We write

z= f x, y

to denote that f assigns the number z to the ordered pair x, y .

CONTINUITY

The definition of continuity for a function of two variables is much the same as that for a
function of one variable. The basic idea is exactly the same: small changes in domain values

EXAMPLE 1

Consider the function f x, y = x2 + y4. We then have f 9, 2 = 92 + 24 = 81+ 16=97,
f 9, 2 = 97, and f 7, 0 =49. This function is defined for all values of x and y, so its
domain is the entire plane. Since x2 + y4 is the sum of two nonnegative numbers, no
negative numbers can be in the range. On the other hand, if z is any nonnegative real
number, then f z1 2, 0 = z. Thus, the range of f is the set of all nonnegative real numbers.
Since f 9, 2 = f 9, 2 = f 9, −2 = f − 9, − 2 , the function is not one-to-one.

EXAMPLE 2

Let f be the function given by f x, y = 1
y x

. Then we have f 4, 3 =1 6, f 9, − 1 3 = 1,

while f 5, 2 and f 2, 0 are undefined. Now f is defined whenever x is positive and y is
nonzero. Thus, the domain of f is the open right half-plane excluding the x-axis—that is,
S= x, y x> 0, y≠ 0 . The range of f consists of all real numbers except 0, for if z≠ 0,
then f 1, 1 z = z.
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yield relatively small changes in range values. We obtain a more precise definition by using
the ɛ-δ approach.

DEFINITION A function f of one variable is continuous at x0 if for every positive
number ɛ there is a positive number δ such that f x f x0 < ɛ whenever x x0 < δ.

DEFINITION A function f of two variables is continuous at Po = x0, y0 if for every
positive number ε there is a positive number δ such that f P f Po < ɛ whenever
P Po < δ. Here P is a point x, y in the plane and P Po is the Euclidean distance

x− x0
2 + y− y0

2 between points in the plane, derived from the Pythagorean Theorem

(see Fig. IV.1).

Partial Derivatives
Recall that a derivative of a function of one variable y= f x is a measure of the rate of
change of the “dependent” variable y with respect to changes in the “independent” variable
x. For a function of two variables, f x, y = z, we have a dependent variable z, and two
independent variables, x and y. We can measure rates of change of z with respect to x and
with respect to y.

Computationally, partial derivatives are easy to find. The partial derivative of f with
respect to x is denoted by ∂f ∂x or ∂z ∂x or fx. To compute fx, simply pretend that y is a
constant and carry out ordinary differentiation with respect to x on the formula for f x, y .
The partial derivative of f with respect to y, denoted by ∂f ∂y or by ∂z ∂y or fy, is computed
in an analogous fashion. Some examples are provided in Table IV.1.

The formal definitions of the partial derivatives look like this:

fx x0, y0 = lim
h→0

f x0 + h, y − f x0, y0
h

Fig. IV.1 The distance
P P0 from P0 to P is
the length of the hypote-
nuse of a right triangle
with sides of length
x x0 and y y0 .

P – P0

x –x0
(x,y0)

P(x,y)

P0(x0,y0)

y – y0

Table IV.1

f(x, y) fx(x, y) fy(x, y) fx(9, 2) fy (9, 2) fx( 9, 2) fy ( 9, 2)

x2 + y4 2x 4y3 18 32 −18 32

x2y 2xy x2 36 81 −36 81

1
y x

− 1

2y x3
− 1

y2 x
− 1
108

− 1
12

undefined undefined
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if the limit exists, and

fy x0, y0 = lim
h→0

f x0, y0 + h − f x0, y0
h

if this limit exists.

Higher-Order Derivatives
Since fx and fy are also functions of two variables, we can compute the partial derivatives of
each of these. This leads to four second-order partial derivatives: fxx, fxy, fyx, and fyy.

For the example f x, y = x2 + y4, we have

fxx x, y = 2, fxy x, y = 0= fyx x, y , fyy x, y = 12y2

There is nothing to stop us now from computing partial derivatives of higher and
higher orders. For instance, the expression fxyxx would denote the function of two variables
obtained by differentiating f first with respect to x, then with respect to y, and then twice
more with respect to x.

This process might break down, however—for example, the function f x, y = x3 2y
is defined and continuous everywhere, and so are the functions

fx x, y =
3
2
x1 2y, fy x, y = x3 2

fxy x, y =
3
2
x1 2 = fyx x, y

but the second-order partial derivative fxx is undefined whenever x= 0.
The graph of a function of two variables with domain S is the set

Gf = x, y, z x, y is in S and z= f x, y

The set Gf represents a two-dimensional surface in three-dimensional space. The
higher the order of partial derivatives that exist for f , the “smoother” this surface will be.

It is a remarkable result that if fxy and fyx are both continuous functions, then they are
equal. Check this for the functions in Table IV.1.

EXERC I S E S

1. Determine fx and fy where f x, y is given by
a. sin x cos y

b. x2 + x sin x+ y

c. ex+2y

d. log x− y2

2. Check whether fxy= frx where f is given by
a. x2y+ y2x+ xy

b. cos x2 y2

c. x+y 1

3. Compute fxx + fyy for
a. f x, y = x3 3xy2

b. f x, y = log x2 + y2

4. Find the domain and range of each function of two
variables given in this appendix and the exercises.
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APPENDIX
V

Differential Equations

In this text we deal with a number of differential equations of a fairly simple type. The following
paragraphs will serve as an introduction for those who have not studied this topic before.

By a first-order differential equation, we will mean an equation of the form

dy

dx
=F x, y 1

where F is a given function of two variables defined on some region R of the x, y -plane.
Eq. (1) asserts that y is a differentiable function of x over some interval a, b and that the
derivative satisfies (1) for all values of x in that interval. A more precise statement would be
that there is a function y= f x such that

A. f is a differentiable function of x on a, b

B. The graph x, y y= f x , a≤ x≤ b is contained in R

C. f x =F x , f x for all x in a, b

EXAMPLE 1

Consider the differential equation

dy
dx

=3x2y+
y

2 x
2

Here the function F x, y is given by F x, y =3x2y+ y
2 x

.
This function is defined everywhere on the region R of the plane consisting of all

points with positive first coordinate, the “open right half-plane.” If a and b are any two
positive numbers with a<b, then the function

y= f x = 8ex
3+ x 3

satisfies (A), (B), and (C). You should verify this (immediately).
Note that the function

y= f x =8ex
3+ x−7 4
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It should be pointed out at once that not every differential equation has a solution. Some con-
tinuity properties about F and its partial derivatives usually need to be satisfied to guarantee that
a solution exists. Example 1 illustrates the fact that a differential equation may have more than
one solution. In fact, the differential equation (2) has infinitely many solutions (list some). There
is a uniqueness result, however. If the function F satisfies certain continuity properties and
x0, y0 is any point in R, then there is a unique solution of the differential equation
dyfdx=F x, y whose graph passes through x0, y0 .

The exact statement of the basic existence and uniqueness theorem for first-order dif-
ferential equations follows. Its proof can be found in many standard textbooks on differential
equations; two of these are listed in the References on the text website.

THEOREM Suppose the functions F and Fy are continuous at all points of the
region R of the x, y -plane. Let x0, y0 be any point of R. Then there is an interval I of
real numbers containing x0, and

1. There is a unique function y= f x that is a solution of the differential equation
dy dx=F x, y for which f x0 = y0.

2. The solution exists for all values of x for which the points x, f x lie in R.

3. The solution f varies continuously with the choice of x, x0, and y0.

In this appendix, we will discuss techniques for discovering solutions to differ-
ential equations when the function F x, y takes on one of three very special forms.

Case 1 (Classic Integration) Suppose F x, y = g x ; that is, F is a function only of x.
In this case, the differential equation has the form

dy

dx
= g x 5

To solve this equation we need only find a function whose derivative is g x . This is
the classic integration problem of elementary calculus. The solution of (5) as the form

also satisfies (A), (B), and (C).
Any function fulfilling the conditions of (A), (B), and (C) is called a solution of the

differential equation (1). Thus the functions described in Eqs. (3) and (4) are two different
solutions of the differential equation (2).

EXAMPLE 1 (continued)

The function y= f x = 8ex
3+ x is the unique solution of (2) whose graph goes through the

point 4, 8e66 .
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y= ∫ g x dx 6

When the indefinite integration of (6) is carried out, we are left with a constant of inte-
gration. If an initial point x0, y0 is specified, we can find the value of the constant.

An alternative way to obtain Eq. (6) from Eq. (5) is to rewrite Eq. (5) as an equivalent integral
equation:

∫ dy= ∫ g x dx 7

We then integrate the left-hand side of Eq. (7) with respect to y and the right-hand side with
respect to x. This yields

y+C= ∫ g x dx

which is clearly equivalent to Eq. (6).
This particular device leads to the solution for our second type of first-order differential

equation.

Case 2 (Variables Separable) Suppose F x, y = g x h y —that is, F can be written
as the product of a function of x and a function of y. In this case, we say the
variables separate.

Example 2

Find the unique solution of the differential equation:

dy
dx

= 2x+ 3 x

whose graph passes through 4, 26 .

Solution
We have y= ∫ 2x+ 3 x dx, so that

y= x2 + 2x3 2 +C

where C is an arbitrary constant. To find the solution through 4, 26 , let x= 4 and y= 26 in
the last equation:

26= 42 + 2 43 2 +C= 16+ 16+C=32+C

so that C= 26− 32. Thus the function we seek is y= f x = x2 + 2x3 2
− 6.
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When the variables separate, the differential equation dy
dx =F x, y can be written as

dy

dx
= g x h y 8

To solve the equation, we write down the corresponding integral equation

∫
1

h y
dy= ∫ g x dx 9

and carry out the indicated integrations.

Note that we have not yet found y as an explicit function of x, but we have “solved” the
differential equation to the extent that we have found a relationship between y and x, which
contains no derivatives. In this particular case, we may go further by exponentiating each side of
the last equation. We obtain

elogy = y= e x3+ x+C3 = e x3+ x eC3

or, more simply,

y=Ce x3+ x

EXAMPLE 3

Solve the differential equation of Example 1:

dy
dx

= 3 x2y+
y

2 x
= y 3 x2 +

1
2 x

2

Solution
We write the integral equation

∫
1
y
dy= ∫ 3x2 +

1
2 x

dx

The next step is to carry out the integrations indicated:

log y+C1 = x3 + x+C2

Recall that log refers to the natural logarithm. A better form for this equation is

log y= x3 + x+C
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In carrying out the details of this solution, we have assumed that y is strictly positive. A similar
result is obtained if y is negative. What happens if y is zero?

Case 3 (The Linear Equation) Suppose F x, y = q x − yp x where q and p are
continuous functions of x. Since y occurs only to the first power, this is called a
linear differential equation. The expression for F x, y is linear in y, though not
necessarily linear in x.

EXAMPLE 4

Consider the differential equation:

dy
dx

+2xy= 2xsin x+ cos x 10

This equation is rewritten as

dy
dx

= 2xsin x+ cos x − 2xy

from which we see that it is a linear differential equation with

q x =2xsin x+ cos x and p x = 2x

I will now show you how to solve this particular linear equation before tackling the
general case. What we do may seem strange and terribly unmotivated, but it has
the advantage of working. (Motivation can be given, but we want this section to be relatively
short.)

Multiply each side of Eq. (10) by ex
2
. Since er x is positive for all values of x for any

function r x , we obtain an equivalent equation:

ex
2 dy
dx

+ 2xex
2
y= 2xex

2
sin x+ ex

2
cos x

At first appearance, we have not improved the situation. It’s the second look that
counts: the left-hand side of Eq. (11) is precisely a derivative—in fact,

ex
2 dy
dx

+ 2xex
2
y=

d
dx

ex
2
y

and so Eq. (11) may be rewritten as

d
dx

ex
2
y =2xex

2
+ ex

2
cos x 12

Now we may integrate each side of Eq. (12) with respect to x. The result is

ex
2
y= ∫ 2xex

2
sin x+ ex

2
cos x dx 13
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We are now ready to handle the general first-order linear differential equation:

dy

dx
+ p x y= q x 15

The first step is to multiply each side of Eq. (15) by the integrating factor e∫ p x dx. Then the
left-hand side of the resulting equation is an exact derivative and the differential equation can be
written in the form

d

dx
e∫ p x dxy = e∫ p x dxq x 16

Integration with respect to x yields the solution

e∫ p x dxy= ∫ e∫ p x dxq x dx 17

It will be helpful to examine one final example of a linear differential equation.

or

ex
2
y= ex

2
sin x+C

Simplifying, we obtain

y= sin x+Ce−x
2

14

If we were asked to find the solution of Eq. (10) passing through 0, − 2 , we would
simply set x=0 and y= −2 in Eq. (14) to compute C:

− 2= 0+C=C

The unique solution of the differential equation passing through 0, − 2 is

y= sin x− 2e−x
2

EXAMPLE 5

Find the solution of the differential equation dy
dx = x+ y passing through 0, 4 .

Solution
Rewrite the differential equation in the form

dy
dx

− 1y= x
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Implicit Solutions

In all the examples presented here, the solution techniques described led to an explicit
formula for y in terms of x. This is not always possible and, even when possible, is not
necessarily desirable. Consider, for example, the differential equation dy dx= − 2x y. This
is an example of an equation in which the variables separate. Integration and simple
rearrangement yields

y2 =C− 2x2

The solution to the original differential equation is either y= C− 2x2 or
y= − C− 2x2 depending on the sign of the second coordinate of the initial point. In this
example, it is more useful to consider the implicit relation between x and y:

2x2 + y2 =C

from which we see immediately that the points on the solution curve lie on an ellipse
centered about the origin.

Other Differential Equations

We have presented solution techniques for only three particular types of first-order dif-
ferential equations of the form dy dx=F x, y . There are other large classes of functions
F x, y for which exact solutions can be obtained; some of these are discussed in the books
listed in the References.

from which we recognize that p x = − 1 and q x = x. The integrating factor is e∫−1dx = e−x.
Multiplication of the rewritten differential equation by e−x gives

e−x
dy
dx

− e−xy= xe−x

which may be reorganized as

d
dx

e−xy = xe−x

Integration of each side with respect to x gives

e−xy= − e−x 1+ x +C

so that

y=Cex − 1+ x

Since we are given that y=4 when x= 0, we have 4=C− 1+ 0 ; thus, C=5. Hence,
the unique solution of dy dx= x+ y through 0, 4 is

y= 5ex − 1+ x
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The type of differential equation we have discussed is called a first-degree equation
because the derivative dy dx appears only to the first power. Higher-degree differential
equations can also be studied. The equation

dy

dx

3

+ sin x
dy

dx
− logx= e−x

2

is an example of a third-degree equation.
Another way differential equations are classified is according to the highest order of

differentiation that occurs. For example, the differential equation

cos x
d2y

dx2
+ tan −1x

dy

dx
+

1
1+ x2

= 0

is a second-order differential equation.
Three of the major areas studied in differential equations are:

1. Techniques for solving various special types of equations

2. Approximation methods to obtain numerical solutions to equations that cannot
otherwise be solved

3. Theoretical results on the existence, uniqueness, and qualitative behavior of solutions

This appendix deals with the first topic, and an example of the second topic is given in
Chapter 2, whereas Chapter 4 illustrates what can be done in the third area.

EXERC I S E S

Find the unique solution of each of the following differential
equations of the form dy dx=F x, y passing through the
point x0, y0 . The function F is stated first, followed by the
initial point.

1. x 2, − 3

2. cos x 0, 1

3. 1 1+ x2 1, 0

4. 2y 0, 2

5. 2xy 0, 2

6. x y2 1, 0

7. y x 1, 1

8. xy+ x 0, 0

9. x2 − y x 1, 0

10. sin x− y 0, 2

You can find a listing of references and suggestions for additional reading on the book’s website, www.wiley.com
/college/olinick
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